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Fig. 1. Optimization of a compliant gripper using Differentiable Stripe Patterns. An initial design with parallel stripes (a) and an optimized design (b) deforms
out of plane under actuation, but the initial design does not produce sufficient closure (c). Our optimized design (d) produces significantly larger lateral
deflection for the same actuation in simulation, as shown in the rendered insets. The corresponding physical prototype confirms this prediction and is able to
enclose and lift a small object.

Stripe patterns are ubiquitous in nature and everyday life. While the syn-

thesis of these patterns has been thoroughly studied in the literature, their

potential to control the mechanics of structured materials remains largely

unexplored. In this work, we introduce Differentiable Stripe Patterns—a com-

putational approach for automated design of physical surfaces structured

with stripe-shaped bi-material distributions. Our method builds on the work

by Knöppel and colleagues [2015] for generating globally-continuous and

equally-spaced stripe patterns. To unlock the full potential of this design

space, we propose a gradient-based optimization tool to automatically com-

pute stripe patterns that best approximate macromechanical performance

goals. Specifically, we propose a computational model that combines solid

shell finite elements with XFEM for accurate and fully-differentiable model-

ing of elastic bi-material surfaces. To resolve non-uniqueness problems in the

original method, we furthermore propose a robust formulation that yields

unique and differentiable stripe patterns. We combine these components

with equilibrium state derivatives into an end-to-end differentiable pipeline
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that enables inverse design of mechanical stripe patterns. We demonstrate

our method on a diverse set of examples that illustrate the potential of stripe

patterns as a design space for structured materials. Our simulation results

are experimentally validated on physical prototypes.

CCS Concepts: • Applied computing→ Computer-aided manufactur-
ing; • Computing methodologies→ Modeling and simulation.
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1 INTRODUCTION
From soft to stiff, from isotropic to anisotropic, and from homo-

geneous to functionally-graded—designing materials with tailored

mechanical properties is a central problem in many fields of science

and engineering. Structured materials are particularly interesting in

this context since their macromechanical behavior can be controlled

through their microscale geometry. Here we consider a particular

class of structured surfaces that are quasi-inextensible in a given

direction while being compliant in the orthogonal direction. By

varying the principal directions across the surface, these materials

can achieve a broad range of macromechanical effects, making them

interesting for applications in, e.g., sportswear, orthotics, and robot-

ics (see Fig. 1). Designing structured surfaces that lead to desired

mechanical behavior, however, is a challenging problem.
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In this work, we propose Differentiable Stripe Patterns—a com-

putational approach to performance-oriented design of structured

surfaces. We draw inspiration from the work of Knöppel et al. [2015]

who proposed a method for generating equally-spaced, globally-

continuous stripe patterns on arbitrary surfaces. Our key obser-

vation is that, when interpreted as bi-material distributions, stripe

patterns form an ideal design space for structured surfaces with high

stiffness contrast. To unlock the full potential of this material space,

we envision an inverse design tool that automatically computes

stripe patterns that lead to an optimal approximation of high-level

performance goals.

To implement this vision, we must overcome a number of chal-

lenges. First, stripe patterns are generated from tangent vector fields

by solving a complex eigenvalue problem (EVP). Due to intrinsic

symmetries, eigenvalues of this EVP always occur in pairs. This

nontrivial multiplicity means that eigenvectors are not unique—they

form an eigenplane—and derivatives do not exist. Second, predicting

the mechanics of bi-material distributions with macroscopic stripe

patterns requires accurate modeling of material interfaces. While

conforming discretizations are an obvious choice for static inter-

faces, finite changes in stripe patterns require remeshing to maintain

valid tesselations. Such discrete changes are highly problematic for

gradient-based optimization. Third, to obtain valid stripe patterns,

eigenvectors must be further processed with vector normalizations

and other nonsmooth operations. Derivatives of these operations

are discontinuous or diverge at singularities, which is again highly

problematic for optimization-based design.

Our Differentiable Stripe Patterns integrate dedicated solutions

to each of these problems:

• We achieve robust evolution of eigenvectors by decomposing

the problem of finding the best vector from an eigenplane into

the much simpler sub-problems of finding a) some reference
vector from the eigenplane and b) the optimal in-plane rota-
tion with respect to this vector. This unique and differentiable

parameterization of the eigenplane yields well-defined stripe

pattern derivatives.

• To allow for continuous motion of material interfaces without

remeshing, we propose a computational model that combines

solid shells with the extended finite element method (XFEM).

Solid shells are made of prismatic elements that derive their

response to bending from differential stretching through the

thickness. Unlike discrete bending models common in graph-

ics, solid shells follow standard finite element theory and thus

integrate seamlessly with XFEM.

• We remove and replace non-smooth operations and introduce

a design-space regularizer that prevents numerical singulari-

ties with logarithmic barrier functions.

Collectively, these contributions combine into a powerful and

fully differentiable model for stripe pattern materials. In combina-

tion with adjoint sensitivity-analysis, Differentiable Stripe Patterns

enable gradient-based optimization of high-level design objectives

with opportunities for broad applications. We illustrate our method

on a set of inverse design examples, including fabrics with 3D-

printed reinforcements, structural textures for thin-walled 3D-prints,

a compliant shell gripper, and personalized insoles. We validate our

examples through physical prototypes and observe good agreement

between simulation and real-world behavior.

2 RELATED WORK
Structured Materials. Designing structured materials with desired

macromechanical behaviors is an active field of research in mate-

rial science and engineering [Bertoldi et al. 2017]. With the wide-

spread availability of 3D printing, the graphics community has

likewise started to investigate the creation of metamaterials with

lattice- [Gongora et al. 2022; Panetta et al. 2017, 2015], voxel- [Bickel

et al. 2010; Schumacher et al. 2015; Zhu et al. 2017], and foam-like

[Martínez et al. 2016, 2017] microstructures. A particular line of

research focuses on two-dimensional, sheet-like materials [Leimer

and Musialski 2020; Malomo et al. 2018; Martínez et al. 2019; Schu-

macher et al. 2018; Tozoni et al. 2020]. Our work also targets sheet

and thin shell materials, but focuses on global design optimization

instead of periodically tileable material cells.

Closest to our setting in the context of material design is arguably

the work by Tricard et al. [2020] for creating microstructures with

freely-orientable channels. These thin-walled tubes are generated

such as to follow a user-provided orientation field using a stochastic

process. The resulting structures are extremely anisotropic, showing

high stiffness along channels but compliance in the orthogonal

plane. Our differentiable stripe patterns similarly target materials

with high stiffness contrast along locally controllable directions.

However, while Tricard et al. describe a forward geometry design

process that is not informed by simulation, we propose an inverse

material design approach in which stripe patterns are generated

automatically such as to obtain desired mechanical behaviors.

Although not a primary focus of our work, we show through

examples that Differentiable Stripe Patterns can be used to modulate

the mechanical properties of conventional textiles using a print-on-

fabric process similar to [Jourdan et al. 2021; Pérez et al. 2017].

Instead of using 3D-printing, an alternative strategy would be to

use embroidery for reinforcement, as demonstrated by Moore et al.

[2018] and Sati et al. [2021].

Eigenvector Optimization. Since stripe patterns emerge as the

solution to a generalized eigenvalue problem, optimizing for eigen-

vectors is at the core of our method. Designing mechanical systems

with desired spectral properties is a problem that has occurred fre-

quently in graphics literature. Applications include metallophones

that produce desired sounds [Bharaj et al. 2015; Musialski et al. 2016;

Umetani et al. 2010], coarse-level simulations [Chen et al. 2017, 2019]

and differential geometry operators [Chen et al. 2020; Liu et al. 2019]

that preserve spectral properties, as well as mechanical assemblies

that are robust to perturbations [Liu et al. 2022; Thomaszewski et al.

2014]. A specific challenge in our setting is that all eigenvalues have

nontrivial geometric multiplicity, making eigenvectors non-unique

and derivatives undefined. By identifying the origins of this inher-

ent multiplicity, we develop a strategy to obtain unique reference

vectors in arbitrary eigenplanes and express eigenvectors in this

space through an additional rotation parameter.
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Designing Physical Surfaces. As opposed to purely geometric de-

sign, physical surfaces are subject to equilibrium constraints. Appli-

cations include inflatable membranes [Panetta et al. 2021; Skouras

et al. 2014], surfaces made from elastic curves [Neveu et al. 2022;

Panetta et al. 2019; Pillwein and Musialski 2021; Zehnder et al. 2016],

as well as auxetic [Chen et al. 2021; Jiang et al. 2022; Konaković-

Luković et al. 2018] and tension-actuated [Guseinov et al. 2017;

Jourdan et al. 2022b; Pérez et al. 2017] deployable structures. Adding

to this line of work, we identify stripe patterns as a powerful para-

digm for physical surfaces and present a differentiable pipeline for

inverse design in that space.

Material Interfaces and XFEM. Our method uses stripe patterns to

define bi-material distributions. This leads to the question of how

to best model material interfaces that, in general, do not align with

element boundaries in the simulation mesh. XFEM is a technique

for modeling material interfaces with displacement or strain discon-

tinuities without mesh adaptation [Moës et al. 2003]. In the graphics

literature, XFEM has been used, e.g., for cutting shells [Kaufmann

et al. 2009] and deformable solids [Koschier et al. 2017], metama-

terial design [Zehnder et al. 2017], and for streamlined simulation

of CAD models [Hafner et al. 2019]. To unlock stripe patterns as

a design space for structured surfaces, we seek an efficient shell

model that is amenable to XFEM. While the method by Kaufmann

et al. [2009] is an option in principle, the high polynomial order of

the bi-cubic patches together with the texture-based enrichment

approach and discontinuous Galerkin formulation translate into ex-

cessive complexity for inverse design. While simpler discrete shell

models from the graphics community [Bridson et al. 2005; Chen

et al. 2018; Garg et al. 2007; Grinspun et al. 2003] offer favorable

trade-offs between accuracy and computation cost, their discrete

nature cannot be combined with standard XFEM approaches. We

therefore propose a solid shell model [Hauptmann and Schweiz-

erhof 1998; Ko and Lee 2017] that uses bi-linear triangular prism

elements which, as we show in our analysis, offer good accuracy-

performance trade-offs for the range of problems that we consider

while integrating seamlessly with XFEM.

Stripe Patterns in Material Design. Stripe patterns have recently
seen increasing attention for material design and structural opti-

mization. For example, Boddeti et al. [2020] use stripe patterns to

guide the design of continuous reinforcement fields within a fiber-

in-matrix approach. Panetta et al. [2021] proposed an approach for

designing inflatables that deploy into desired shapes upon pres-

surization. Stripe patterns are used for initializing air channels,

which are then optimized such as to best approximate a given tar-

get shape at equilibrium. Jourdan et al. [2022b] likewise use stripe

patterns for initialization when designing reinforcement curves

for self-deploying fabric models. We share the excitement of these

works for stripe patterns as a material design space. Instead of mere

initialization, however, we propose a fully differentiable end-to-end

pipeline enabling gradient-based design optimization within the

space of stripe patterns.

3 OVERVIEW
The goal of our method is to automatically compute stripe patterns

that, when used as bi-material distributions, lead to desired mechan-

ical behavior. A visual summary of our method is shown in Fig.

2. To evaluate the performance of a design, we must compute its

deformed equilibrium state given applied loads and boundary condi-

tions using simulation. Determining the design parameters that best

approximate a desired behavior requires inverting the entire design

pipeline from input vector field to high-level mechanical function.

This inversion notably includes derivatives of stripe patterns with

respect to input vector fields, and derivatives of the equilibrium

states with respect to material interfaces.

We start with a minimal description of Stripe Patterns [Knöppel

et al. 2015] in Sec. 4, including an analysis of eigenvalue multiplicity.

To use Stripe Patterns for inverse design of bi-material distribu-

tions, we propose a solid shell model with extended finite elements

to allow for moving material interfaces (Sec. 5). Building on this

computational model, we introduce Differentiable Stripe Patterns

in Sec. 6, including eigenvector derivatives and design objectives.

We present design examples and further analysis in Sec. 7.

4 STRIPE PATTERNS
The method by Knöppel et al. [2015] generates globally continu-

ous, equally-spaced stripe patterns on arbitrary triangle meshes. It

accepts as input a triangle mesh with 𝑛 vertices x = (x1, . . . , x𝑛)
as well as an initial vector field z = (z1, . . . , z𝑛) with each z𝑖 ∈ R3
indicating the vector field evaluated at vertex x𝑖 . The goal of Stripe
Patterns is to find an angle 𝛼𝑖 per vertex that indicates its phase,

i.e., the location in a periodic function that determines which ma-

terial will be assigned to each point. To make this angle function

globally periodic and smooth, angles are represented as complex

numbers Ψ𝑖 ∈ C with 𝛼𝑖 = argΨ𝑖 . Stripes should be locally orthogo-

nal to the input vector field, i.e., the gradient of the angle function

should be collinear to the input vector field; ∇(𝑢,𝑣)𝛼 (𝑢, 𝑣) = z(𝑢, 𝑣)
where (𝑢, 𝑣) are local coordinates. In the discrete setting, changes

in angle are measured along edges e𝑖 𝑗 of the triangulation by linear

interpolation and integration as

𝜔𝑖 𝑗 =
1

2

(e𝑇𝑖 𝑗 z𝑖 + e𝑇𝑖 𝑗 z𝑗 ) . (1)

In general, the change in angle cannot perfectly agreewith the vector

field, unless z is integrable. For this reason, the mismatch between

target change and actual change along all edges is minimized as

𝐸Ψ =
∑︁
𝑖 𝑗 ∈E

𝑤𝑖 𝑗 |Ψ𝑗 − 𝑒]𝜔𝑖 𝑗Ψ𝑖 |2, (2)

where E denotes the edge index set and 𝑤𝑖 𝑗 is a mesh-dependent

weight. To arrive at an algorithm with only real arithmetics, per-

vertex phases are expanded into real and imaginary parts as Ψ𝑖 =
𝑎𝑖 + ]𝑏𝑖 → (𝑎𝑖 , 𝑏𝑖 ) which we store in a real-valued vector v ∈ R2𝑛 .
Furthermore, since the above energy is quadratic in phases, the real-

valued analogue can be expressed as
1

2
v𝑇Av with a matrix A that

depends on the input mesh and vector field. To eliminate the trivial

minimizer v = 0, Knöppel et al. pose the constrained optimization

problem

min

v

1

2

v𝑇Av s.t.

1

2

v𝑇Bv = 1 , (3)
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Fig. 2. Overview of our differentiable stripe pattern pipeline. Starting from an initial input vector field, we compute the corresponding stripe pattern by solving
a generalized eigenvalue problem (Sec. 4). To accurately model the mechanics of bi-material surfaces structured with such patterns, we combine solid shell
finite elements with XFEM (Sec. 5). To enable gradient-based minimization of high-level design objectives, we must compute derivatives of eigenvectors (Sec.
6), material interface, and equilibrium states with respect to vector field parameters p. These design gradients are then used to automatically compute stripe
patterns that best approximate macromechanical performance goals.

where B is a lumped mass matrix whose per-vertex entries are

computed by summing up areas of incident triangles. Considering

the first part of the first-order optimality conditions

Av − _Bv = 0 , (4)

it is clear that solutions to this constrained optimization problem

are generalized eigenvectors of A. Consequently, eigenvectors cor-
responding to the smallest eigenvalue will minimize the mismatch

energy across all eigenvectors of A. This vector is then further

processed through component-wise normalization, nonlinear per-

triangle interpolation, and other filtering operations to yield per-

vertex texture coordinates that ultimately determine the color—or,
in our case, material identity—of each point on the mesh. We refer

to this process as the forward stripe problem. For our method, we

aim to compute stripe patterns that lead to desired mechanical per-

formance. Solving this inverse stripe problem involves computing

derivatives of eigenvectors of A with respect to the input vector

field, which is made challenging due to the following observation.

Theorem 4.1. All generalized eigenvalues of A have geometric
multiplicity two, i.e., all eigenvalues are duplicate and the dimension
of the associated eigenspace is two.

Proof. To see this, we observe that Eq. (2) measures only differ-

ences between phases along edges—rotating all per-vertex phases

by the same angle will not change the energy. Consider a given

eigenvector v and its corresponding phase vector Ψ. Let Ψ⊥
denote

the phase vector defined as Ψ⊥
𝑗
= ]Ψ𝑗 , i.e., with per-vertex phases

rotated by 𝜋/2. The corresponding real-valued vector is v⊥ with

v⊥
𝑗
= (−𝑏 𝑗 , 𝑎 𝑗 ). Since v⊥ has the same norm and energy as v, it

must also be an eigenvector for the same eigenvalue. □

The consequence of this observation is that eigenvectors are not

unique and derivatives not well-defined. Fig. 3 illustrate the space

of eigenvectors for a given eigenplane; see also the accompanying

video for an animation. It can be seen that motion in this eigenspace

corresponds to globally coordinated phase changes, yielding waves

travelling across the surface. To compute derivatives of stripe pat-

terns with respect to the input vector field, we must make eigenvec-

tors unique and their derivatives well-defined. Before we describe

our solution to this problem in Sec. 6, we first introduce our compu-

tational model. FF

Fig. 3. Sequence of stripe patterns corresponding to eigenvectors from a
two-dimensional eigenspace. Linear motion in this eigenspace corresponds
to coordinated phase changes that yield travelling waves.

5 SOLID SHELLS AND XFEM
Stripe patterns give rise to piece-wise linear material interfaces

which, in general, will cross through elements of the underlying

triangulation. To predict the mechanical behavior of a given stripe

pattern, interfaces between soft and rigid materials must be mod-

eled accurately. Since we are interested in bi-material distributions

with high stiffness ratio, simple interpolation of material parame-

ters is not an option [Kharevych et al. 2009]. Conforming meshes

would avoid material interpolation but changing interfaces require

remeshing, which is not differentiable. For this reason, we opt for

an extended finite element method (XFEM) that models material

interfaces with additional degrees of freedom [Moës et al. 2003]. As

its central benefit, this approach allows for continuous evolution of

material interfaces without changes to the underlying mesh. The

additional degrees of freedom, so called enrichment coordinates, al-

low for strain discontinuities across the interface, which is precisely

what is needed in our context.

5.1 Solid Shells
To model structured surfaces that can stretch and bend, we combine

XFEM with solid shell finite elements—volumetric elements in the

shape of triangular prisms [Ko and Lee 2017]. Given a triangle mesh

as input, we start by creating two offset surfaces by extruding mid-

surface vertices along their vertex normals. The resulting extruded

surfaces model the top and bottom layers of the structured surface

and are used to define a set of six-node triangular prism elements

as shown in Fig. 4. We use a standard isoparametric approach and
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define the deformed geometry for each element as

x(u) =
6∑︁

𝑖=1

x𝑖𝑁𝑖 (u) , (5)

and analogously for the rest state geometry X. In these expressions,

u = (𝑢, 𝑣, 𝑡) are local coordinates with (𝑢, 𝑣) parametrizing the mid-

surface triangle and the third coordinate 𝑡 ∈ [−ℎ/2, ℎ/2] runs along
the normal direction of the shell, with ℎ indicating its thickness.

The six bi-linear basis functions 𝑁𝑖 are uniquely defined by the

interpolation property 𝑁𝑖 (u𝑗 ) = 𝛿𝑖 𝑗 . It is worth noting that, for any

fixed 𝑡 , the in-plane coordinates define a linear triangle element with

constant strain. Even though deformation is constant for any given

thickness value, it varies linearly through the thickness. It is this

linear variation that, as we will see, allows solid shells to perform

significantly better for bending deformation than constant-strain

linear tetrahedra.

Fig. 4. Solid Shell Elements. Left : a bi-linear prism element is generated by
extruding a triangle of the input mesh in the direction of its vertex normals.
Right : level set values 𝜙𝑖 define the location of a material interface and
additional enrichment DOFs x̂𝑖 allow for different strains on the two sides.

Using the continuous approximations of element geometry, all

other kinematic quantities are obtained in the standard form, i.e.,

F(u) = 𝜕x
𝜕X

| (𝑢,𝑣,𝑡 ) C(u) = F(u)𝑇 F(u) , (6)

where we made explicit the fact that, unlike for linear elements, the

deformation gradient F and the right Cauchy-Green tensor C vary

across the element.

Strain Energy. We use a standard Neo-Hookean constitutive law

as the basis for both soft and stiff materials. The energy density of

this material is defined as

ΨIso =
1

2

[
` (tr(C) − 3) − 2` ln 𝐽 + _(ln 𝐽 )2

]
, (7)

where _ and ` are the Lamé parameters.We use different application-

dependent material parameters for soft and stiff materials, see Sec.

7. If orthotropic behavior is desired, the isotropic base material can

be augmented with stiffening fibers as

Ψ
Ortho

= ΨIso +
1

2

𝛽𝑓 n
𝑇
𝑓
Cn𝑓 , (8)

where n𝑓 is the unit vector indicating the fiber orientation and 𝛽𝑓
is a material parameter that reflects the fiber stiffness and density;

see, e.g., [Holzapfel and Gasser 2001].

We then obtain the elastic energy of a given solid shell element by

integrating the strain energy density across the element. In practice,

we approximate this integral using numerical quadrature,

𝑈𝑒 =

∫
Ω
Ψ(C(u)) 𝑑𝑉 ≈

∑︁
𝑗

𝑤 𝑗Ψ(C(q𝑗 ))
���� 𝜕X𝜕q ���� , (9)

where q𝑗 = (𝑢 𝑗 , 𝑣 𝑗 , 𝑡 𝑗 ) are quadrature points in generic coordinates,

and𝑤 𝑗 are corresponding quadrature weights. For elements with

a single material, we use a six-point numerical quadrature scheme

with three points per thickness value. Elements crossed by amaterial

interface require more elaborate treatment, as explained next.

5.2 Material Interfaces & XFEM
Level Sets for Material Interfaces. To model the bi-material distri-

butions induced by stripe patterns, we must determine the location

of the material interfaces. We model these interfaces using a level

set 𝜙 defined through a set nodal values 𝜙𝑖 ∈ R. The nodal values
represent the signed distance to the interface, with the sign indicat-

ing whether the node is on the soft or stiff side. To convert a given

stripe pattern to its corresponding level set, we first retrieve the

per-vertex angle 𝛼𝑖 = arg(v𝑖 ) from the corresponding eigenvector

component v𝑖 . We then compute level set values using a smoothed

triangle wave as transfer function,

𝜙𝑖 = 1 −
2arccos[(1 − 𝑎1)sin(𝛼𝑖 − 𝜋

2
)]

𝜋
− 𝑎2, (10)

where 𝑎1 is a smoothing term and 𝑎2 determines the ratio between

stiff and soft material by vertically translating the cut-off value, see

Fig. 5.

Fig. 5. Quasi-linear transfer function for mapping per-vertex angles 𝛼𝑖 into
level set values 𝜙𝑖 . Smooth junctions between linear segments ensure dif-
ferentiability. The material interface is located at 𝜙 = 0, 𝜙 > 0 corresponds
to stiff materials, whereas 𝜙 < 0 indicates soft material. The ratio between
stiff and soft material can be controlled by translating this curve vertically.

XFEM. Elements whose nodes have level set values 𝜙𝑖 with dif-

ferent signs are crossed by a material interface. To accurately model

the behavior of these bi-material elements we resort to an extended

finite element approach. While the location of the interface is given

by the level set values 𝜙𝑖 , allowing for different strains on opposite

sides of the interface requires additional degrees of freedom, the

so called enrichment coordinates x̂. Enrichment coordinates x̂𝑖 are
collocated with the standard nodal DOFs x𝑖 but have special basis
functions.

We choose the ridge function [Moës et al. 2003], which was de-

signed for material interfaces that are continuous in displacements

but discontinuous in strain (𝐶0
but not 𝐶1

). For simplicity, we only

allow one interface per element, although generalizations are pos-

sible [Zehnder et al. 2017]. This can be achieved by adjusting the
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Fig. 6. XFEM discretization of stripe patterns with regions of stiff (dark
gray) and soft (light gray) material as indicated. Elements crossed by an
interface (black) are split into three sub-elements (red) to integrate their
elastic energy.

frequency of the stripe pattern for a given input mesh, and vice-

versa. The ridge enrichment function is given by

𝜓 =
∑︁
𝑖

|𝑁𝑖𝜙𝑖 | − |
∑︁
𝑖

𝑁𝑖𝜙𝑖 | , (11)

with the corresponding interpolation function for the nodal posi-

tions

x =
∑︁
𝑖

𝑁𝑖 (u)x𝑖 +𝜓
∑︁
𝑖

𝑁𝑖 (u)x̂𝑖 . (12)

We refer to Zehnder et al. [2017] for a visual construction of these

functions. The strain in the enriched elements varies throughout the

element, with a discontinuity located at the interface. To properly

integrate over these enriched elements, we subdivide them into

three sub-prisms and evaluate the sub-integrals numerically using

an 11-point quadrature rule (Fig. 6).

5.3 Evaluation
Solid shells have, to the best of our knowledge, not been explored in

graphics literature before. We therefore perform a series of experi-

ments intended to test the accuracy and convergence behavior of

solid shells in comparison to other models. In particular, we compare

to conforming discretizations with four-node linear tetrahedron el-

ements and ten-node quadratic tetrahedron elements, as well as

conforming bi-linear prisms and a discrete shell model [Gingold

et al. 2004]. We use two simple experiments in which we impose

different periodic boundary conditions—cylindrical bending (radius

𝑟 = 10𝑐𝑚) and uni-axial loading (stretch Y = 10%)—onto a square

plate with dimensions 7𝑐𝑚 × 7𝑐𝑚.

Fig. 7. Problem setups for shell comparison. A square plate is endowed
with a disc-shaped region of stiff material (dark blue) subject to periodic
boundary conditions that impose cylindrical curvature (left) and uni-axial
stretching (right) as indicated.

To investigate the impact of material interfaces, we use a disc-

shaped region with stiffer material at the center of the plate. See

also Fig. 7. We solve these problems numerically using different

types of elements, different mesh resolutions, and plates of differ-

ent thickness. We then compare the elastic energy and per-vertex

displacement norms at equilibrium.

The results for the bending test are summarized in Tab. 1. Qua-

dratic tetrahedra perform best and converge very rapidly under

refinement. Because differences are very small, we only list energy

and compute time for the coarsest discretization and use them as

reference values. It can further be noted that the discrete shell model

[Gingold et al. 2004] performs extraordinarily well, offering the best

compromise between accuracy and computation time. The picture

is very different for linear tetrahedra, which perform poorly and

worst by far. Solid shell elements fare much more favorably in com-

parison. Especially the moderate resolution version seems to offer

an interesting trade-off between accuracy and performance. Tab. 1

also shows that the performance of solid shell elements and linear

tetrahedra degrades as the shell thickness decreases from 0.6𝑚𝑚 to

0.15𝑚𝑚. While these observations imply that solid shells are not

competitive for extremely thin shells, we are primarily interested in

problems with thickness values above 1𝑚𝑚.

The results for uni-axial stretching underscore these initial im-

pressions. As illustrated in Fig. 7, the stiff disk prevents homoge-

neous stetching which, in combination with a nonzero Poisson ratio,

leads to spatially varying compressive stresses in the orthogonal di-

rection that induce buckling. Fig. 8 shows results for this experiment

in the form of normal displacement plots. Using again quadratic

tetrahedra as ground truth, it can be seen from the plots that results

for the discrete shell model are quite close to the reference solution,

although convergence under refinement is somewhat unclear. Solid

shells do not produce satisfying results for the lowest resolution, but

converge to qualitatively acceptable solutions under refinement. In

stark contrast, linear tetrahedra fail to produce out of plane motion

altogether, which we attribute to the well-documented phenomenon

of volumetric locking.

Normal displacement (mm)

ad Tets

Linear Tets Solid Shells XFEM D Shells

-2 -1 0 21

Fig. 8. Normal displacement plots for uni-axial loading. Almost all models
produce out-of-plane buckling given sufficient resolution, whereas linear
tetrahedra completely fail to capture this behavior.
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Table 1. Comparison between different shell models on a cylindrical bending
example.

Method DOFs Energy

(0.6mm)

Energy

(0.15mm)

Timing

[s]

Quadratic Tets 73764 0.0596 0.0009 10.86

Linear Tets 12381 0.3542 0.0483 0.74

47914 0.2072 0.0146 3.61

244285 0.0951 0.0070 35.36

Solid Shells 11884 0.1215 0.0164 0.70

46346 0.0751 0.0048 3.50

183022 0.0635 0.0032 17.96

XFEM 12126 0.1210 0.0161 0.83

46864 0.0752 0.0048 3.90

184438 0.0635 0.0032 19.84

Discrete Shells 5942 0.0598 0.0009 0.56

23173 0.0597 0.0009 2.60

Discussion. Our analysis shows that the discrete shell model offers

very good accuracy already for comparatively coarse discretizations—

on par with quadratic tetrahedra, but at a much lower computational

costs.While thismakes them an ideal choice for static bi-material dis-

tributions, we were unable to find a robust formulation for moving

interfaces with conforming meshes. Our experiments with different

options invariably led to numerical instabilities: directly moving

interface nodes along with the stripe pattern produces ill-shaped

elements and diverging derivatives. Moving non-interface nodes

using, e.g., a Laplacian regularizer [Montes et al. 2020; Pérez et al.

2017] delays these problems without solving them.While remeshing

can avoid instabilities in principle, the corresponding discontinuities

would prevent gradient-based optimizers from converging. These

observations are in line with expectations as they are among the

primary reasons for using XFEM instead of conforming discretiza-

tions in inverse problems with material interfaces [Kaufmann et al.

2009; Moës et al. 2003; Zehnder et al. 2017]. While discrete shells

and XFEM would appear to be a winning combination, we could not

find a way to reconcile these disparate concepts: extended finite ele-

ments rely on element geometry and strain being defined in terms of

basis functions and their derivatives, but the curvature computation

of discrete shell elements does not fit this framework. Ultimately,

solid shells with XFEM emerge as the best trade-off for our problem

setting. Unlike linear tetrahedra, they provide acceptable accuracy

already for moderate resolution. Compared to quadratic tetrahedra

with XFEM, solid shells are considerably simpler and, for the level

of accuracy and mesh resolution that we require, the more efficient

choice.

6 DIFFERENTIABLE STRIPE PATTERNS
Inverse material design based on stripe patterns leads to the central

challenge of determining the change in stripes induced by a given

change in input vector field z. Since we only care about the direction
of per-vertex vectors z𝑖 and not their magnitude, we parameterize

the input vector field as z = z(p) where p = (𝑝1, . . . , 𝑝𝑛) is the vector

of design parameterswith per-vertex angles 𝑝𝑖 . The relation between

design parameters and output material distribution is then given

implicitly through the generalized eigenvalue problem (4). However,

since eigenvalues for this problem have geometric multiplicity two,

the corresponding eigenvectors are not unique. We first show that

eigenvector derivatives are not well defined before we describe our

solution to this problem.

6.1 Eigenvector Derivatives
We start by expressing optimization problem (3) through its La-

grangian

L(v, _) = 1

2

v𝑇Av − _

2

(
v𝑇Bv − 1

)
. (13)

Any solution s = (v, _) to this problem must satisfy the first-order

optimality conditions g(v, _) := ∇L = 0 where

g𝑣 = (A − _B)v , (14)

g_ = −1

2

(
v𝑇Bv − 1

)
. (15)

Requiring that these conditions be satisfied for all admissible pa-

rameter changes,

𝑑g
𝑑p

=
𝜕g
𝜕p

+ 𝜕g
𝜕s

𝜕s
𝜕p

= 0 , (16)

leads to the saddle-point system[
A − _B −Bv
−(Bv)𝑇 0

] [ 𝜕v
𝜕p
𝜕_
𝜕p

]
=

[
− 𝜕gv

𝜕p
0

]
. (17)

Since _ has geometric multiplicity two, the system is singular and,

consequently, the derivative of v is not well-defined. This is easily

verified by observing that the vector (v⊥, 0) is in the nullspace of

𝜕g
𝜕s , where v⊥ is the second eigenvector for _ with v𝑇 v⊥ = 0.

To resolve eigenvector ambiguity, we recall from Sec. 4 that vec-

tors in the two-dimensional eigenspace correspond to synchronous

rotations of per-vertex phase vectors. Using this insight, we can

define unique eigenvectors by specifying the phase for an arbitrary

vertex 𝑘 . To this end, we simply set v𝑘 = (𝑎𝑘 , 0) which eliminates

one degree of freedom. This leads to a modified optimization prob-

lem with an extra constraint on 𝑏𝑘 ,

L(p, v, _, `) = 1

2

v𝑇Av − 1

2

_(v𝑇Bv − 1) − `𝑏𝑘 , (18)

whose corresponding first-order optimality conditions are

gv = Av − _Bv − `e𝑏𝑘 = 0 (19)

g_ = −1

2

(v𝑇Bv − 1) = 0 (20)

g` = −𝑏𝑘 = 0 . (21)

A vector v that satisfies these optimality conditions is also an eigen-

vector of A−_B, since we can always find a vector in the eigenplane

that satisfies the condition 𝑏𝑘 = 0. Consequently, ` is always equal

to 0. Requiring Eqs (19—21) to be satisfied for any change in param-

eters yields the modified saddle-point system
A − _B −Bv e𝑏𝑘
−(Bv)𝑇 0 0

e𝑇
𝑏𝑘

0 0



𝜕v
𝜕p
𝜕_
𝜕p
0

 =

− 𝜕gv

𝜕p
0

0

 , (22)
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where e𝑏𝑘 is the unit vector corresponding to the index 𝑏𝑘 . In-

tuitively, there exists no vector from the eigenplane that is both

orthogonal to v and e𝑏𝑘 . The above system is therefore non-singular

and can be solved for the unknown eigenvector derivatives
𝜕v
𝜕p .

Eigenplane Parameterization. It should be noted that, while con-

straining a given phase variable leads to unique eigenvectors, any

specific choice of 𝑘 and 𝑏𝑘 will introduce bias—another vector from

the eigenplane might be better suited for decreasing the design

objective. To avoid arbitrary choices, we introduce an additional

parameter \ that represents the current eigenvector as a rotation in

the eigenplane relative to the unique reference eigenvector defined

through the choice of 𝑘 and 𝑏𝑘 .

6.2 Regularization and Parametrization
Vanishing Phase Values. The idea of stripe patterns is to express

phase as the argument of complex number since this representation

can offer global continuity. Once eigenvectors are computed, per-

vertex phases (complex numbers) have to be normalized to retrieve

their argument (i.e., the real-numbered angle value). However, as

phase vector tend towards zero, this operation becomes numerically

unstable and, eventually, diverges. This is typically not much of a

concern for the forward stripe pattern problem, since even numer-

ically infinitesimal vectors can still be normalized. However, the

sensitivities of angles diverge as per-vertex phases approach zero,

which is very problematic for the inverse problem. Our solution to

this problem is to simply disallow phase vectors from becoming ar-

bitrarily small. We achieve this goal by imposing smoothly-clamped

logarithmic barrier functions [Li et al. 2020] on per-vertex phases

as,

𝑅sing (𝑑,− ˆ𝑑) =
{
−(𝑑 − ˆ𝑑)2 ln( 𝑑

ˆ𝑑
) 0 < 𝑑 ≤ ˆ𝑑

0 otherwise ,
(23)

where 𝑑 = |v𝑖 | and ˆ𝑑 = 0.1 is a cut-off value. By preventing zero

phases through a design objective, we ensure that eigenvectors still

have the same meaning as before—they represent ideal approxi-

mations to potentially non-integrable vector fields. However, the

design parameters are now strongly repelled from values that lead

to eigenvectors with zero per-vertex phases.

An interesting question in this context is what do we lose when
preventing zero per-vertex phases? As described by Knöppel et al.

[2015], scaling per-vertex phases down to zero permits the introduc-

tion of singularities in the phase field that would otherwise lead to

non-integrability. Our experiments indicate that the expressiveness

of stripe patterns generated without such non-integrable compo-

nents does not suffer. Indeed, while almost-zero phase vectors can

be normalized without problems, they often lead to randomly ori-

ented phases with significant curl. These high-curl regions translate

into quasi-amorphous material distributions with isolated patches

rather than clean stripes. We argue that such phase fields are neither

useful nor desirable from a material design perspective.

Smoothness. While the regularizer introduced above prevents

singularities in the phase field, the input vector field can still exhibit

high-frequency components that translate into artifacts in the stripe

patterns as shown in Fig. 9. To avoid such artifacts, we introduce

an additional smoothness regularizer based on the formulation by

Crane et al. [2010],

𝑅sm (p) =
∑︁
𝑖, 𝑗 ∈E

𝑤𝑖 𝑗

(
[cos(𝑝𝑖 ) − cos(𝑝 𝑗 )]2 + [sin(𝑝𝑖 ) − sin(𝑝 𝑗 )]2

)
,

where E denotes the edge index set,𝑤𝑖 𝑗 is cotangent weight, and

𝑝𝑖 , 𝑝 𝑗 are design parameters (i.e., angles) expressed in a common

reference frame. As can be seen from Fig. 9 (right), this simple regu-

larizer leads to substantially cleaner stripe patterns. It furthermore

reduces singularities even before the log barrier penalty becomes

active.

Fig. 9. Smoothness regularizer. By promoting smooth vector fields during
optimization, this regularizer removes high-frequency noise (left), resulting
in clean and aesthetically pleasing stripe patterns (right).

6.3 Design Objectives
Our differentiable formulation for stripe patterns can be used for

solving a large array of design problems, see Sec. 7. In the following,

we summarize the objective functions that we use for our examples.

Target Deformation. Abasic task is to find stripe patterns such that

the design best approximates a given target shape x̃ in equilibrium.

In its simplest form, the corresponding objective function is

𝑇
match

= |x(p) − x̃|2 . (24)

Macromechanical Properties. Stripe patterns are ideal for creat-
ing materials with high stiffness contrast, e.g., by modulating the

macromechanical properties of a soft (fabric) substrate with stripe

patterns made from stiffer material. In this context, designers are

typically interested in averaged, high-level behavior of the rein-

forced material, rather than in local deformations. In order to find

stripe patterns that best approximate a given macromechanical be-

havior, we define an objective function that penalizes deviations

between actual and target directional stiffness as

𝑇Mat =
∑︁
𝑖

|𝑘 (\𝑖 , x(p)) − ˆ𝑘𝑖 |2 , (25)

where \𝑖 ∈ [0, 𝜋] are sample locations in polar coordinates with

corresponding directional stiffness targets
ˆ𝑘𝑖 given as generalized

Young’s moduli. To compute the directional stiffness for given de-

sign parameters, we simulate a unit-patch of the corresponding

structure subject to periodic boundary conditions that enforce a

given uniaxial target deformation. We obtain the corresponding

stiffness 𝑘 (\𝑖 , x(p)) by evaluating the stress on the boundary of
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a b c d

Fig. 10. Controlling Macromechanical Properties. Starting from an initial concentric pattern (a), we optimize for patterns that lead to isotropic (b), orthotropic
(c), and tetragonal (d) macromechanical behavior.

the unit cell and dividing by the strain magnitude as described by

Schumacher et al. [2018].

Generalized Stiffness. Another basic design goal that we use in

our examples is to achieve a desired stiffness with respect to given

loads. When defining generalized stiffness as displacement norm

divided by applied force magnitude, this objective becomes a special

case of Eq. (24) .

6.4 Optimization Algorithm
Our formulation allows us to compute derivatives of objective func-

tions with respect to the design parameters. These gradients can

then be used to drive first-order descent or quasi-Newton meth-

ods for minimization. We experimented with steepest descent and

L-BFGS, but ultimately found the Globally-Convergent Method of

Moving Asymptotes (GC-MMA) [Svanberg 1995] to be most effi-

cient for our problem setting. We express the objective gradient

with respect to the parameters as

𝑑𝑇

𝑑p
=

𝜕𝑇

𝜕p
+
(
𝜕𝝓

𝜕v
𝜕v
𝜕p

)𝑇 (
𝜕𝑇

𝜕𝝓
+ 𝜕x
𝜕𝝓

𝑇 𝜕𝑇

𝜕x

)
, (26)

where
𝜕𝜙
𝜕v is the derivative of the level set with respect to the

eigenvector (Eq. 10),
𝜕v
𝜕p denotes the sensitivity of the eigenvector

with respect to the parameters as illustrated in section 6.1 and
𝜕x
𝜕𝝓

is the sensitivity of the nodal positions with respect to the level

set. Instead of fully evaluating both sensitivity matrices, we use the

adjoint method for both terms sequentially, requiring just two linear

solves per gradient evaluation.

Simulation Sensitivity. The map of the nodal positions as a func-

tion of the level set x(𝝓) is given by the force equilibrium constraint

of the forward simulation, 𝒇 = −𝑑𝑈
𝑑x = 0. As a result, changes in 𝝓

induce changes in the equilibrium configuration x. Since 𝑑𝒇
𝑑𝝓 = 0 for

every equilibrium configuration, we have

𝑑𝒇

𝑑𝝓
=

𝜕𝒇

𝜕𝝓
+ 𝜕x
𝜕𝝓

𝑇 𝜕𝒇

𝜕x
= 0 , (27)

from which
𝜕x
𝜕𝝓 is extracted.

Evaluating Candidate Parameters. Whenever a candidate parame-

ter update is evaluated during the optimization process, we must

recompute eigenvectors at the new parameter location. To this end,

we compute a pair of orthogonal eigenvectors (v1, v2) as a basis for
the eigenplane with minimal eigenvalue. We obtain the reference

eigenvector by finding \ that satisfies the condition 𝑏𝑘 = 0 in the

equation

v = v1cos(\ ) + v2sin(\ ) . (28)

The current eigenvector is computed by rotating the reference vec-

tor by the new angle \ +Δ\ as given by the search direction. Having

computed the new eigenvector in this way, the material interfaces

are updated accordingly, and new equilibrium positions are com-

puted using forward simulation.

7 RESULTS
We evaluate our method on a range of examples that demonstrate

its potential to solve general inverse design problems for elastic

surfaces structured with bi-material distributions. Statistics for all

experiments are listed in Tab. 2.

Controlling Macromechanical Properties. In our first example, we

explore stripe patterns as a design space for modulating the me-

chanical properties of an isotropic base material. To this end, we

initialize our method with a radial vector field that generates con-

centric stripes on a square patch. We impose periodic boundary

conditions and use homogenization to compute directional stiffness

profiles based on the formulation by Schumacher et al. [2018]. As

can bee seen from Fig. 10(a), despite its apparent symmetry, the

tiling of this pattern is not rotationally symmetric and its stiffness

is thus not isotropic. Given an isotropic stiffness profile as target,

however, our method finds a concentric but slightly more rectangu-

lar pattern that leads to the desired behavior (Fig. 10(b)). As shown
in Fig. 10(c) and (d), our method is likewise able to find modified

patterns that yield orthotropic and tetragonal behavior, respectively.

Variable Stiffness Materials. In a second example, we use our

method to design variable stiffness materials. We consider a rect-

angular patch clamped at two opposite boundaries as shown in

Fig. 11. As design objective, we ask that displacements should vary

linearly when applying a constant horizontal force density such as

to encourage a stiff to soft distribution from the top to the bottom
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boundary. We start with a initial material distribution of vertical

stripes, for which the stiffness—measured as applied force magni-

tude divided by resulting displacement norm—is the same for both

top and bottom boundaries. As can be seen from Fig. 11 (b, right),
our method produces a pattern that yields the desired stiffness gradi-

ent. Visually, stripes have changed direction on the stiffer boundary

(top) into an almost horizontal arrangement, whereas they remain

largely vertical on the softer end (bottom). This non-trivial transition

is enabled through a sequence of turning and branching points that,

despite rather substantial changes, lead to an overall smooth and

continuous pattern.

Compliant Gripper. While the previous examples have focused

on the control of in-plane mechanical properties, Differentiable

Stripe Patterns can likewise be used to drive large out-of-plane

deformations upon actuation. To explore this application, we study

an example inspired by Kirigami thin-shell grippers [Yang et al.

2021]. Starting from the parallel stripes design shown in Fig. 1 (a),
we aim to optimize the pattern such that, when pulled along its

horizontal axis, the wings of the sheet fold such as to minimize

the distance between their tips. Actuating the initial design with

parallel stripes does not result in sufficient lateral deflection (Fig. 1

(c)). For our optimized design, however, the same actuation produces

the desired large out-of-plane motion that is able to lift a small 3D-

printed model; see Fig. 1(d) and the accompanying video.

Soft Pneumatic Actuator. Our method can also be combined with

other means of actuation to produce large controlled deformations.

We demonstrate such a use case by designing a pneumatic actuator—

a basic building block for soft robotics applications. The actuator is

made from a rectangular piece of textile structured with stiff stripe

patterns. The reinforced design is connected along its long boundary

and sealed at the far ends.We simulate inflation by applying constant

pressure forces [Montes et al. 2020] and enforce periodic boundary

conditions on both displacement and stripe patterns. Our design

objective is to reach a target shape corresponding to a constant-

curvature bend of 180
◦
. As shown in Fig. 12, our method produces a

smooth stripe pattern that closely approximates the target shape in

simulation. One can distinguish two main mechanisms that enable

this behavior: ribs running along the radial direction such as to

allow axial stretch on the top surface while preventing an increase

in radius; and a concentration of stiff material on the bottom surface

that leads to differential axial stiffness and, consequently, a preferred

bending direction. Our physical prototype confirms the feasibility

of this design and achieves the targeted change in end-effector

orientation, albeit with a somewhat larger lateral contraction.

Optimization of Insoles. Stripe patterns are ideal for designing
materials with targeted directional deformations, and all examples

shown so far relied on this unique capability. To analyze the robust-

ness of our method with respect to design goals outside this space,

we investigate an example that does not inherently require material

anisotropy. To this end, we consider the design of a compliant shoe

sole that exhibits low stiffness to normal loading in the heel and

forefoot regions but offers higher stiffness in the midfoot region for

increased stability. As can be seen in Fig. 13, our method finds a

pattern layout that achieves these stiffness goals in simulation by

concentrating stiff material in the midfoot region. To evaluate this

result quantitatively, the initial design shows average displacements

in the normal direction of −3.66𝑚𝑚 for heel and forefoot regions

and −6.31𝑚𝑚 for the midfoot. After optimization, these values have

changed to −4.67𝑚𝑚 and −2.52𝑚𝑚, respectively, indicating that the

desired stiffness distribution has been achieved. It can further be

observed that the quality of the stripes deteriorates as the optimiza-

tion tries to increase the amount of stiff materials. Our smoothness

and singularity regularizers put a bound to this trend and largely

succeed in maintaining stripe integrity.

Garment Design. Fitted sportswear and medical garments rely on

the ability to locally control stretch and stiffness. To investigate the

potential of Differentiable Stripe Patterns in this context, we study

the problem of designing an elastic sports shirt structured with

stripe-shaped reinforcements. The shirt is fitted onto a torso model

and, compared to its rest shape, must increase in area by about 10%

to conform to the body. Stretch is therefore inevitable and we aim to

route stripes such as to minimize the elastic energy of the shirt. The

initial design with parallel stripes shown in Fig. 14(left) exhibits a
high strain energy value since stiff reinforcements experience high

stress with such a layout. Our optimization method finds a stripe

pattern that decreases the energy by more than 25% with stripes

that branch and meander such as to avoid long tension lines and

alignment with principal stress directions. See Fig. 14(right).

Structural Optimization of Thin Shells. While we primarily de-

signed our method to operate on bi-material distributions, Differ-

entiable Stripe Patterns can also be used to generate geometric

modifications for single material designs. We investigate this ge-
ometry mode on a structural optimization problem where we seek

to increase the stiffness for a simple vase model subject to vertical

loading as shown in Fig. 16. Instead of defining a bi-material dis-

tribution, we use stripe patterns with sinusoidal cross sections to

generate normal displacements. Structuring surfaces with so called

beads and groves to increase stiffness is a common strategy—also

referred to as topography optimization—in engineering design. As

shown Fig. 16 (3—4), the optimized design found by our method

yields a structure with significantly improved axial stiffness that

shows no sign of buckling even as we increase load by a factor of

two (Fig. 16). As a visual interpretation, adding stripe-shaped nor-

mal displacements means that quasi-isometric bending modes for

the plain design would induce substantial in-plane deformation in

the optimized design. Thanks to its fully-differentiable nature, our

method is able to exploit this effect, leading to structurally efficient

and aesthetically pleasing patterns.

Choice of Initial Guess. As with any nonlinear, nonconvex opti-

mization problem, there can be many local minima in the solution

landscape. As a result, the pattern found depends on the choice

of initial guess. We explore the effect of different initial guesses

on an example that aims to modulate the directional stiffness of a

reinforced fabric into a tetragonal profile. Starting from unidirec-

tional and radial vector fields, we optimize for the same target and

compare their results. As can be seen in Fig. 15, the symmetry of

the concentric circles allows the pattern to comfortably reach the
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a b

Fig. 11. Variable Stiffness Design. Comparison between an initial design with constant stiffness (a, left) and our optimized design with linearly varying
stiffness (a, right). When applying the same force density, our optimized design (b, right) exhibits the desired stiffness gradient whereas the initial design
shows constant stiffness as expected.

a b 1cmc

Fig. 12. Soft Actuator. Using a stretchable textile as substrate, we optimize for stripe-shaped reinforcements (a) such that, once sewn and sealed (b, top), the
soft actuator deforms into a desired target shape upon pressurization (c). The prediction from our simulation model (b, bottom) is in good agreement with the
physical actuator.

infill

compression opt.

softhard
soft

a b c

Fig. 13. Heterogeneous stiffness optimization. We optimize for stripe patterns such as to produce a shoe insole with a soft response to vertical loading in the
heel and forefoot region while offering larger stiffness in the midfoot region. A bi-material stripe pattern with soft TPU (green) and stiff PET (blue) is placed on
top of a soft infill (a). The stripe pattern is optimized to yield a soft response to vertical loading in the heel and forefoot region while offering larger stiffness in
the midfoot region (b) such as to increase comfort when worn (c).

target with very few changes. In contrast, the unidirectional pattern,

which exhibits an extreme initial stiffness profile, is forced to break

its symmetry to better fit the target, without achieving the same

level of success as the concentric circles.

8 CONCLUSION
We presented Differentiable Stripe Patterns, a computational ap-

proach that unlocks Stripe Patterns as a design space for structured

surfaces. In order to invert the stripe pattern pipeline due to Knöp-

pel et al. [2015], we have addressed several key challenges. First,
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Table 2. Summary of parameters and performance statistics for all our experiments.

Example # dofs # iterations Time per iter. [s] Initial objective Final objective Figure

Isotropic 10481 55 21.41 391.81 38.04 Fig. 10(b)

Orthotropic 10481 310 21.22 7324.53 60.06 Fig. 10(c)

Tetragonal 10481 267 21.50 1721.02 21.92 Fig. 10(d)

Cloth 8138 66 193.97 776.17 642.59 Fig. 14

Vase 14026 592 25.68 2344.09 1957.59 Fig. 16

Actuator 11689 384 34.27 3574.64 901.40 Fig. 12

Gripper 6718 14 389.31 1486.14 311.59 Fig. 1

Var. Stiffness 11592 139 130.13 1031.89 12.49 Fig. 11

Insole 6681 357 126.10 209.17 103.76 Fig. 13

Fig. 14. Functional Elastic Shirt. Using a stretchable textile as substrate, we
optimize for stripe-shaped reinforcements such as to minimize the strain
energy of the garment. Left : initial design with parallel stripes in front and
back view. Our optimized design (right) yields a significant decrease in
energy.

Fig. 15. Influence of initial guess on optimization results. We optimize a re-
inforced fabric to exhibit a tetragonal stiffness profile using a unidirectional
(left) and a radial (right) vector field as initial guess. Initial patterns and
stiffness profiles are shown as bottom and top inset images, respectively.

we resolved ambiguities due to eigenvalue multiplicity by estab-

lishing a unique parameterization of the corresponding eigenplane,

resulting in well-defined eigenvector derivatives. Second, to allow

for accurate modeling of moving material interfaces, we proposed a

combination of solid shells and extended finite elements. Finally, we

introduced design space regularizers to avoid numerical singulari-

ties and improve stripe neatness. We combined these components

with equilibrium state derivatives into an end-to-end differentiable

pipeline that enables inverse design with high-level performance

objectives. Our results indicate that stripe patterns are indeed a

promising design space for bi-material surfaces, and that gradient-

based optimization is an effective tool for exploring this space. There

are, nevertheless, several limitations and corresponding opportuni-

ties for future improvements.

8.1 Limitations
We have assumed that our bi-material designs have material inter-

faces extending through the entire thickness. This assumption is

a somewhat coarse approximation of our reinforced fabric exam-

ples, for which we added 3D-printed stripes on top of a textile sub-

strate. While our results showed fairly good accuracy compared to

real-world experiments, Jourdan et al. [2022a] have recently demon-

strated that a thin shell model can be adapted to reflect this non-

symmetric patterning. We expect that similar modifications could

likewise be effective for our solid shell model. Another alternative

would be to use a bi-layer solid shell, with a homogeneous bottom

layer and a structured top layer consisting of stiff and void material.

Our method is currently limited to a single linear cut per element.

This is not much of a restriction in practice, since our focus is on low-

frequency stripe patterns and we can simply choose mesh resolution

accordingly. An exception are branches, which involve two cuts in

a single element that form an inward dent. Our method currently

ignores this non-convex feature and approximates it with its convex

closure. Nevertheless, extending our method to handle multiple cuts

per element using the hierarchical scheme by Zehnder et al. [2017]

should pose no major problems.

We believe that the combination of solid shells and XFEM offers

unique advantages in terms of accuracy for computation time. In

this work, we only explored constant thickness shells with two

materials. However, solid shells could be useful for many other

graphics applications where through-the-thickness deformation is

an important effect, including simulation of skin, faces, and filled

garments.

Finally, we have only started to explore the possibilities of stripe

patterns for functional garment design. In the future, we would like

to investigate the design of haptic garments that use stripe patterns

to provide feedback on, e.g., posture [Vechev et al. 2022]. Extending

passive stripes toward active control and sensing is likewise an

exciting avenue for future work.
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Fig. 16. Structural Optimization with Differentiable Stripe Patterns. From left to right : a 3D-printed thin-walled vase (1) buckles under a vertical load of 45N
(2). To prevent this failure mode, we optimize for normal offsets in the form of stripe patterns such as to maximize the stiffness of the vase with respect to
vertical loading (3). Our optimized design deforms much less under vertical loading (4) and shows no signs of buckling even for 90N (5).
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