
Computational Design of Mechanical Characters

Stelian Coros*1 Bernhard Thomaszewski*1 Gioacchino Noris1 Shinjiro Sueda2 Moira Forberg2

Robert W. Sumner1 Wojciech Matusik3 Bernd Bickel1

1Disney Research Zurich 2Disney Research Boston 3MIT CSAIL

Figure 1: The interactive design system we introduce allows non-expert users to create complex, animated mechanical characters.

Abstract

We present an interactive design system that allows non-expert
users to create animated mechanical characters. Given an articu-
lated character as input, the user iteratively creates an animation
by sketching motion curves indicating how different parts of the
character should move. For each motion curve, our framework cre-
ates an optimized mechanism that reproduces it as closely as pos-
sible. The resulting mechanisms are attached to the character and
then connected to each other using gear trains, which are created
in a semi-automated fashion. The mechanical assemblies generated
with our system can be driven with a single input driver, such as a
hand-operated crank or an electric motor, and they can be fabricated
using rapid prototyping devices. We demonstrate the versatility of
our approach by designing a wide range of mechanical characters,
several of which we manufactured using 3D printing. While our
pipeline is designed for characters driven by planar mechanisms,
significant parts of it extend directly to non-planar mechanisms, al-
lowing us to create characters with compelling 3D motions.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Physically based
modeling

Keywords: mechanical characters, animation, fabrication, inter-
active design

Links: DL PDF

* The first two authors contributed equally.

1 Introduction

Character animation allows artists to bring fictional characters to
life as virtual actors in animated movies, video games, and live-
action films. Well-established software packages assist artists in
realizing their creative vision, making almost any digital charac-
ter and movement possible. In the physical world, animatronic
figures play an equivalent role in theme parks and as special ef-
fects in movies and television. While these sophisticated robots are
far from becoming household items, toys that exhibit mechanical
movement are extremely popular as consumer products. However,
unlike virtual characters, creating complex and detailed movement
for mechanical characters, whose motion is determined by physi-
cal assemblies of gears and linkages, remains an elusive and chal-
lenging task. Although mechanical characters have been part of
the toy industry since the nineteenth century [Peppe 2002], design
technology for these characters has changed little and is limited to
expert designers and engineers. Even for them, the design process
is largely trial and error, with many iterations needed to produce
an acceptable result. Since iteration times increase greatly as the
complexity of the design space increases, mechanical characters are
limited in scope and complexity, which in turn limits the range of
possible movement and the creative freedom of the designers.

We present a computational design system that allows non-expert
users to design and fabricate complex animated mechanical char-
acters (Fig. 1). Our system automates tedious and difficult steps in
the design process, and the resulting mechanical characters can be
fabricated using rapid manufacturing methods such as 3D printing.
Interactivity is a core design principle of our system, allowing users
to quickly explore many different mechanical design options, as the
motion of the characters is iteratively created.

In order to make the computational design problem tractable, we
limit the scope of this work to characters that perform cyclic mo-
tions and that do not need to sense or respond to the external envi-
ronment. However, within these restrictions, we wish to support a
wide range of complex, user-defined motions. In order to accom-
plish this goal, we begin with a library of parameterized mechanical
assembly types. Our system first pre-computes a sparse sampling of
their parameter spaces, resulting in a representative set of motions
for each type of mechanical assembly. After this precomputation
step has been completed, our interactive design pipeline proceeds
as follows (see Fig. 2 for a visual summary):

http://doi.acm.org/10.1145/2461912.2461953
http://portal.acm.org/ft_gateway.cfm?id=2461953&type=pdf

Figure 2: Overview of our interactive design system: a) an input character and a gear box are provided; b) the desired motion of the
character is specified by sketching motion curves; c) optimized driving mechanisms are generated by our framework; d) gear trains are
created to connect all the driving mechanisms to one actuator; e) support structure is generated; f) the mechanical character is 3D-printed.

1. Given an articulated character as an input, the user selects a set
of actuation points on the character and sketches associated
motion curves.

2. For each input curve, the precomputed database is queried
to find an assembly that matches the motion specified by the
user. This gives us both the type of mechanical assembly that
is best suited for each motion curve, and a good initial set of
parameter values (Sec. 4).

3. Appropriate driving mechanisms are instantiated, connected
to the character, and their parameter values are further opti-
mized using a gradient-based formulation (Sec. 4.2).

4. Once all driving mechanisms are set up, the gears that actuate
them are connected to each other through a gear train in a
semi-automatic fashion (Sec. 6.1).

5. For planar characters, our system then repositions the me-
chanical components to ensure that no collisions occur during
operation (Sec. 6.2).

6. Finally, support structures are generated to hold the compo-
nents of the assembly in place (Sec. 6.3). The complete char-
acter model and the mechanical assembly driving it are then
ready for fabrication (Sec. 6.4).

2 Related Work

Mechanical Assemblies have tremendously changed our way
of life since the industrial revolution — for a comprehensive in-
troduction into mechanisms and mechanical devices we refer the
interested reader to the textbook of Sclater and Chironis [2001].
The potential to use specialized software for analysis and design
of mechanisms has been recognized since the early days of com-
puters [Freudenstein 1954]. Consequently, a variety of approaches
for representing mechanical structures have been presented. Some
modeling systems, for instance, implement function-oriented and
shape-oriented approaches, where objects, assemblies and posi-
tional relationships are represented as nodes in a graph structure,
and an explicit or procedural representation is used for shape prim-
itives [Wesley et al. 1980; Gui and Mäntylä 1994]. Similar tech-
niques are used to implement basic functionality for commercially
available CAD/CAM tools. Despite the significant benefits pre-
sented by such tools, creating complex mechanisms, such as those
needed to animate mechanical characters, currently requires expert
designers.

Kinematic Synthesis. Several existing methods aim at automat-
ing the design of devices that transform a specified input motion
into a specified output motion. Chiou and Sridhar [1999], for
instance, use symbolic matrices representing a library of mecha-
nism as basic building blocks. Starting with an intended function,

the system recursively decomposes it into simpler sub-functions
until a match is found in the database. Similarly, Subramanian
and Wang [1995] define valid configuration spaces for building
blocks and use an iterative deepening search to generate mechanism
topologies and geometries that satisfy given motion constraints. Al-
ternatively, genetic algorithms or other stochastic search methods
can be applied [Cabrera et al. 2002]. Recently, Zhu et al. [2012]
suggested selecting a mechanism from a parameterized set accord-
ing to a priori knowledge of its motion. The selected mechanism is
then refined by optimizing over both discrete and continuous vari-
ables using simulated annealing. While this approach can effec-
tively handle, e.g., linear, ellipsoidal or circular motions, creating
mechanical characters exhibiting complex motions requires a more
general formulation. In our work, we use a sampling-based ap-
proach to generate a sparse but representative set of motions that
different types of mechanisms can generate. This allows us to de-
termine which of the available mechanism types are well-suited to
create a desired motion, and we use a gradient-based method in
order to further optimize the mechanisms generated by our frame-
work.

Motion and Interaction Analysis. There exists a variety of
methods for analyzing the geometry of mechanisms in order to ex-
tract the kinematic constraints that define their motions. For in-
stance, Mitra et al. [2010] present a semi-automatic technique for
depicting the operation of mechanical assemblies. Their method
determines the causal relationship between different parts of an
assembly based solely on geometry. Such processes are also in-
vestigated for reverse engineering of scanned devices [Demarsin
et al. 2007]. Recent work also explores the creation of a print-
able articulated model from input geometry by analyzing a skinned
mesh [Bächer et al. 2012] or offering an intuitive user interface
to control the placement and range of motion of joints [Calı̀ et al.
2012]. While the resulting characters can be posed, these methods
do not address the challenge of animating them. In principle, how-
ever, the characters designed using these methods could be used as
input for our framework.

Design Systems and Personalized Fabrication are quickly
gaining interest in the computer graphics community. Interac-
tive systems enable non-expert users to design, for example, their
own plush toys [Mori and Igarashi 2007] or furniture [Lau et al.
2011; Umetani et al. 2012]. Rapid prototyping devices allow for
the fabrication of physical objects with desired properties based
on custom microgemetry [Weyrich et al. 2009], reflectance func-
tions [Malzbender et al. 2012], subsurface scattering [Hasan et al.
2010; Dong et al. 2010] and deformation behavior [Bickel et al.
2010]. Ensuring that printed objects are structurally stable, Stava
et al. [2012] proposed to relieve stress by automatically detecting
and correcting problematic parts of the models. In our work, we
focus on the problem of designing mechanical assemblies. Inspired

Figure 3: The driving mechanisms we use as building blocks can generate a continuous space of widely different motions. To generate
optimized assemblies that best match an input motion, we first perform a coarse exploration of the space of possible motions for each
mechanism, followed by a continuous parameter optimization.

by recent work in sketch-based interfaces [Eitz et al. 2012] and de-
sign galleries [Marks et al. 1997], we present an interactive design
system that allows non-expert users to intuitively create complex,
animated mechanical characters.

3 Assembly simulation

The recent method proposed by Zhu et al. [2012] simulates me-
chanical assemblies in a two-stage process. First, the configuration
of the driving assembly is computed using forward kinematics: by
assuming a tree-based representation of the mechanism [Mitra et al.
2010], the configuration of a component fully determines the con-
figuration of all other components that are connected to it. Second,
the motion of the toys is computed using inverse kinematics. In
contrast, we employ a constraint-based simulation of mechanical
assemblies. This allows us to reconstruct the motion of the charac-
ter and the driving assemblies in a unified manner, and it enables us
to simulate a much broader range of mechanisms, such as assem-
blies with kinematic loops, which cannot be simulated using the
forward kinematics approach employed by [Zhu et al. 2012]. As
discussed shortly, this approach also allows us to efficiently com-
pute gradients needed to optimize individual sub-assemblies.

3.1 Components and Connections

The mechanical assemblies we simulate consist of rigid compo-
nents that are connected to each other. The world-coordinates x of a
point x expressed in the local coordinates of component i are given
by x(x)i = Ti + RγiRβiRαix. Similarly, the world-coordinates
v of a vector v expressed in the local coordinates of component i
are v(v)i = RγiRβiRαiv. The 6-dimensional state of the compo-
nent is defined as si = {TT

i , γi, βi, αi}T , where Ti ∈ R3 denotes
the global position of the component, γi, βi, αi are the Euler an-
gles parameterizing the component’s orientation and Rγi , Rβi and
Rαi are the corresponding rotation matrices. The rotation axes nγ
and nβ are initially set to the x and y-axes respectively. To avoid
numerical problems due to the gimbal lock, they (together with the
corresponding rotational degrees of freedom γ and β) can be re-
computed by decomposing the component’s net orientation when-
ever it approaches a singularity. The axis of rotation for Rαi is set
to the component’s local z-axis, and we refer to the rotation angle
α as the phase of the component.

The components of an assembly are linked to each other through
different types of connections. Each connection c outputs a set of
scalar constraints Cc. We have implemented four types of connec-
tions that, when combined, allow us to simulate a wide variety of
mechanical assemblies:

Pin Connections are used to model hinge joints between pairs
of components i and j. The constraints output by this type of con-
nection take the form Cc = {(x(xi)i − x(xj)j)

T (v(vi)i −
v(vj)j)

T }T . The parameters xi,xj ,vi and vj define the position
and rotation axis of the pin joint. Note that while the Pin Con-
nections output six constraints, they only remove five degrees of
freedom from the system: the two connected components can still
rotate freely with respect to each other about the axis v(vi)i (or
equivalently v(vj)j). Attaching two pin connections between the
same pair of components results in them being welded to each other.

Point On Line Connections ensure that a pin on component i
always lies on a line defined on component j. This type of con-
nection outputs constraints Cc = v(vj)j × (x(xi)i − x(xj)j),
where xi represents the local coordinates of the pin on component
i, and the vector vj and point xj define the line that the pin should
lie on. Using two point on line connections between the same pair
of components allows us to model prismatic joints. As for the Pin
Connections, we can create three additional scalar constraints to en-
sure that the two components can only rotate with respect to each
other about one axis.

Phase Connections are typically used to connect gears to each
other, and they directly constrain the phase of the affected compo-
nents. In its most general form, the scalar constraint output by these
connections has the form: Cc = αi − f(αj). The function f de-
pends on the types of gears that are connected. For spur and bevel
gears, f(α) = −r∗α, where r is the ratio of the number of teeth of
the two gears. For non-circular gears, f is slightly more involved,
as described in Sec. 4.3. As a special case of the phase connection,
we allow gears to be directly connected to a virtual actuator, which
we call the Input Driver.

Fixed State Connections affect individual components and out-
puts six constraints: Cc = s−sd, where s is the state of the affected
component, and sd is the desired state. The phase variable can be
optionally omitted from the list of constraints, allowing components
to rotate freely about one axis. These connections are used to sim-
ulate support structures such as walls or shafts, and to allow users
to temporarily freeze parts of the characters.

3.2 Simulation

To run a simulation step, we first advance the phase of the Input
Driver forward in time. We then solve the following optimization

problem in order to compute component state values that satisfy all
the constraints:

min
s

1

2
CTC, (1)

where C is a vector collecting the scalar constraints output by
all the connections in the assembly. We use a standard Newton-
Raphson method to solve Eq. (1), assuming that the phase of the
Input Driver fully determines the configuration of the entire assem-
bly. The mechanical assemblies that we simulate, however, can be
under or over constrained, if the user employs too few or too many
driving mechanisms. Our framework detects these problems (if the
system is over-constrained, Eq. (1) has a non-zero minimum; if it
is under-constrained, the hessian of 1

2
CTC is singular) and allows

the user to edit the assembly as required.

4 Mechanism Design

Our interactive design system allows users to sketch a set of curves
that specify the motion of different parts of the input character.
For each of the input curves, our system outputs optimized driv-
ing mechanisms that are attached to the character and control its
motion. Two problems need to be addressed in order to achieve
this. First, out of a library of input driving mechanism types, our
system must choose an appropriate one. Second, the parameters of
the selected mechanism must be optimized in order to best match
the motion specified through the input animation curves.

For simple motion trajectories specified by circular, elliptical or
straight-line curves, the map to an appropriate driving mechanism
can be manually specified [Zhu et al. 2012]. However, as the com-
plexity of the driving mechanisms increases, the space of possible
output motions grows significantly (see, e.g., Fig. 3), and this ap-
proach very quickly becomes impractical. Furthermore, in order to
accommodate arbitrary, black-box mechanisms, we do not assume
that there exist analytic expressions describing the relationship be-
tween a given set of parameters and the motion they lead do. The
methods we describe in this section allow us to address the chal-
lenges of working with complex driving mechanisms.

Overview Our system takes as input a library of parameterized
mechanism types as illustrated in Fig. 4. Each of these mechanisms
contains at least one driving gear that is either connected directly
to the Input Driver or to other gears. Once instantiated, the assem-
blies are attached to the character, typically through pin connec-
tions. While the locations of the pin joints on the input character are
generally user-specified, the attachment points on the driving mech-
anisms are parameterized. For each type of driving mechanism, the
locations of the pin and point-on-line connections between the indi-
vidual components as well as the positions of the support shafts are
also parameterized. As an example, the mechanism types shown in
Fig. 4 have between 6 and 12 parameters.

To address the challenge of determining which assembly type is
best suited for a desired animation, we begin by performing a coarse
exploration of their parameter spaces through sampling (Sec. 4.1).
This pre-processing step results in a database that stores a repre-
sentative set of possible motions for each class of mechanism, as
illustrated in Fig. 3. Rather than recording the motion trajectories
of the individual gears and linkages comprising the mechanisms,
however, the database represents a map between specific points in
an assembly’s parameter space and the motion curves traced out
by the mechanism’s attachment point, since these trajectories fully
define the motion of the input character.

Figure 4: We assume as input a library of parameterized driving
mechanisms such as the ones illustrated here. These building blocks
are instantiated by our framework, optimized and attached to the
input character, driving its motion. The locations of the attachment
points are highlighted.

The input motion curves provided to our system directly specify the
trajectories that the attachment point of a driving mechanism should
trace out. To determine which type of mechanism is capable of
best matching an input curve, it is therefore sufficient to search the
precomputed database using the curve similarity metric described
in Sec. 5. Once a mechanism is selected from the database, it is
first scaled, rotated and translated using the transformation that best
aligns the curve traced out by its attachment point to the input curve
(see Sec. 5). If a designated gear box is provided as input, then
we must ensure that the bounding box of the chosen mechanism
fits inside. If this is not the case, we discard the mechanism and
proceed to the next best match.

As the database we pre-compute represents only a sparse sampling
of the parameter space for each assembly type, the selected mech-
anisms need to be further optimized, as described in Sec. 4.2. We
note that the driving mechanisms obtained by querying the database
typically provide a good starting point for the continuous opti-
mization method we use. This significantly improves convergence
rates and reduces the likelihood of encountering bad local-minima,
which is a very real possibility given the highly non-linear relation-
ship between assembly parameters and the resulting motions.

4.1 Parameter Space Exploration

We approximate the space of motions that a given type of mecha-
nism can generate by sampling its parameter domain. Our goal in
this context is to obtain a good coverage of the space of possible
motion curves with a sparse set of samples. The latter point is im-
portant since it determines the response time for curve retrieval dur-
ing interactive design. In order to generate a sparse set of samples
that cover a large variety of motion curves, we use a Poisson-disk
sampling scheme in metric space. This amounts to requiring that
for any pair of parameter-space samples, the distance between the
two corresponding curves must not be lower than a given thresh-

Figure 5: The trajectory (gray polyline) traced out by a marker
point (red dot) to approximate a target curve (red polyline). A
marker point can either be located on the driving mechanism (left)
or on a part of the character that is driven by a mechanism (right).

old. Unfortunately, fast Poisson-disk sampling methods [Bridson
2007] cannot be applied in our setting: while it easy to satisfy the
minimum distance criterion in parameter space, this is not the case
in metric space since the mapping between the parameters of the
mechanism and its generated motion curve is non-trivial.

We therefore generate the samples using a simple recursive process.
For each accepted sample, we generate a number of new samples by
uniformly probing the parameter space around the current sample’s
location. For each generated sample, we compute the correspond-
ing curve, and using the distance metric described in Sec. 5, we
check whether it is too close to any of the existing samples in the
database. If this is the case, we reject the sample, otherwise it is
added to the database. We note that it is possible that some regions
in the parameter space lead to infeasible configurations. As a re-
sult, although our sampling strategy is very effective for exploring
connected regions of a mechanism’s parameter space, we have no
guarantees that it exhaustively explores the entire space of feasible
parameters.

4.2 Continuous parameter optimization

After selecting an appropriate driving mechanism from the
database, its parameters need to be further fine-tuned, and we use
a continuous optimization method for this purpose. We assume
that a marker point specified on the character should follow a user-
provided curve as closely as possible. The marker can either coin-
cide with the attachment point of the driving mechanism, or it can
be located at an arbitrary point on the character, as illustrated in
Fig. 5. To optimize the resulting motion, we minimize the follow-
ing objective as a function of the mechanisms’s parameters p:

F =
1

2

∫ 1

t=0

(x(p, st)− x̂t)
T (x(p, st)− x̂t)dt, (2)

where t is the phase of the Input Driver, such that when t = 1 a full
cycle of the animation has been completed. x(p, st) and x̂t denote
the position of the marker point and its target position at phase t.
The state of the assembly at phase t, st, is computed by minimizing
Eq. 1 after instantiating the mechanism with the current set of pa-
rameters p. As the parameters of the mechanisms directly affect the
connections between the different components, for the remainder of
this section we write the system constraints as an explicit function
of the parameters and the state variables i.e. C(p, st).

Note that in Eq. (2), we use a point-based metric to measure the
similarity between the input and output motion curves, rather than

the more involved metric described in Sec. 5. Because the curve
traced out by the marker point is already aligned with the input
curve, and their shapes are relatively similar, we have found this to
be sufficient. For any phase t, the gradient of the matching objective
∂Ft
∂p

is given by:

∂Ft
∂p

= (
∂x

∂p
+
∂x

∂st

∂st
∂p

)T (x(p, st)− x̂t), (3)

where all the partial derivatives are evaluated at (p, st). In the
equation above, ∂x

∂p
represents the change in the marker’s position

when the state of the sub-assembly remains unaltered. For instance,
changing the location of the attachment point in the linkage struc-
ture shown in Fig 5 (left) does not affect the evolution of the state of
the sub-assembly, but results in a different curve being traced out.
The term ∂x

∂st
is evaluated analytically, and the remaining term, ∂st

∂p
,

represents the change in the state of the assembly as its parameters
change. This term cannot be evaluated analytically because the sub-
assemblies we optimize can be arbitrarily complex, and in general
there is no closed-form solution describing their motion. Finite dif-
ferences can be used to estimate the derivatives, but this requires Eq.
(1) to be solved O(|p|) times to a high degree of accuracy, which
is too computationally demanding for interactive applications. In-
stead, we exploit the implicit relationship between the parameters
of the sub-assembly and the state configuration that results in all
constraints being satisfied, i.e., C(p, st(p)) = 0. According to the
Implicit Function Theorem,

∂st
∂p

= −∂C
∂st

−1 ∂C

∂p
. (4)

We estimate ∂C
∂p

using finite differences. This requires us to in-
stantiate sub-assemblies with different parameters p̃ and compute
the value of the constraints C(p̃, st(p)). We note that this does
not require Eq. (1) to be minimized, and its computational cost
is therefore negligible. The matrix ∂C

∂st
is computed analytically.

As noted in Sec. 3, our mechanical assemblies can have more
constraints than degrees-of-freedom. Since the additional con-
straints are redundant however, the matrix ∂C

∂st
still has full col-

umn rank, and in such cases, we instead use the pseudo-inverse
∂C
∂st

+
= (∂C

∂st

T ∂C
∂st

)−1 ∂C
∂st

T .

We minimize Eq. (2) by evaluating the matching objective and its
gradient at a discrete number of points (i.e., t values). To improve
convergence rates we use the BFGS quasi-Newton method to esti-
mate the approximate Hessian ∂

∂p
∂F
∂p

[Nocedal and Wright 2006].

4.3 Timing control via non-circular gears

Controlling the timing of motions is an integral part of character
animation. We therefore also allow users to explicitly control the
timing of the characters’ motions. This is accomplished through
the use of non-circular gears, which are always used in pairs: a
constant angular velocity input signal applied to the first gear gets
transformed to variable angular velocity for the second gear. The
phase-dependent ratio of angular velocities of the two gears de-
pends on the shape of their profiles, and in particular, on the ra-
tio of the gears’ radii at the point where they mesh. Asking users
to directly provide the phase-dependent ratio of angular velocities,
however, is not intuitive, as the integral of this ratio needs to re-
main constant (otherwise one gear rotates more than the other over
a full cycle). Instead, we allow users to define the relative phase
profile between the two gears, as illustrated in Fig 6 (left). This is
accomplished by allowing the user to set samples (α1i, α2i) that

Figure 6: Non-circular gears control the timing of the motion.

specify the phase of the second gear as a function of the phase of
the first gear. Two additional sample points, (0, 0) and (1, 1) are
automatically added to ensure that a full revolution of the first gear
corresponds to a full revolution of the second gear. These sample
points define the function f(α) used by the Phase Connection, as
described in Sec. 3. In particular, we compute f(α) using Radial
Basis Function interpolation, such that f(α1i) = α2i,∀i with the
additional constraints f ′(0) = f ′(1), f ′′(0) = f ′′(1). These con-
straints ensure that the ratio of angular velocities varies smoothly.
The interpolation uses thin plate splines as basis functions, and a
low degree polynomial to accommodate the additional constraints.

The phase profile function f(α) is used to simulate the mechanical
assemblies, and also to generate the geometry of the non-circular
gears. Let r1(α) and r2(f(α)) represent the non-constant radii that
define the pitch surfaces of the two non-circular gears. Since the
two gears are assumed not to move relative to each other, r1(α) +
r2(f(α)) = a, where a is the distance between the two gears. In
addition, the relative angular velocity ∂f

∂α
(α) of the two gears is

given by the ratio of the radii at the meshing point r1(α)/r2(f(α)).
These two equations are sufficient to compute the radii of the two
gears for any α, and therefore their pitch surfaces. The teeth of the
gears are added procedurally, orthogonal to the pitch surfaces.

5 Curve Metric

The driving mechanisms described in Sec. 4 trace out planar, closed
curves that we represent by polygons. In order to find the driv-
ing mechanism from our library that can best approximate a user-
provided input curve, we must measure the distance, or similarity,
between such curves. As an obvious candidate, the Hausdorff dis-
tance is simple to compute, but it does not consider the course of
the curve, which can lead to unexpected similarities. A metric that
is frequently used in the context of handwriting recognition is the
Fréchet distance, which is also referred to as dog-walking metric
[Alt and Godau 1995]: it is the length of the shortest leash nec-
essary to connect a dogwalker and its dog as they progress along
the two curves, possibly at different rates but without backtracking.
While the discrete Fréchet distance [Eiter and Mannila 1994] can
be computed in (sub-)quadratic time with respect to the number of
points in the polygons, our experiments showed that the resulting
matching quality is not always satisfying (see Sec. 7.1).

It is generally unlikely that a single parameter metric is able to re-
flect the similarity as perceived by the user across a broad range
of curves. On the other hand, manually selecting coefficients
for multi-parameter metrics is very difficult. We therefore take
a different, more user-centered approach: we start by converting
curves into feature vectors that capture salient characteristics such
as length, curvature, area and so forth. We then formulate our met-
ric as a bilinear form on differences in feature vectors and optimize
its coefficients using user-generated data.

Let ci and cj denote closed, planar polygonal curves and let fi
and fj denote their corresponding feature vectors. We define the
distance metric as

d(ci, cj) = ||fi − fj ||A =
√

(fi − fj)TA(fi − fj) ,

In order for d to be a proper metric, i.e., satisfying positivity and the
triangle-inequality, the matrix A has to be positive semi-definite.
For simplicity, we consider only diagonal A such that this condition
reduces to Aii ≥ 0.

5.1 Curve Features

We do not want the metric to be sensitive to absolute position,
size, and orientation of the curve in world-space since we can
always translate, scale, and rotate the entire sub-assembly as re-
quired. However, we must capture these quantities relative to the
sub-assembly, since design constraints such as the location of the
gear box dictate how the sub-assembly has to be positioned, scaled
and oriented relative to an input sketch of the user.

Before computing the actual features of a curve, we perform
a number of pre-processing and normalization steps. We start
by re-sampling the curve using constant length strides along
its original segments. Timing information is discarded at
this point, since we can explicitly control the velocity pro-
file as a post process using non-circular gears (see Sec. 4.3).
In order to normalize the curve with
respect to global transformations, we
translate it such that the anchor
xanchor of its generating mechanism
lies at the origin. Next, we compute
the two unit-length principal direc-
tions vmax and vmin of its points us-
ing principal component analysis. Fi-
nally, we extract the lengths lmax and
lmin of the curve along the principal
directions and normalize its scale by
multiplying by 1/lmax.

We compute all features of the curve in this normalized setting.
Let ci,j denote the np vertices of ci and define edges vectors and
directors as ej = ci,j − ci,j−1, respectively tj = ej/||ej ||.
With the first three features, we capture the geometric character-
istics of the curve: its length (fi,1 =

∑np

j ||ej ||), area (fi,2 =
1
2

∑np

j ci,j × ci,j−1), and ellipticity (fi,3 = lmin/lmax). We fur-
thermore extract the position of the curve relative to its generating
mechanism as fi,4 = ||d||, where d = xanchor − xcom is the vec-
tor between the anchor of the driving mechanism and the center of
mass of the curve. The relative orientation of the curve is stored as
fi,5 = arcsin(||d/||d|| × vmax||). Finally, we use the number of
intersections between non-neighbor segments as feature fi,6.

While the above features capture the geometric characteristics of a
given curve in an integral sense, we would also like to distinguish
curves based on local variations. To this end, we use two additional
indicators that are computed for pairs of curves: the L2 norm of the
vertex-wise difference in position and curvature. Since we cannot
assume that the starting points of the two curves are in correspon-
dence, we use the minimum distance values obtained by offsetting
the starting index of one of the curves and define

d2pos(ci, cj) =
1

np
min
l

∑
k

||ci,k − cj,k+l||2 (5)

d2angle(ci, cj) = min
l

∑
k

(κi,k − κj,k+l)2 , (6)

where κi,k =
2tj−1×tj
1+tj ·tj−1

is the discrete curvature at vertex k (see
[Bergou et al. 2010]). We evaluate these indicators whenever the
distance between two curves has to be determined and add their
square roots as additional entries to (fi − fj). Note that, unlike
the other features, (5) and (6) require the curves to have the same
number of vertices. If this is not the case, we upsample the coarser
one.

5.2 Metric Training

It is not obvious how to choose the coefficients of the feature-based
curve metric in order to best reflect a desired notion of similarity.
We therefore automatically compute the coefficients that best ex-
plain a given set of interactively generated training data. The train-
ing data consists of a set S of pairs of similar curves as well as a set
D of dissimilar curves. Using the formulation of Xing et al. [2002]
as a basis, we compute the coefficients by solving the following
constrained optimization problem

minA

∑
(i,j)∈S ||fi − fj ||2A + kreg

∑
Ai (7)

s.t. ||fk − fl||A ≥ γ, ∀(k, l) ∈ D and Ai ≥ 0 (8)

The objective term (7) asks for small coefficients Ai (kreg is a
small regularizing scalar) that minimize the distance between simi-
lar curves. The inequality constraints (8) require dissimilar pairs to
have a distance greater than a given threshold value γ, which for all
our experiments is set to 1.

The choice of training data determines the coefficients and thus the
behavior of the metric. Since it is difficult for the user to select
good data without getting feedback on its quality, we use an iter-
ative training scheme. During an initial stage, we ask the user to
select a few (e.g., five) similar and dissimilar pairs from sets of
nine randomly generated curves. We then compute a first guess for
the coefficients from this training data by solving the optimization
problem (7-8) using sequential quadratic programming (SQP). In
the second stage of the training process, we randomly generate pairs
of curves and categorize them into four similarity classes (’similar’,
’probably similar’, ’probably different’ and ’different’) according
to their current distance. The pairs are then presented to the user
three at a time with a color-coding indicating their similarity class.
Apart from providing feedback on the current behavior of the met-
ric, we also allow the user to flag any of the pairs as ’similar’ or
’different’, which leads to pairs being added to the list of objective
terms, respectively constraints. The metric coefficients are then re-
computed using the updated lists. In addition to adding new pairs,
we also ask the user to reconfirm or dismiss pairs from the lists that
belong to the two uncertain categories.

The system’s response to user input is virtually instantaneous as
solving the SQP takes only a few milliseconds even with more than
a hundred pairs of curves in the lists. In our experiments, we noticed
that the training scheme converges quite fast: after 30-40 iterations,
the metric typically produces stable results that are consistent with
the perceived similarity of the user. We provide an analysis of the
matching quality for our metric in Sec. 7.1.

6 Character Finishing

Once the driving mechanisms that generate the desired motion of
the character are designed, three more steps have to be performed
before the character can be manufactured: the mechanisms have to
be connected to an input driver using intermediate gears (Sec. 6.1),
the assembly needs to be edited to ensure there are no collisions
between the various moving parts (Sec. 6.2), and a support structure
that holds all components in place has to be designed (Sec. 6.3).

6.1 Gear Optimization

Each of the driving mechanisms of the assembly has to be con-
nected to an input driver, which can be a gear connected to a ser-
vomotor, a handle operated by the user, or a wheel in contact with
the ground. Each type of driving mechanism has one or more driv-
ing gears. The location and angular velocity of these driving gears
are fixed during the mechanism design step, but other parameters
such as their radii can vary. For simplicity, we assume that the driv-
ing gears as well as the input driver have the same axis of rotation,
which essentially reduces the problem to 2.5 dimensions. When
this assumption does not hold, we split the path between driving
gears and input drivers with bevel gears. Given this input data, we
seek to find a set of intermediate gears that connect pairs of existing
gears, as selected by the user. This problem consists of two parts:
first, we have to determine the gear layout, i.e., the number of gears
and how they connect to each other. Second, we must compute the
parameters of the gears that satisfy a set of constraints (meshing of
connected gears, desired angular velocities, no intersections), while
minimizing an objective function that measures the quality of the
resulting gear train.

Gear Layout Generation Automatically computing a gear layout
subject to given optimality conditions (e.g., minimum number of
gears or shafts) is difficult due the combinatorial nature of the prob-
lem. Each time such a layout is generated, it has to be tested using
continuous optimization and it is unclear how to exchange feedback
between these disconnected parts. Fortunately, it is a rather simple
matter for the user to create the gear layout interactively: we let the
user select pairs of gears that should be connected to each other.
Depending on the relative location of the gears (in one plane, on
the same axis or neither), we generate parallel and sequential gear-
to-gear connections (Fig. 7). Gears on the same axis are connected
in parallel, gears in the same plane are connected with an auto-
matically determined number of in-between gears depending on the
signs of the angular velocities, the distance between them and their
radii. The third case is treated with both a parallel and a sequen-
tial connection. These connections are then transformed to a set of
constraints and objectives for the continuous optimization scheme.
The result of the optimization is added to the mechanical assem-
bly, and the parameters of all the gears that were involved in the
optimization process are treated as hard constraints for subsequent
steps. See also the accompanying video for a visual demonstration
of this process. Although this way of iteratively connecting pairs of
gears can be more restrictive than connecting all the existing gears
at once, our experiments show that it is a very intuitive process that
leads to fast results.

Figure 7: Types of connections generated during interactive gear
layout: sequential (yellow), parallel (red), and combined (green).

Gear Parameter Optimization The gear layout step provides us
with a number of ng interconnected gears, each of which we assign
five degrees of freedom pi = (x, y, z, r, ω)T , where x, y and z
are the gear’s coordinates, r is its radius, and ω its angular velocity.
Without loss of generality, we assume that the z-axis is normal to
the surface of the gears. We convert the connections between the

gears into a set of equality constraints Ci and inequality constraints
Ii, as well as a number of ng objective terms Fi.

A sequential connection between two gears gi and gj is defined by
three constraints that ensure the gears mesh properly:

Cdepth
seq (pi,pj) = zi − zj
Cωseq(pi,pj) = riωi + rjωj

Cmesh
seq (pi,pj) =

√
(xj − xi)2 + (yj − yi)2 − (ri + rj) .

The first constraint requires the gears to lie in the same plane (one
could also take into account the thickness of the gears by formulat-
ing corresponding inequality constraints instead). The second con-
straint requires that the relative angular velocities of the two gears
is correct, whereas the third one ensures that the distance between
them is equal to the sum of their radii. We model parallel gear con-
nections with four constraints,

Cypar(pi,pj) = yi − yj , Cxpar(pi,pj) = xi − xj
Cωpar(pi,pj) = ωi − ωj
Idepthpar (pi,pj) = zj − zi − h

The first two ensure that the gears are aligned correctly, the third
one asks that they have the same angular velocity, since both gears
are welded to the same support shaft, and the last constraint requires
that the gears should not be closer than the average gear thickness
h. In addition to these connections, we create non-intersection con-
straints for all pairs of gears that are not connected. To this end,
we convert the distance constraint from above to inequality form
and add a small negative safety threshold in order to prevent gears
from being too close to each other. We switch these constraints on
whenever two gears are closer than the gear thickness in the z di-
rection. Finally, we introduce inequality constraints in order to en-
force a minimum admissible gear radius as well as unary equality
constraints that fix the parameters of gears that have been optimized
by previous user operations.

Given these constraints, we compute optimal gear parameters p by
solving the constraint optimization problem

p = arg min
p̃

ng∑
i

((r̃i − rtargeti)2 + kreg||p̃i − p̄i||2) (9)

s.t. Ci(p̃) = 0 and Ii(p̃) ≥ 0 ,

where rtargeti denotes a user-provided (or otherwise automatically
inferred) desired radius for gear i, kreg is a small regularizer coeffi-
cient, and p̄ represents the set of initial parameters. Since some of
the constraints are nonlinear, we solve (9) using a standard sequen-
tial quadratic programming solver.

6.2 Collision-free Layering for Planar Motions

Up to this point, no measures were taken to prevent different mov-
ing parts of the assembly from intersecting with each other. Our
framework allows users to intuitively edit the assembly by indepen-
dently moving the driving mechanisms if intersections are detected.
However, it would be desirable to also provide an automatic solu-
tion to this problem. For general three-dimensional motions, this
is very challenging, and it would require a close integration with
the mechanism design phase. While conceptually clean, this ap-
proach would prevent us from treating sub-assemblies in isolation,
thus rendering the optimization process significantly more com-
plex. For assemblies where all the components move along parallel
planes, and many of our results fall in this category, we can how-
ever address the intersection problem automatically by offsetting
each component along the direction normal to this motion plane.

B	

A	

B	
 A	

C	

Figure 8: Left: component placement in different planes to remove
collisions. Right: types of collisions that can occur between com-
ponents.

Overview We aim to place each component in a different plane,
such that as the animation is playing, the assembly remains
collision-free. We discretize the 3D space occupied by the assembly
into layers that are parallel to the plane along which the components
are moving (Fig. 8, left), and we assign each component a layer (or
plane) index. We start the process by checking for collisions be-
tween each pair of components (gears, linkages, and body parts of
the character) that were assigned the same layer index. Note that we
do not need to deal with gear-gear collisions, since we apply non-
intersection constraints to all pairs of gears in the gear parameter
optimization stage of the pipeline (Sec. 6.1). We perform standard
collision checks between the triangle meshes of the components,
after projecting them onto the motion plane. The two basic types
of collisions that may occur are shown in Fig. 8 (right): on the
top, components A and B are detected as colliding; on the bot-
tom, component C is detected as colliding with a pin that connects
components A and B. For the first example, components A and B
cannot be assigned to the same layer, while for the second exam-
ple, component C cannot lie in a layer between those assigned toA
and B. We solve the layer assignment problem using boolean op-
timization, a variant of discrete constrained optimization, with the
non-intersection conditions as constraints.

Algorithm With n components and m layers, there are mn pos-
sible layer assignments, since each component can be placed in any
of the layers. Even for relatively small problems, brute force ap-
proaches are intractable. One option for solving this problem is
with integer programming, which can work quite well especially
if the problem is linear. Some of our constraints, however, are
non-linear. The non-linearity is due to the second type of con-
straint shown in Fig. 8, which states that a variable cannot lie be-
tween two other variables, a disjunctive constraint expressed as
(C < A) ∨ (B < C). We therefore pose this as a constraint satis-
faction problem (CSP) for which there are efficient, robust solvers
for the scale of problems that we are interested in.

The CSP formulation assumes that we already know the number
of discrete layers m. Since this number is typically not known a
priori, we seek to find the minimum number of layers such that all
components can be laid out without collisions. We start by setting
m = 4 and increment until we obtain feasible solutions. Usually,
there are multiple solutions once a feasible m is found. By re-
peatedly running the constraint solver, we obtain a set of feasible
solutions, and select the one that minimizes the total length of the

pins connecting the components of the assembly. We then estimate
the thickness of each layer as the maximum thickness of the com-
ponents assigned to it and offset each component to the center of
the layer it was assigned to.

The worst-case running time for the CSP solver is exponential.
However, even for our largest examples, which consists of close
to 100 components and more than 10 layers, an off-the-shelf CSP
solver (Walksat [Selman et al. 1993]) using default parameters was
able to generate 1000 random solutions in less than 30 seconds.
For comparison, a naive random search was unable to find a single
solution within a reasonable amount of time (several hours).

6.3 Support Structure

At this point in the design process, the components of the assembly
are interconnected and non-intersecting, but they are still floating
in space. As a last step, a support structure is designed to ensure
that the support shafts needed by the various components in the
assembly are held in place. In many cases, the support structure is
subject to aesthetic considerations and is thus best designed by the
user. Whenever this is not the case, we use a simple algorithm to
assist the user in the design of the support.

We start by computing a bounding box that contains all components
of the assembly except for the character. We voxelize this volume
on a regular grid and flag as occupied all voxels that lie inside the
volume swept by the individual components during a full cycle of
animation. The result of this process is a set of non-occupied vox-
els that define regions where supporting shafts can be inserted and
grounded without interfering with the other moving objects. This
information is then presented to the user, who can select planar
slices from the non-occupied voxel grid in order to instantiate sup-
port walls. Once such a wall is created, we automatically connect
to it all the support shafts that can reach it without passing through
occupied voxels of the grid. During this process, we provide feed-
back to the user regarding which shafts still require support. Once
all shafts are connected, the assembly is ready for manufacturing.

6.4 Fabrication

We use rapid manufacturing technology to create physical proto-
types of our mechanical characters. Many examples exhibit a lay-
ered structure that allows easy decomposition of the mechanical
components. In such cases, it is most efficient in terms of material
cost and fabrication time to fabricate all components individually
and assemble the character afterwards. Another advantage of this
layer-wise fabrication is that it lends itself to less expensive man-
ufacturing devices such as laser cutters or services such as Shape-
ways. Characters with internal driving mechanisms can be quite
cumbersome to assemble, which is why we manufacture these ex-
amples in one piece using a 3D printer.

7 Discussion and Results

To demonstrate the versatility of our framework, we designed ten
animated mechanical characters, many of which we also manufac-
tured. These results are presented in detail in the accompanying
video, and they are summarized in Table 1. Before presenting our
results, we first validate some important design choices and discuss
alternative approaches.

7.1 Validation

Metric Comparison In order to compare the matching quality
of our metric to alternative measures, we created a set of hand-

drawn curves and retrieved the closest one for each of them from
a database containing 1000 randomly generated samples each for
a four- and a five-bar linkage. Fig. 9 shows the best matching
curves (in red) for three different metrics: our feature-based metric
with optimized coefficients (first row), the discrete Fréchet distance
[Eiter and Mannila 1994] (second row) and our feature-based met-
ric with all coefficients set to 1.0. While the two alternatives found
reasonable curves in many cases, some of the matches (e.g., row
2, column 2 or row 3, column 4) are clearly off. Although rank-
ing the perceived similarity is difficult, our optimized metric yields
well-matching curves in all cases.

Driving Mechanisms Generation and Optimization We use
four main types of driving mechanisms, as illustrated in Fig. 4. The
two mechanisms on the left columns are driven by two gears each.
Altering the relative angular velocity of the two gears also affects
the output motions. To ensure that the period of the output mo-
tion is the same as for the input driver, we create four variations of
each of these assemblies, where the ratio of the angular velocities
of the two gears are fixed to −2,−1, 1 and 2 respectively. The two
mechanism types on the right are much simpler, and it is therefore
not required to perform the parameter exploration for them. Rather,
when needed, we proceed straight to the continuous optimization
stage. Consequently, our motion database is built using 8 distinct
mechanism types. For every type of mechanism we store up to 3000
representative motions. The parameter space exploration took be-
tween 0.5 and 2.5 hours until no further samples could be found.
Even with a simple linear search, the database retrieval time is neg-
ligible. Using the approach discussed in Sec. 4.2 to compute gradi-
ents is 20 to 30 times faster than using finite differences, depending
on the number of parameters of the assembly. As a result, the con-
tinuous optimization process is interactive, especially when using
the initial parameter values obtained by querying the database.

7.2 Summary of Results

Designing the motions and the corresponding driving mechanisms
for the mechanical characters presented in this paper took less than
half an hour on average. The characters that were 3D printed in
one piece (Cyber Tiger, Clocky, DrillR) were ready for fabrication
within one day, with most of the additional time being spent on
generating the support structures. 3D Printing took up to 42 hours,
and removing the support material up to two hours. The characters
that were created component-by-component (Pushing Man, EMA,
Bernie), required some additional manual work to prepare for man-
ufacturing and to assemble, but printing times were significantly
lower.

The simplest of our examples is Pushing Man (Fig. 10), a character
inspired by the Sisyphus automata model [Johnson 2010]. Its mo-
tion is generated by three driving mechanisms, one for each leg and
one for the chest. Despite the simplicity of the design and the rela-
tively small number of driving mechanisms, the resulting motion is
fluid and compelling.

Our design interface makes it easy for non-expert users to create
mechanical characters of higher complexity. For instance, the EMA
characters show an example of different animations being created
for the same character. Our interface supports this style of motion
design by providing the user with intuitive ways to select driving
mechanisms that trace out desired motion curves and to adjust the
velocity profile along these curves. The latter is essential for creat-
ing the characteristic motion of EMA gallop, which our framework
implements using non-circular gears that directly control the timing
of the foot-falls.

Figure 9: Comparing the quality of curve matching for different metrics on a set of examples curves (black). Top row: feature-based metric
with optimized coefficients, middle row: discrete Fréchet distance, bottom row: feature-based metric with all coefficients set to 1.0.

Even when the individual driving mechanisms are restricted to pla-
nar trajectories, users can create compelling 3D motions by com-
bining components that operate in different planes. An example of
this can be seen in the side-to-side tail and body sway of the TRex
character shown in Fig. 11. Moreover, if the types of driving mech-
anisms available in the input library are capable of generating non-
planar motions, they can also be used within our framework. How-
ever, to fully exploit the pipeline we present, two changes would be
required: the curve distance metric (Sec. 5) should be extended to
operate on 3D curves, and the automatic method we use to ensure
that components do not collide with each other (Sec. 6.2) should
be revised to handle arbitrary 3D motions. The rest of our pipeline
does not need to be altered, and we used non-planar driving mech-
anisms to create the Scorpio character (Fig. 15). For this example
we optimized the dimensions of the leg concurrently with the other
parameters of the driving mechanism in order to obtain a desired,
non-planar trajectory. This mechanism has 23 parameters in to-
tal, but optimizing it took only about 2 minutes. We instantiated
the optimized leg six times and created a walking animation us-
ing physics-based simulation on the resulting mechanical assembly
(see accompanying video).

Many of our characters such as EMA, Pushing Man and TRex have
external gear boxes that are located below the characters. However,
our framework also allows the user to design mechanical assemblies
in which the gear boxes are internal to the character, as evidenced
by the Froggy and Clocky (Fig. 14, right) examples. Integrating
the gear box within the character allowed us to design free-roaming
examples such as Bernie (Fig. 12) and DrillR (Fig. 1, right).

Model #Driving Mechanisms #Components #Connections
Pushing Man 3 24 37
EMA Walk 5 59 74
EMA Gallop 6 93 122
Bernie 4 40 60
CyberTooth 5 54 73
Drill-R 3 32 45
Clocky 5 32 48
Froggy 4 43 47
T-Rex 5 60 67
Scorpio 8 111 117

Table 1: Statistics for the presented examples.

Figure 10: PushingMan.

Figure 11: TRex: By combining planar mechanisms that operate in
different planes, we can create compelling 3D character motions.

Figure 12: Bernie. A DC motor and a battery pack were added
to the body to make the character walk on its own (with strings
attached for support).

Figure 13: EMA Walk and EMA Gallop. For the galloping motion
we use non-circular gears to control the timing of the foot-falls.

Figure 14: Froggy and Clocky.

Figure 15: Scorpio character, showing 3D motion. Left: Leg and
driving mechanism in isolation. Right: Simulated character walk-
ing.

8 Limitations and Future work

We have presented an interactive design system that allows non-
expert users to create animated mechanical characters. Our aim was
to automate this design process as much as possible, while giving
users sufficient artistic freedom. As evidenced by the wide range of
characters that we designed, our method achieves this goal. Nev-
ertheless, many exciting avenues for future work remain. First, the
quality of the motions we generate directly depends on the types of
mechanisms that are available for use. Although we were able to
generate a range of compelling examples, the types of mechanisms
in our library ultimately limit the space of possible motions. In the
future, we plan to investigate methods that automatically extract
these building blocks from existing mechanical assemblies.

We plan to also incorporate structural analysis when designing me-
chanical characters in order to ensure that the resulting assemblies
are lightweight, yet robust. To physically manufacture the charac-
ters that are shown in this paper, we used an empirical process to
determine, for instance, the radius of the support shafts or the thick-
ness of the linkages, such that they deformed as little as possible as
the animation was played out. We believe that this process could
be automated. In addition, for this work, we employed non-circular
gears to explicitly control the timing of the animations. In the fu-
ture we plan to also use them to reduce torque fluctuations when
driving the assemblies [Yao and Yan 2003]. Relatedly, we would
like to incorporate additional optimization objectives that minimize
the net force required to drive the assemblies.

Our system detects and reports failures at various stages in the de-
sign pipeline, for example, if the assembly is over or under con-
strained, or if there are collisions between the components of a non-
planar assembly as the animation is playing. The user is currently
expected to manually edit the assembly in order to fix these prob-
lems. An interesting direction for future work is to address such
problems automatically, or to provide helpful hints to guide the user
in addressing them in an optimal manner.

One of the most basic limitations of our research is the restriction
to cyclic motions, which leads to another interesting area for fu-
ture work. By employing physical systems that can switch between
multiple mechanism sets or different drivers, we believe we can
generate motions that do not simply repeat every cycle. Finally,
although our mechanical characters operate without environmental
awareness, our research brings us one step closer to the rapid design
and manufacturing of customized robots that sense and interact with
their environments in order to carry out complex tasks.

Acknowledgments

We thank the anonymous reviewers for their helpful comments and
Maurizio Nitti for modeling many of the characters we used for this
work.

References

ALT, H., AND GODAU, M. 1995. Computing the fréchet distance
between two polygonal curves. International Journal of Compu-
tational Geometry & Applications 5, 01 & 02, 75–91.

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H.
2012. Fabricating articulated characters from skinned meshes.
In Proc. of ACM SIGGRAPH ’12.

BERGOU, M., AUDOLY, B., VOUGA, E., WARDETZKY, M., AND
GRINSPUN, E. 2010. Discrete viscous threads. In Proc. of ACM
SIGGRAPH ’10.

BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFIS-
TER, H., GROSS, M., AND MATUSIK, W. 2010. Design and
fabrication of materials with desired deformation behavior. In
Proc. of ACM SIGGRAPH ’10.

BRIDSON, R. 2007. Fast poisson disk sampling in arbitrary dimen-
sions. In Proc. of ACM SIGGRAPH ’07.

CABRERA, J., SIMON, A., AND PRADO, M. 2002. Optimal syn-
thesis of mechanisms with genetic algorithms. Mechanism and
machine theory 37, 10, 1165–1177.

CALÌ, J., CALIAN, D., AMATI, C., KLEINBERGER, R., STEED,
A., KAUTZ, J., AND WEYRICH, T. 2012. 3D-printing of non-
assembly, articulated models. In Proc. of ACM SIGGRAPH Asia
’12.

CHIOU, S., AND SRIDHAR, K. 1999. Automated conceptual de-
sign of mechanisms. Mechanism and Machine Theory 34, 3,
467–495.

DEMARSIN, K., VANDERSTRAETEN, D., VOLODINE, T., AND
ROOSE, D. 2007. Detection of closed sharp edges in point
clouds using normal estimation and graph theory. Computer-
Aided Design 39, 4, 276–283.

DONG, Y., WANG, J., PELLACINI, F., TONG, X., AND GUO, B.
2010. Fabricating spatially-varying subsurface scattering. In
Proc. of ACM SIGGRAPH ’10.

EITER, T., AND MANNILA, H. 1994. Computing discrete fréchet
distance. Tech. Rep. CD-TR 94/64, Christian Doppler Labor für
Expertensyteme, TU Wien.

EITZ, M., RICHTER, R., BOUBEKEUR, T., HILDEBRAND, K.,
AND ALEXA, M. 2012. Sketch-based shape retrieval. In Proc.
of ACM SIGGRAPH ’12.

FREUDENSTEIN, F. 1954. Design of Four-link Mechanisms. Ph.
D. Thesis, Columbia University, USA.

GUI, J., AND MÄNTYLÄ, M. 1994. Functional understanding of
assembly modelling. Computer-Aided Design 26, 6, 435–451.

HASAN, M., FUCHS, M., MATUSIK, W., PFISTER, H., AND
RUSINKIEWICZ, S. 2010. Physical reproduction of materi-
als with specified subsurface scattering. In Proc. of ACM SIG-
GRAPH ’10.

JOHNSON, D., 2010. Sisyphus testing shoes.
http://www.youtube.com/watch?v=Rh-4zSbmhFU (Accessed
on April 8, 2013).

LAU, M., OHGAWARA, A., MITANI, J., AND IGARASHI, T. 2011.
Converting 3D furniture models to fabricatable parts and connec-
tors. In Proc. of ACM SIGGRAPH ’11.

MALZBENDER, T., SAMADANI, R., SCHER, S., CRUME, A.,
DUNN, D., AND DAVIS, J. 2012. Printing reflectance functions.
ACM Trans. Graph. 31, 3 (June), 20:1–20:11.

MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W.,
GIBSON, S., HODGINS, J. K., KANG, T., MIRTICH, B., PFIS-
TER, H., RUML, W., RYALL, K., SEIMS, J., AND SHIEBER,
S. 1997. Design galleries: A general approach to setting pa-
rameters for computer graphics and animation. In Proc. of ACM
SIGGRAPH ’97, 389–400.

MITRA, N. J., YANG, Y.-L., YAN, D.-M., LI, W., AND
AGRAWALA, M. 2010. Illustrating how mechanical assemblies
work. In Proc. of ACM SIGGRAPH ’10.

MORI, Y., AND IGARASHI, T. 2007. Plushie: An interactive design
system for plush toys. In Proc. of ACM SIGGRAPH ’07.

NOCEDAL, J., AND WRIGHT, S. J. 2006. Numerical Optimization.
Springer.

PEPPE, R. 2002. Automata and Mechanical Toys. Crowood Press.

SCLATER, N., AND CHIRONIS, N. 2001. Mechanisms and me-
chanical devices sourcebook. McGraw-Hill.

SELMAN, B., KAUTZ, H., COHEN, B., ET AL. 1993. Local search
strategies for satisfiability testing. Cliques, coloring, and satis-
fiability: Second DIMACS implementation challenge 26, 521–
532.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: improving structural strength of 3d printable
objects. In Proc. of ACM SIGGRAPH ’12.

SUBRAMANIAN, D., AND WANG, C. 1995. Kinematic synthesis
with configuration spaces. Research in Engineering Design 7, 3,
193–213.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. In
Proc. of ACM SIGGRAPH ’12.

WESLEY, M., LOZANO-PEREZ, T., LIEBERMAN, L., LAVIN, M.,
AND GROSSMAN, D. 1980. A geometric modeling system for
automated mechanical assembly. IBM Journal of Research and
Development 24, 1, 64–74.

WEYRICH, T., PEERS, P., MATUSIK, W., AND RUSINKIEWICZ,
S. 2009. Fabricating microgeometry for custom surface re-
flectance. In Proc. of ACM SIGGRAPH ’09.

XING, E., NG, A., JORDAN, M., AND RUSSELL, S. 2002. Dis-
tance metric learning, with application to clustering with side-
information. Advances in neural information processing systems
15, 505–512.

YAO, Y., AND YAN, H. 2003. A new method for torque balancing
of planar linkages using non-circular gears. Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Mechan-
ical Engineering Science 217, 5, 495–503.

ZHU, L., XU, W., SNYDER, J., LIU, Y., WANG, G., AND GUO,
B. 2012. Motion-guided mechanical toy modeling. In Proc. of
ACM SIGGRAPH Asia ’12.

