
Computational Abstractions for Interactive Design of Robotic Devices

Ruta Desai, Ye Yuan and Stelian Coros

Abstract— We present a computational design system that
allows novices and experts alike to easily create custom robotic
devices using modular electromechanical components. The core
of our work consists of a design abstraction that models the
way in which these components can be combined to form
complex robotic systems. We use this abstraction to develop a
visual design environment that enables an intuitive exploration
of the space of robots that can be created using a given set
of actuators, mounting brackets and 3d-printable components.
Our computational system also provides support for design
auto-completion operations, which further simplifies the task
of creating robotic devices. Once robot designs are finished,
they can be tested in physical simulations and iteratively
improved until they meet the individual needs of their users.
We demonstrate the versatility of our computational design
system by creating an assortment of legged and wheeled robotic
devices. To test the physical feasibility of our designs, we
fabricate a wheeled device equipped with a 5-DOF arm and
a quadrupedal robot.

I. INTRODUCTION

In the not-so-distant future, a rich ecosystem of robotic
devices will be tightly integrated into the fabric of our daily
lives. To best serve their purpose, many of these robots will
need to be custom-designed for different tasks or according
to the individual requirements of their users. Unfortunately,
with current design methodologies, the process of creat-
ing new robotic systems is notoriously challenging, time-
consuming and resource-intensive [1].

We present a computational design system for interactive,
on-demand generation of custom robotic devices. To make
it easy to configure and deploy robots, our design system
makes use of a library of standard building blocks such
as actuators and mounting brackets. We assume that these
modular components are either off-the-shelf, mass-produced
parts or that they can be 3D printed. The task of designing a
new robot therefore amounts to choosing which components
to use, how to combine them to form a functional system,
and how to control the resulting device in order to achieve
a desirable set of motions or behaviors. Our computational
design system assists users with each of these tasks.

One of the main goals of our work is to make design
processes more efficient by appropriately modeling the way
in which modular building blocks can be combined to
form complex robotic systems. To this end, we formalize
a design abstraction whereby each component is represented
in terms of geometric features and virtual pins. The virtual
pins establish compatibilities between different components

This work was supported by the National Science Foundation. The
authors are with the Robotics Institute, Carnegie Mellon University, USA.
{rutad, yyuan2, scoros}@andrew.cmu.edu

and define the set of possible physical connections between
them. We leverage this design abstraction in two ways. First,
we develop an easy-to-use visual design environment that
allows users to create robotic devices through familiar drag-
and-drop interactions. The virtual pins are used to suggest
valid placements for each new component, and thus enable
an intuitive exploratory design process. Our computational
system also provides support for design auto-completion
operations. Here, the design abstraction we propose is used
to automatically generate assemblies of structural compo-
nents that connect pairs of actuators whose desired relative
placement is user-specified. These intermediate designs are
obtained by efficiently searching through the space of possi-
ble arrangements of modular components.

Our design system also provides a physical simulation
environment where robots can be tested before fabrication.
In particular, we employ an existing optimal control method
to generate physically-valid motions for legged robots of
arbitrary designs [2]. The resulting motions are tracked
in simulation using PD control. By providing feedback at
interactive rates, users of our system can therefore iteratively
adjust their design to best meet their individual needs and
preferences.

To evaluate the scalability of our approach, we employ
a library of modular components consisting of Dynamixel
actuators [3], off-the-shelf brackets and 3D printable connec-
tors. We demonstrate the effectiveness of our computational
design system by creating an assortment of legged and
wheeled robotic devices. We validate the physical feasibilty
of our results by fabricating two of the robots generated with
our design system – a wheeled robot with a manipulator arm
and a quadruped robot.

II. RELATED WORK

Recent research efforts in the robotics community high-
light the need for new design approaches that support on-
demand generation of robotic devices [1], [4]. Our work
aims to contribute to this exciting emerging area. More
specifically, we are inspired by the ease of use and flexibility
of the Spore Creature Creator [5], which comes from the
computer graphics literature. To date, close to 200 million
customized animated characters have been created with this
system by non-expert users from around the world [6]. As
a long term goal, we wish to make the process of creating
customized robotic devices equally powerful and accessible.

Sharing a goal that is similar to ours, several methods
that enable the design of origami-inspired robots have been
proposed recently [7], [8], [9], [10], [11]. This body of

2017 IEEE International Conference on Robotics and Automation (ICRA)
Singapore, May 29 - June 3, 2017

978-1-5090-4632-4/17/$31.00 ©2017 IEEE 1196

work relies on a set of expert-designed foldable building
blocks that are hierarchically chained together using a custom
scripting language. Although we use a similar abstraction to
enable modular composition, rather than defining new robots
through a scripting language, we develop an intuitive visual
design environment that provides guiding suggestions and
automatic design completion operations.

We pair our design framework with a physical simulation
environment that allows users to test their robots before
fabrication. To this end, we build on the work of Megaro
et al. [2]. However, instead of relying entirely on 3D printed
parts, our design system is capable of also employing stan-
dard, off-the-shelf components such as mounting brackets.
We can therefore harness the best of both worlds – cost-
effectiveness and durability of mass-produced components,
and customization of 3D printing. While [2] focused solely
on walking motions for 3D-printable robots, our goal is to
enable the design of a much larger variety of devices leverag-
ing modular, off-the-shelf components. We also propose an
algorithm to search the rich space of component assemblies
based on high-level specifications. Our work is also related to
specialized design systems such as Tinkerplay [12] and VEX
assembler [13]. We take inspiration from these applications,
which are developed for specific types of physical artifacts
such as articulated 3d-printable figurines. The goal of our
design system, however, is to be more general and provide
users with the ability to create robotic devices using different
libraries of electromechanical components.

A long-standing goal in robotics is the synthesis of robots
from high-level functional specifications. To this end, in-
spired by Sims’ work on evolving virtual creatures [14],
a variety of evolutionary methods that aim to co-design
a robot’s structure and control inputs have been investi-
gated [15], [16], and this effort continues today [17]. How-
ever, evolutionary methods rely on stochastic algorithms that
are slow, notorious for exploiting unwanted loopholes in the
problem specification, and lead to results that are often not
repeatable [15]. Rather than relying on stochastic algorithms,
our design system puts the user in the loop and assists them
with suggestions and semi-automatic design completion.

III. DESIGN ABSTRACTION

The goal of our work is to formalize a computational
method that enables efficient processes for designing highly
customizable robots. To achieve this goal, we develop a de-
sign abstraction based on the observation that robotic devices
are simply collections of inter-connected electromechanical
components. These modular components and the way they
connect to each other, therefore, constitute the main elements
of our design abstraction.

Modules and pins: Each electromechanical component
(henceforth called a module) of a robot is modeled as a
rigid body with 6 degrees of freedom (DOF). Each module
also has an associated bounding box and a set of virtual
pins (henceforth called as pins). Bounding boxes are used
during the design process for collision detection, while pins
model physically compatible connections between modules.

A module m is formally defined as:

m = (tm, xm, qm, bm, {pm1 , . . . , pmn }) , (1)

where tm denotes the module type (e.g. motors), xm and the
quaternion qm store the module’s position and orientation
in a global coordinate frame, bm represents its axis aligned
bounding box, and {pmi }

n
i=1 is a set of n pins. Each pin pmi

represents a pre-set location on module m where another
module can attach (e.g. the horn of a servomotor). We use
local coordinates to represent the location of each pin. Axis
aligned bounding boxes for each module are also defined
in local coordinates. Fig. 1(a) illustrates two hypothetical
modules together with their virtual pins.

a. Modules and pins

1

 p1 : (0,0.5,0)

m
a p2 : (-0.5,0,0)

m
a

m
b p1

Module a (ma)

b. Connections

a,b c2,1 [1]

a,b c1,1 [1]

 a,b c2,1 [2]

Orientation 1 Orientation 2
Module b (mb)

Fig. 1. (a) Design abstraction example: Two hypothetical modules (a and
b) are shown here. Module a is a block of 1 unit, with two pins (shown in
cyan) and module b is a type of connector with one pin. Their local co-
ordinate frames are shown at their center with a triad. The pin positions and
bounding box are defined with respect to this frame. The table enumerates
the parameters that define module a. (b) All possible connections between
modules a and b are shown here. Modules a and b connect with each other
at pma

2 and p
mb
1 in two different orientations while they can connect in

only one orientation at pins pma
1 and p

mb
1 .

We associate with each module a semantic
label tm, which can take on a value in the set
{motor , connector , body plate, end effector}. Modules
with type motor are used to represent the actuated degrees
of freedom of a robot, while the end effector type indicates
that the module is a foot, wheel or manipulator. Modules
labeled as connector denote structural components, such
as mounting brackets, and body plate modules specify
locations on the robot’s main body where motors can be
attached to start new kinematic chains (e.g. a new leg). The
geometry of the robot’s body is generated as the convex
hull of all body plate modules in a design.

Connections: Connections encapsulate the conceptual de-
sign rules that specify how individual modules can be
combined to form complex robotic systems. A connection
between two modules ma and mb is defined through a pair of
compatible pins, as well as a set of physically-valid relative
orientations (e.g. due to screw mounting holes):

ca,bi,j =
(
pma
i , pmb

j , {qma,mb

1 , . . . , qma,mb
n }

)
, (2)

where ca,bi,j denotes a connection between modules ma and
mb using the ith pin of ma (pma

i) and jth pin of mb

1197

(pmb
j). We use ca,bi,j [k] to denote the kth feasible relative

orientation (i.e. the quaternion qma,mb

k) between the two
modules. Connecting two modules through ca,bi,j [k] amounts
to positioning them relative to each other such that the
world positions of pins pma

i and pmb
j line up and the

relative orientation between them, qma
w

−1qmb
w , is qma,mb

k .
As shown in Fig. 1(b), modules can be connected to each
other both using different relative orientations, and through
different pairs of pins altogether. We store the library of
modules, the virtual pins and all connectivity information in
a configuration file, as exemplified below. We note that the
configuration file does not explicitly store the position xm

and orientation qm of the modules. These are determined
automatically during the design process.

Configuration file example:
Module

Name a
Type Block
BoundingBox

S i z e 0 . 5 0 . 5 0 . 5
P o s i t i o n 0 0 0

Pin
Name a−p in1
P o s i t i o n 0 0 . 5 0

Pin
Name a−p in2
P o s i t i o n −0.5 0 0

Module
Name b
Type Connec to r
BoundingBox

S i z e 0 . 7 5 0 . 3 0 . 1
P o s i t i o n 0 0 0

Pin
Name b−p in1
P o s i t i o n 0 0 0 . 1

ConnectionMap
P i n P a i r a−p in2 b−p in1
R e l a t i v e O r i e n t a t i o n 0 . 7 0 0 . 7 0

P i n P a i r a−p in2 b−p in1
R e l a t i v e O r i e n t a t i o n 0 . 4 9 0 . 4 9 0 . 4 9 −0.49

P i n P a i r a−p in1 b−p in1
R e l a t i v e O r i e n t a t i o n 0 . 4 9 0 . 4 9 0 . 4 9 0 . 4 9

A complete testbed: To test our computational design
approach, we defined a complete library of modular com-
ponents consisting of Dynamixel XM430 actuators, off-the-
shelf mounting brackets and 3D printable end effectors. As
illustrated in Fig. 2(a), the library features four types of
connectors: horn bracket, side bracket, bottom bracket, and a
custom connector that can be attached to each type of bracket
in multiple ways. The library also includes two types of end-
effectors that can be used as point or area feet for legged
robots, as well a wheel for mobile robotic vehicles.

IV. DESIGNING ROBOTIC DEVICES

Our design abstraction enables an interactive process for
creating robotic devices. In addition to a manual mode that
leverages a graphical user interface capable of providing
meaningful suggestions, we also develop a search-based
algorithm for design auto-completion. Once a design is

Bottom
Bracket

End Effectors

Side
Bracket

Horn Bracket

Plate

Custom
Connector

a.

b.

Wheel

Pointed
foot

Area
foot

Fig. 2. (a) A design testbed with Dynamixel modules: We use custom
designed modules such as end-effectors, plates and a custom connector
(shown in white) as well as commercially available Dynamixel modules such
as motors. Their pins are shown in cyan. (b) Table describes connection
compatibility between these modules. Each shaded entry indicates the total
number of connections between two modules. Wheel can only connect to
the motor in one way and hence end effectors entries refer only to the feet.

finished, our system provides a physically-simulated envi-
ronment where robots can be tested before being assembled.
In particular, for legged robots, we use our previous work
to efficiently generate stable full-body motions [2]. By pro-
viding feedback at interactive rates, users of our system can
iteratively adjust their design until it best meets their needs.

A. System-guided manual design

a. b.

new selection

suggestions

Fig. 3. (a) The design interface consists of two workspaces– the left
workspace allows for designing the robot while the right workspace runs a
physics simulation of the robot designed by the user for its feasibility. The
left workspace displays a list of various modules at the top. The leftmost
menu provides various functions that allow users to define preferences for
the search process, visualization as well as for physical simulation. (b) When
the user selects a new module from the list, our system makes visual
suggestions (shown in red) about possible connections for this module, based
on the current design.

Using our design abstraction as the technical core, we
developed a visual design system for interactive, on-demand
generation of custom robotic devices. As Fig. 3(a) illus-
trates, users of our system are presented with a design
workspace (left) and a simulation workspace (right). The
design workspace allows them to browse through the list of
available modules, which can be dragged and dropped into

1198

a. b. c. d.user input automatic design auto-completion
with search

adding body plates
and end-effectors

final result

Fig. 4. Automatic design with search: (a) Users can start with a guiding mesh for the robot they want to make. Then, they specify the positions and
orientations of motors for this robot, using the drag and drop interface. (b) Our search process searches for possible designs that connect a given pair of
motors in user-defined locations, according to user-defined preferences. The user can reject the solution and re-do the search with different preferences
any-time. A proposed search solution connecting the root motor to the target motor (highlighted in dark red) is shown in light blue. The design is only
created if the user accepts the proposed solution. The process is repeated by the user for each pair of motors. (c) Since the legs are symmetric, the users
only need to use search process for two legs. Our interface allows them to create the other pair of legs by simple editing operations. Finally, the users can
attach end-effectors of their choice and create a body plate to complete the robot design. (d) shows the final design (with and without the guiding mesh).
The dinosaur head mesh was manually added after the design, for aesthetic appeal.

the scene at any time. Once a specific module is selected,
our system visualizes the ways in which it can be connected
to the design the user is currently working on (see Fig. 3(b)).
This is achieved by iterating through all unused pins in the
current design and checking if they are compatible with
the pins of the new module. As the user positions the
module in the scene sufficiently close to any of the suggested
placements, it is automatically snapped into place. The user
can then cycle through the set of possible relative orientations
(i.e. ca,bi,j [k]) associated with the connection that was selected.
Our design system also supports other editing operations
that increase productivity. For example, different parts of a
design can be marked as symmetric (e.g. left and right limbs),
with edits made to one part being automatically propagated
to the other. Different parts of an existing design can also
be copied, pasted and mixed with other designs. To further
guide the design process, users can load a 3D mesh and
overlay it into the workspace, as seen in Fig. 4. We illustrate
a representative design session in the accompanying video.

B. Design auto-completion

The manual mode described in the previous section affords
users with full control over the design. Nevertheless, this
exploratory design process can become somewhat tedious if
a large number of modules is required to create a robotic
device. We therefore developed a novel, semi-automatic
mode that allows users to focus primarily on functional
characteristics of their design. For example, if the goal is
to create a robot arm with 3 actuated joints, shoulder, elbow
and wrist, the user can simply specify how the joint motors
should be positioned relative to each other. Our system
then employs a computational algorithm to auto-complete
the design. This is achieved by searching for a sequence
of modules that result in appropriate mechanical structures
connecting the shoulder elbow, and wrist motors.

We use a heuristic-guided tree search algorithm to auto-
complete designs. As illustrated in Fig. 5, starting from a root
motor, our computational system creates a tree of possible
designs in a recursive manner. Briefly, nodes correspond to
modules, edges describe how compatible modules connect

to each other, and the path from each node to the root
corresponds to an intermediate robot design. Leaf nodes of
the search tree correspond to designs that end with a target
motor. The goal of our design auto-completion algorithm is
to find the leaf node corresponding to a relative placement
between the root and target motors that is as close as possible
to what the user specified (e.g. placement of elbow motor
relative to shoulder motor, or wrist motor relative to elbow
motor). As described in the remainder of this section, we
explore several heuristic functions that guide the search
process in order to make it computationally efficient, and
therefore suitable for interactive design.

Search tree: The search tree T is a collection of nodes
and edges, T = (N,E). Each node Ni represents a module
mi and is defined as:

Ni = (mi, N
p
i , {1N

c
i , . . . , nN

c
i }) , (3)

where mi is the module corresponding to node Ni (defined
by eq. 1), Np

i represents its parent node – the node it orig-
inated from, and {jN c

i }nj=1 represents a set of n successive
nodes called children nodes. Node Ni has a child node for
every way in which module mi can connect to any other
module in the library. The child nodes themselves represent
the modules that are to be connected to mi, while the way in
which the two modules are attached to each other is specified
by the edges of the tree. In particular, an edge connecting
nodes Na and Nb is defined as:

Ea,bi,j,k =
(
Na, Nb, c

a,b
i,j , k

)
, (4)

where a is the index of the parent node, b is the index of
the child node, ca,bi,j references the connection between their
modules ma and mb at virtual pins pma

i and pmb
j respectively

(defined by eq. 2), and k indicates the index of a relative
orientation from the set of feasible configurations for ca,bi,j .
With the parent node Na’s position and orientation kept
fixed, the child node Nb’s relative placement is automatically
determined such that the locations of the connection’s virtual
pins (i.e. pma

i and pmb
j) coincide in world coordinates, and

the relative orientation between the two is set according to

1199

ca,bi,j [k]. We note that nodes of the search tree are expanded
as needed during the search process.

. . . .

. .

. . .

. . . .

. .

. .

. . . .

. . . .

. . . .

. . .

a.

. . . .

leaf node

.

.

.

.

. . . .

. .

root

connections

b.

bottom
bracket

bottom
bracket

horn
bracket

motor

horn
bracket

bottom
bracket

side
bracket

motor

motor connector

leaf node

motor

leaf node

. . . .

Fig. 5. The search tree originates at the root motor and enumerates
all possible structural designs between the root and the target motor. The
visualization of physical designs represented by the search tree and its cor-
responding schematic representation are shown in (a) and (b) respectively.
Each branch represents a different design that results in a particular target
motor configuration (encoded by its leaf node, highlighted with red oval).

Informed tree search: Since the depth of the search tree is
potentially unbounded, and each node has a large branching
factor (see Fig. 1(b) and Fig. 2(b)), the design space is
vast. As a result, a brute force traversal of the search tree
would be prohibitively expensive. We therefore propose an
informed search process that accounts for the desirability and
feasibility of a design. We leverage existing informed search
methods in graph theory, namely the A* algorithm, and adapt
it for interactive, user-driven design [18].

Informed search methods use problem specific knowledge
to decide which nodes to expand while traversing the search
tree. Heuristic functions that embed the target information are
the most common form of domain knowledge used during
the search. We define a heuristic function h that measures
the promise of each branch in reaching the target motor:

h(Ni) = |xmi − xmt | , (5)

where Ni represents current node of a branch, module mi

represents Ni’s module, mi’s position xmi
w is defined in eq. 1,

and mt is the target motor. h refers to the euclidean or
straight-line distance between mi and mt. Note that h is
an admissible heuristic because the shortest path between
any two points is a straight line, so it cannot be an overes-
timate [18]. Apart from heuristics, other cost functions can
be used to bias the search in finding designs with desired
properties.

Desirability cost: We define a desirability cost that en-
codes user preferences regarding aesthetics and resource
economy. The desirability of a design is measured in terms
of the total number of modules used and the compactness of
the resulting structure. A design that uses a lower number
of modules may be more economical (and it is trivial
to associate different costs to different types of modules).
Similarly, a design that connects the root motor and target

motor using an approximately straight structure might be
more compact, and therefore more aesthetically pleasing. The
desirability cost D of a branch in the search tree measures
these two characteristics of its design, at its current node Ni.

D(Ni) = wc ∗ δ(Ni) +

∑δ(Ni)
j=1 dist(Nj , RT)

δ(Ni)
, (6)

where wc is a scaling weight and δ(Ni) is the depth of
node Ni in the branch (with root node at depth 0). The
first term therefore represents the total number of nodes
(modules) between the root and the node. RT represents a
line segment in 3D joining the root and the target nodes, and
dist(Nj , RT) measures the distance between the node Nj
and RT . This distance is zero if the position of Nj’s module
(xmi
w) lies on RT , thereby implying a straight structure. The

second term thus measures the average deviation of branch’s
module positions from RT . The nodes with lower D are
more desirable. D’s role in the search is comparable to that
of path cost g in A* search [18]. However, defining D allows
us to present the users with intuitive handles to control the
search output.

The total cost f of a node Ni is then determined as:

f(Ni) = h(Ni) + wdD(Ni) , (7)

where wd is a user-defined weight, h(Ni) is defined by eq. 5,
and D(Ni) is defined by eq. 6. h, D and f are calculated
and stored for each node during the expansion process. The
definition of node Ni is extended to store them.

Ni = (mi, N
p
i , {1N

c
i , . . . , nN

c
i } , h,D, f) , (8)

where mi, N
p
i , {jN c

i } are defined as in eq. 3. h, D and
f are defined as in eq. 5, 6, 7 respectively. Algorithm 1
describes our search process that uses f to determine which
node to expand. The node with lowest f is expanded first.
The openset keeps track of all the nodes yet to be expanded.
Upon expansion, only the nodes free of collision are added
to the openset, to ensure physical validity of the design.
We use bullet collision engine [19] to compute collisions
between modules. Expanding nodes with lowest f ensures
that the branches whose structures extend towards the target
motor position are expanded and traversed first in the tree.
However, the function of an articulated link with multiple
motors depends not only on the position of the motors, but
also on their rotation axis. Hence, not all the designs that
extend to the target motor position might function as desired.
We therefore define an additional functionality cost.

Functionality cost: The functionality of each branch in
the search tree is measured using the error between the
position and orientation of the motor’s axis at its leaf
node and the user-specified target values. This error term
determines whether the proposed design is acceptable. F is
comparable to a termination criteria of conventional search
methods.

F (Ni) = |xmi − xmt |+ (1− |−→a mi · −→a mt |) , (9)

1200

where Ni is a leaf node, mi represents the motor module as-
sociated with Ni, and mt is the target motor which is placed
in the design by the user. xmi and xmt denote positions
of mi and mt respectively (eq. 1). −→a is a vector denoting
the motor’s axis of rotation. For certain applications, users
might also care about the rotation of the target motor about
it’s rotation axis. This degree of freedom does not interfere
with the functionality of a design, but it may affect its form
factor. In such cases, F can be extended to account for this
error in the orientation of the target motor:

F (Ni) = |xmi − xmt |+(1− |−→a mi · −→a mt |)+∆(qmi , qmt) ,
(10)

where qmi and qmt are quaternions representing ori-
entations of modules mi and target motor mt respec-
tively (eq. 1). Their orientation difference ∆(qmi , qmt) =
cos−1 (scalar(qd)), where qd = (qmi)∗qmt and q∗ rep-
resents quaternion conjugate. F is defined by eq. 9 by
default. In algorithm 1, as soon as a motor module node
is encountered in the expansion process, instead of adding it
to the openset, it is compared to the target motor using F
to determine whether its branch represents a valid functional
design. If the design is valid, the search displays it to the
user and discards it otherwise.

Comparison to conventional search: When wd > 0
in eq. 7, our search process (algorithm 1) becomes an A*
algorithm that determines which nodes should be expanded
by summing up the heuristic cost-to-goal estimate and the
cost of intermediate designs [18]. Setting wd = 0 converts
the search into a greedy best-first search that only uses
the heuristics for node expansion. Throughout the search
process, we use our functionality metric F to keep track of
the current best node. Instead of waiting for the search to find
an optimal mechanical assembly, the design corresponding to
the current best node is displayed and updated as the search
progresses. This strategy produces various alternative designs
for users to choose from as they are found, and it leads to
lowers wait times that promote interactive design. Users can
accept any of the designs produced by the system at any
point in the search process. Keeping users in the loop in this
manner allows us to also account for aesthetic preferences
that may not be captured by the desirability cost. If users
do not choose any design, we exit the search when the
number nodes in openset exceeds a threshold, returning the
design with minimum F . Inspired by the various alternative
designs proposed during the search, users are free to change
the placement of the root or target motors at anytime. The
search process will account for this change and will be
updated immediately. Users can further influence the search
process by specifying different weights for the orientation or
desirability objectives (eq. 7,10).

V. RESULTS

Our design system allows casual and expert users alike
to easily design customized robotic devices that range from
wheeled vehicles to legged robots (Figures 6, 7 and 9). In

Algorithm 1: Interactive search for robot structure
input : Root motor (r), target motor (t), maxN , wd
output: Designs connecting r and t.

// start with root node
calculateCost (Nr); openset← Nr

// keep track of the best design
Nbest = Nr

while 0 < size(openset) < maxN do

// select node for expansion
Ncurrent = N in openset with lowest f

// node expansion
Nnew ← {jN c

current}zj=1

for i← 1 to z do
// check feasibility
if Nnew(i) is free of collision then

calculateCost (Nnew(i))
// compare leaf node to target
if Nnew(i)→ m = motor then

if F (Nnew(i)) <= F (Nbest) then
Nbest = Nnew(i)

end
end
// add to openset
else

openset← Nnew(i)
end

end
end

end

// output best node
return Nbest
Function calculateCost(N)

calculate N → h, N → D, N → f
end

this section, we evaluate our system by analyzing the abilities
of the manual and automatic design modes. Further, we
verify the feasibility of the designs made with our system by
fabricating two very different robots – a wheeled robot with a
manipulator arm that draws called “robo-calligrapher”’, and
a quadruped robot which we call “puppy”.

Guided by visual suggestions provided by our system, the
manual mode we developed is a powerful tool that allows
users to explore the design space. Fig. 7 shows several
different designs for two types of quadrupeds. Each of these
designs took a matter of minutes to create. When considering
the number of motors that can be used for each limb, their
placement and direction of rotation axes, configurations of
the legs and how they attach to the body, the design space
is very rich. The ability to quickly create or alter designs
is therefore very important in exploring the relationship

1201

a. b. c.

64 modules 104 modules 53 modules

Fig. 6. Various robots designed with our system: (a) a centaur, (b) a
hexapod with arms, and (c) a pentapod. (a) was designed in the manual
mode, (b) was designed using the search, and (c) was designed using both
modes. Its short legs were designed in manual mode while the longer limb
was designed with the search process. Each design is composed of off-the-
shelf modules and custom 3D printed modules (shown in white). The total
number of modules used in each design (mentioned below) indicate their
complexities.

between the form and function of the robot. To further speed
up design processes, our computational system allows users
to copy-and-paste different parts of a design in order to mix
and match features from different robots. This functionality
is demonstrated with the top-left design in Fig. 7, where
the robot employs two legs from the spider design, and two
from the mammal design. Upper bodies with an arbitrary
arrangement of manipulators can also be easily designed, as
demonstrated by the robots presented in Fig. 6.

9 modules
per leg

12 modules
per leg

a. c.

b.

9 modules
per leg

8 modules
per leg

edit

mix

Fig. 7. Two types of quadrupeds inspired by spider-like legs and mammal-
like legs are shown in (a) and (b) respectively. Each design uses 3 motors
per leg, but uses different number of modules per leg (mentioned below each
design). These modules are also used in different configurations resulting
in diverse looks and motion behaviors. Designs in (c) were made by editing
and mixing designs from (a) and (b).

Fig. 4 illustrates the process of creating a dinosaur robot
using our design auto-completion mode. For designs such
as this, the large number of required components can make
the manual mode too tedious and time consuming. Our
semi-automatic mode proposes designs that attach motors
to each other through a series of modular connectors. Each
design is generated to ensure that the final placement and
orientation of the motors is as close as possible to user-
specified configurations. Fig. 8(a), for example, shows var-
ious design alternatives suggested by our search algorithm.
By specifying preferences regarding the number of modules,
aesthetics (eq. 7), and motor orientations about their rotation
axes (eq. 10), users can intuitively influence the result of the

search process.

a. b.

wd = 1
Align to target
position and axis
(Eq. 9)

Align to target
position, axis and
orientation (Eq. 10)

c.

wd = 0

Fig. 8. (a) The search proposes various design alternatives (shown in light
blue) that connect the root motor (in gray) to the target motor (in dark red)
in desired configuration as closely as possible. The motor axis alignment
for the target motor (red axis) and the proposed structure (blue axis) is
also illustrated. (b) The resultant designs vary based on F cost used for
comparing the resultant motor configurations of the proposed designs to the
target motor. (c) The importance of desirability cost is shown here. When
wd in eq. 7 is set to zero, the resultant designs end up using more number
of modules and are aesthetically less appealing.

Fig. 9 shows two fabricated prototypes of robots designed
with our system. The body plates, wheels and feet were
3D-printed, while all connecting brackets are off-the-shelf,
aluminum parts. The robo-calligrapher robot was designed
to take high-level commands from a blue-tooth device. By
controlling the velocity of the motors that are attached to the
wheels, it can easily be commanded to move forward, back-
ward and to turn. We further developed an application that
translates a user sketch to a sequence of motor commands
for its arm. We used inverse kinematics for this purpose. Our
design system allowed us to experiment with the number
of actuators used in the arm. We found that with 3 motors
and off-the-shelf mounting brackets, its range of motion was
too limited, and therefore it was not able to reproduce a
significant number of sketches we provided to it. Based on
this diagnostic, we decided to add two additional motors to
the design.

The puppy robot was designed to walk forward and
sideways. For this robot, the feedback obtained from the
simulation environment and the efficient iterative design
process enabled by our system were particularly useful. As
shown in the accompanying video, our system makes it easy
to experiment with different body proportions, types of end
effectors and motor configurations. In addition to affecting
the perceived motion style, these choices also affect the
robot’s ability to perform different motor tasks. For example,
before converging to our final design, we created a few robots
that were only able to walk forward, and not sideways (e.g.
bottom left design in Fig. 7). As our accompanying video
shows, the motions of the physical prototype match well

1202

the simulated results. We therefore find the outcome of this
experiment very encouraging, since performing an equivalent
exploration of the design space directly in hardware is
tedious and much more time consuming.

Robo-calligrapher

Puppy

Fig. 9. The “robo-calligrapher” and “puppy” robot are shown here with
their fabricated counterparts. We designed a special purpose end effector
that served as a pen-holder for the robo-calligrapher. Accompanying video
shows these robots in action.

VI. CONCLUSION AND FUTURE WORK

We formalized a general and flexible design abstraction for
on-demand generation of customized robotic devices. Based
on this abstraction, we developed manual and semi-automatic
approaches to allow users of our system to explore the space
of robot designs in a visual environment. Through continuous
feedback from physical simulations, our system allows users
to iteratively improve their designs until individual needs and
preferences are met. Our work aims to make robotics more
accessible to casual users. We believe this is particularly
important. As recent research shows, playing an active role in
creating robotic devices for personal use increases our sense
of self-agency, enhances the way we perceive them as well
as the quality of our interactions with them [20], and may
therefore accelerate their acceptance in our everyday life.

Our system allows users to efficiently create customized
robots through design space exploration and simulation-
based feedback, both of which result in faster design iter-
ations. User design is supported through a manual mode
that allows forward design, and an auto-completion mode
that further speeds up the design process. However, our
auto-completion approach does not currently account for
dynamics, external loads, or desired motion profiles that may
be important for professional design of articulated robots.
Ideally, future iterations of our computational design system
will account for these wider design requirements. We also
note that while the simulation-based feedback immensely
helps in iteratively improving the design, translating a nega-
tive outcome observed in simulation to an appropriate change
in the design may be difficult for novices. In the longer term,
we therefore wish to automatically translate functional and
behavioral specifications into co-designed hardware, sensing

and control software systems – a goal shared by other
researchers [8]. At the same time, we believe it is important
to find the right balance between automation and user-in-
the-loop design processes. We therefore aim to perform an
extensive user study to assess the needs and preferences of
novice, intermediate and experienced robot designers.

REFERENCES

[1] N. Bezzo, A. Mehta, C. D. Onal, and M. T. Tolley, “Robot makers:
The future of digital rapid design and fabrication of robots,” IEEE
Robotics & Automation Magazine, vol. 22, no. 4, pp. 27–36, 2015.

[2] V. Megaro, B. Thomaszewski, M. Nitti, O. Hilliges, M. Gross, and
S. Coros, “Interactive design of 3d printable robotic creatures,” ACM
Transactions on Graphics (TOG), 2015.

[3] Robotis, “Dynamixel x series,” 2015 (accessed on 5-September-2016).
[Online]. Available: http://www.robotis.us/dynamixel-xm430-w210-r/

[4] “Robot makers workshop,” RSS 2016. [Online]. Available: http:
//www.seas.upenn.edu/∼nicbezzo/RoMa2016/

[5] C. Hecker, B. Raabe, R. W. Enslow, J. DeWeese, J. Maynard, and
K. van Prooijen, “Real-time motion retargeting to highly varied user-
created morphologies,” ACM Trans. on Graphics(TOG), p. 27, 2008.

[6] E. A. Inc., “Sporepedia,” 2009 (accessed on 5-September-2016).
[Online]. Available: http://www.spore.com/sporepedia

[7] A. M. Mehta and D. Rus, “An end-to-end system for designing
mechanical structures for print-and-fold robots,” in IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China,
June 2014.

[8] A. M. Mehta, J. DelPreto, B. Shaya, and D. Rus, “Cogeneration of
mechanical, electrical, and software designs for printable robots from
structural specifications,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep 2014.

[9] C. Onal, M. Tolley, R. Wood, and D. Rus, “Origami-inspired printed
robots,” Mechatronics, IEEE/ASME Transactions on, vol. PP, no. 99,
pp. 1–8, 2014.

[10] A. Mehta, J. DelPreto, and D. Rus, “Integrated codesign of printable
robots,” in Journal of Mechanisms and Robotics, vol. 7, 2015.

[11] C. Sung and D. Rus, “Foldable joints for foldable robots,” in Journal
of Mechanisms and Robotics, vol. 7, 2015.

[12] Autodesk, “Tinkerplay,” 2015 (accessed on 5-September-2016).
[Online]. Available: http://investors.autodesk.com/phoenix.zhtml?c=
117861&p=irol-newsArticle&ID=2026270

[13] VEX-Robotics, “Vex assembler,” 2015 (accessed on 5-
September-2016). [Online]. Available: http://www.vexrobotics.com/
vexiq/software/vexassembler/

[14] K. Sims, “Evolving virtual creatures,” in Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’94. New York, NY, USA: ACM, 1994, pp. 15–22.
[Online]. Available: http://doi.acm.org/10.1145/192161.192167

[15] P. C. Leger, “Automated synthesis and optimization of robot con-
figurations: An evolutionary approach,” Ph.D. dissertation, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, December 1999.

[16] H. Lipson and J. B. Pollack, “Towards continuously
reconfigurable self-designing robotics.” in ICRA. IEEE, 2000,
pp. 1761–1766. [Online]. Available: http://dblp.uni-trier.de/db/conf/
icra/icra2000.html#LipsonP00

[17] J. Auerbach, D. Aydin, A. Maesani, P. Kornatowski, T. Cieslewski,
G. Heitz, P. Fernando, I. Loshchilov, L. Daler, and D. Floreano,
“RoboGen: Robot Generation through Artificial Evolution,” in
Artificial Life 14: Proceedings of the Fourteenth International
Conference on the Synthesis and Simulation of Living Systems.
The MIT Press, 2014, pp. 136–137. [Online]. Available: http:
//www.robogen.org/

[18] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach,
vol. 2.

[19] “Bullet physics library,” 2015 (accessed on 5-September-2016).
[Online]. Available: http://bulletphysics.org/

[20] Y. Sun and S. S. Sundar, “Psychological importance of human agency
how self-assembly affects user experience of robots,” in 2016 11th
ACM/IEEE Intl. Conf. on Human-Robot Interaction (HRI), 2016, pp.
189–196.

1203

