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Abstract— Due to their complex dynamics and high-
dimensional configuration spaces, non-rigid objects such as
cables, garments, bedding and various food items remain
notoriously challenging for robots to manipulate effectively. In
this paper, we therefore develop, validate and analyze model-
based optimal control techniques for dynamic manipulation of
deformable objects.

We study, in particular, the application of both the batch
Newton method and the stagewise Differential Dynamic Pro-
gramming (DDP) approach to this challenging problem domain.
On a technical level, we derive analytic formulations for all
necessary derivatives, noting that numerically stable simulation
of deformable objects demands implicit integration schemes,
which do not have closed form solutions. While both DDP
and Newton’s method converge quadratically, our experiments
and analysis show that the relative overall performance of
these two approaches depends heavily on the dimensions of
the control problems being solved. We demonstrate the efficacy
of our trajectory optimization formulations through a variety
of simulation and real-world experiments.

I. INTRODUCTION

Interaction with non-rigid objects such as garments, bed-
ding or various food items is routinely required in many of
our daily activities. And while tasks like changing the sheets
on a bed or kneading pizza dough may seem trivial to us, they
pose a tremendous challenge to robots. Indeed, dexterous
robotic manipulation of deformable objects remains a grand
challenge in the field, a technological barrier that must be
overcome in the quest for robot intelligence.

In this paper, we formalize, evaluate and analyze model-
based trajectory optimization (TO) techniques for dynamic
manipulation of non-rigid objects. In robotics, TO is com-
monly used to compute open-loop solutions to optimal con-
trol problems in locomotion, manipulation and path planning.
Given a dynamical system, TO leverages numerical optimiza-
tion routines to generate a control sequence that optimizes
a certain objective. While many successful TO approaches
have been presented in the literature (see Sec. II-B), by and
large they are not targeted towards soft body manipulation, as
deformable objects exhibit very complex dynamics and high-
dimensional configuration spaces. The challenges inherent to
dynamic manipulation of non-rigid items arise due to the
need to employ advanced constitutive material models that
relate deformations to internal restorative forces. These chal-
lenges are further exacerbated since these deformable body
simulations suffer from numerical stiffness issues, which

1 The authors are with the Department of Computer Science,
ETH, Zurich, Switzerland. simon.zimmermann@inf.ethz.ch;
roi.poranne@inf.ethz.ch; scoros@gmail.com

2Roi Poranne is with the Department of Computer Science, University
of Haifa, Haifa, Israel. roiporanne@cs.haifa.ac.il

Fig. 1: A YuMi R© IRB 14000 robot using a soft rod as
a whip to hit two small wooden blocks. Starting from a
statically stable configuration (top left), the robot performs
a dynamic maneuver that begins by pulling the whip back
to gain sufficient momentum (top right), and then swiftly
knocking the two targets off the table (bottom).

can only be stably handled by applying implicit integration
schemes. Conversely, explicit schemes tend to be unstable
and blow-up quickly, making them practically unusable.

We center our attention on the challenge of adapting two
single shooting trajectory optimization strategies, Newton’s
method and Differential Dynamic Programming (DDP), to
physical systems that are simulated forward in time using
implicit integration schemes. Briefly, Newton’s method is
a batch approach that operates on the entire control se-
quence simultaneously, while DDP is a stagewise method
that processes the control sequence recursively. Both of
these methods use forward simulation as an integral part
of their formulations. As mentioned, stable simulation of
soft bodies (under reasonably large time steps) hinges on
implicit integration schemes. Unlike explicit alternatives,
implicit integration methods do not have per time-step so-
lutions available in closed form. We therefore show how to
leverage sensitivity analysis to analytically compute the first
and second order derivatives which are essential for both
Newton’s method and DDP.

To evaluate the TO formulations we present in this paper,
we make use of a dual-armed YuMi R© IRB 14000 robot
and different types of elastic objects made out of foam.
YuMi can hold the foam objects with one or both grippers
(the grasping configuration is prescribed as input), and it
executes the joint-space trajectories computed with TO in
an open-loop fashion. We model elastic objects using the
Finite Element Method (FEM), and we employ the second-
order accurate Backward Differentiation Formula (BDF2)
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Fig. 2: An overview of the system. The YuMi robot is
parameterized by its joint angles u, and the deformable
object by its node positions x.

numerical integration scheme. The control objectives we
experiment with are simple, taking on the form of target
positions for selected points on the soft objects at different
moments in time, yet they lead to rich, highly dynamic
motions being performed. To demonstrate the efficacy of
our TO formulations, we execute and analyze a variety of
simulation and real-world experiments.

II. BACKGROUND

A. FEM simulation

Similar to previous methods, we employ FEM to simulate
the deformable object being manipulated. We refer the reader
to closely related papers that discuss trajectory optimization
for soft robot locomotion [1], [2], or quasi-static manipula-
tion of deformable objects [3], [4], [5], [6]. [7] discusses an
MPC approach for dynamic manipulation, using short time
windows and linearized forces. For a review of earlier work,
see [8].

In brief, FEM considers a mesh discretization of the
manipulated object into a volumetric, tetrahedral mesh. We
employ linear elements and a compressible neo-Hookean
material model for our simulation. The specific choice of
material model is not pivotal, so long as the simulation
captures the behaviour of the real material well. While it
cannot capture e.g. the viscoelastic behavior of the elastic
foam we used, we find the neo-Hookean model to be
satisfactory for our application.

The positions of all nodes at each time-step i are as-
sembled into a vector xi of dimension 3n (n being the
number of nodes), constituting the state of the object. The
deformation energy density of each element t, defined by its
vertex coordinates xit, using a compressible Neo-Hookean
material model is defined by

Ψ(xit) =
µ

2
tr(FT

t Ft − I)− µlnJt +
κ

2
(lnJt)2, (1)

where Ft is the deformation gradient, Jt = det(F) is its
determinant, and µ and κ are material parameters. The total
elastic energy stored in the mesh Eel(xi) =

∑
t Ψ(xit) is the

sum of the energies stored in each element. The parameters
of the material model were identified experimentally.

The controls, which in our case are the joint angles of the
robot, are stacked in a vector ui (Fig. 2). A simple explicit
Euler stepping rule is commonly formulated as follows:

vi+1 = vi −
h

m

d

dxi
W (xi,ui)

xi+1 = xi + hvi,
(2)

where h is the step size, and W (xi,ui) is the total potential
energy of the system at time step i. This energy comprises of
the elastic energy of the foam Eel(xi), gravity Eg(xi) and
soft contacts Econ(xi) (see [2]). In addition, W contains a
term that expresses the coupling of the foam and the robot’s
end effectors. This can be formulated as a quadratic penalty,
i.e.

Ecoup(x,u) = wcoup‖xj
i −K(l,ui)‖2, (3)

where wcoup is a weighting coefficient, xj
i is the node in

contact with the gripper, and K(l,ui) is a standard forward
kinematics function that computes the world coordinates of
a point l expressed in the local coordinate frame of a robot’s
gripper. To summarize,

W (xi,ui) = Eel(xi) + Eg(xi) + Econ(xi) + Ecoup(x,u).

Explicit integration schemes such as (2) are known to
be unstable. While an explicit scheme might suffice for a
simple problem like a pendulum on a cart, elastic FE meshes
tend to blow-up after only a few steps. This makes explicit
integration unviable for simulation and control, as they fail to
reliably predict motions. Stabilization procedures for explicit
integration are a matter of ongoing research. However, their
computational footprint is either similar to implicit schemes,
or their accuracy is reduced (see e.g. [9], [10], [11], [12]).

An implicit Euler time stepping scheme is equivalent to
finding x∗i that minimizes the functional [13],

Ui(xi, ẍi,ui) =
h2

2
ẍT
i Mẍi +W (xi,ui), (4)

where ẍi is an acceleration discretization, and M is the
system’s mass matrix. The discretizations we experimented
with in this paper are the Backward Differentiation Formulas
BDF1 approximation ẍi = (xi−2xi−1+xi−2

h2 ) and BDF2,
ẍi = ( 2xi−5xi−1+4xi−2−xi−3

h2 ). Eq. (4) means that we seek
x∗i , a critical point of Ui(xi), such that

g(xi, ẍi,ui) = ∇Ui(xi, ẍi,ui) = 0,

which is equivalent to Newton’s law f = Mẍ. In the next
sections we discuss how this condition can be integrated
within a trajectory optimization problem.

B. Trajectory optimization algorithms

TO problems typically appear in the following form:

min
x,u

`f (xn) +

n−1∑
i=0

`(xi,ui) (5a)

s.t. xi+1 = f(xi,ui), (5b)

where l and lf are the running and final costs respectively,
and f is an explicit transition function that can express, for



example, the stepping rule in (2). However, as noted, implicit
integration is sometimes essential to avoid instability. TO
problems with implicit integration would appear as follows:

min
x,u

`f (xn) +

n−1∑
i=0

`(xi,ui) (6a)

s.t. g(xi+1, ẍi+1,ui) = 0. (6b)

We note that the inclusion of additional previous time steps
(6b), e.g. xi−1 as part of ẍi+1 is uncommon in itself, and
we further discuss this in Sec. IV-B.

Single shooting methods can be divided into batch or
stagewise. The batch approach optimizes the entire trajectory
simultaneously, often treating the problem as a general
optimization problem. The stagewise approach on the other
hand, starts from the end of the trajectory, and recursively
computes a symbolic expression of the optimal controls
at a certain time step as a function of the state in the
preceding step. DDP is considered to first appear in [14]
and become popular with [15]. The debate whether the
stagewise approach is generally favorable has been ongoing
for decades, usually citing superior performance of DDP
in comparison to the more standard Newton’s method [16],
[17], [18]. Theoretically, DDP has been shown to exhibit
quadratic convergence similar to Newton’s method [18], [19],
but experiments show that DDP iterations are faster, and less
are required to reach a minimum. Previous work attributes
the improved performance to two features DDP has: first,
[17] shows that a DDP iteration requires fewer operations
than a Newton iteration. However, there is an underlying
assumption in [17] that the cost of evaluating the gradient of
the transition function is linear in the number of variables,
which is not true in the general case, nor in our specific
case. Second, Newton’s method can only use a second order
approximation of the dynamics, while DDP employs fewer
approximations in the forward pass, and therefore is ”more
accurate” [18]. While this statement is true, there is no proof
this improved accuracy leads to improved convergence rates,
and in our experiments, results vary.

We conclude this section by mentioning a few other
stagewise methods. In [16], Pantoja introduced the stagewise
Newton algorithm, which is equivalent to the batch Newton’s
method, but enjoys faster iterations. It was demonstrated that
the method outperforms DDP, but it is later shown in [20]
that the experiment contained an error, and in fact DDP and
stagewise Newton are equivalent for the chosen problem, but
not in general. DDP requires the second derivatives of the
dynamics, which can be too costly to compute. Furthermore,
they may cause some of the linear systems involved in DDP
to become indefinite, which can halt the progress of the
algorithm. Similar to the Gauss-Newton method, parts of
the second derivatives can simply be discarded, reducing the
cost and the risks of indefinite systems. In this case, DDP
is usually referred to as iterative LQR (iLQR) [21]. Other
variants enable the inclusion of control limits [22] and non-
linear constraints [23].

III. NEWTON’S METHOD WITH IMPLICIT INTEGRATION

As mentioned, the batch strategy ignores the structure of
the problem (6). From this viewpoint it can be equivalently
written as

min
X,U

O(X,U) (7a)

s.t. g(X,U) = 0, (7b)

where X,U are the stacked state and controls of the entire
trajectory. While this problem can be solved directly using
a constrained optimization method, the drawback of this
approach is that the candidate solution can only be con-
sidered physically correct once the constraints are satisfied.
The condensation approach would be to substitute the state
variables with the control variables, and consequently reduce
the size of the problem while transforming it to an uncon-
strained problem. In the presence of implicit constraints, this
would seem to require inverting g, but as noted in [24], for
Newton’s method we only require the total derivatives of
the objective w.r.t. U, and these are readily available via the
implicit function theorem.

We bring here only the final expressions for the deriva-
tives, and refer the reader to [25] for the full derivation.
First, the gradient of (7a) can be computed from

dO
dU

=
∂O
∂X

S +
∂O
∂U

, (8)

where

S = −
(
∂g

∂X

)−1
∂g

∂U
(9)

is the sensitivity matrix. We assume that ∂g
∂X is invertible,

which is generally the case for elastic deformation. The
Hessian is obtained by

d2O
dU2

=
∂O
∂X

(
ST ∂

∂X
S +

∂

∂U
S

)
+

+ ST ∂
2O
∂X2

S + ST ∂2O
∂X∂U

+
∂2O
∂U∂X

S +
∂2O
∂U2

,

(10)

where ∂
∂XS, ∂

∂US are tensor terms, and their precise expres-
sions are found in [25]. Unfortunately, their computational
cost is high, and they can cause the Hessian to become
indefinite. To overcome that, we can apply the Gauss-Newton
approach and simply drop these terms to get

H = ST ∂
2O
∂X2

S + ST ∂2O
∂X∂U

+
∂2O
∂U∂X

S +
∂2O
∂U2

. (11)

The resulting iteration is both quicker to compute, and faster
to converge. The same strategy is used within DDP, and
when used, the process becomes equivalent to iLQR. Using
the gradient and the Hessian (or its approximation), we can
minimize (7) using Newton’s method, e.g. by solving

Hd = −dO
dU

(12)

to receive the search direction d. We note one key differ-
ence: for each candidate U, we must always compute the
corresponding X to ensure that (7b) holds before evaluating



any of the derivatives. In the particular case of trajectory
optimization, this can be achieved by simply running a
forward simulation procedure, which guarantees that the
constraints given by the dynamical system are satisfied.

IV. DIFFERENTIAL DYNAMIC PROGRAMMING

A. Preliminaries

We review DDP for the sake of completeness, following
the introduction found in [22], [23]. Assuming we know what
xi is, we only need to optimize the control sequence Ui =
(ui, . . . ,un−1). In other words, we are required to minimize

Ji(xi,Ui) = `f (xn) +

n−1∑
j=i+1

`(xj ,uj), (13)

where Ji(xi,Ui) is the cost-to-go at time step i. All the
subsequent states xj , j = i+ 1, . . . , n are determined by the
transition function f . Eq. (13) can be written recursively as

Ji(xi,Ui) = `(xi,ui) + Ji+1(xi+1,Ui+1). (14)

Next, assume that given xi+1, we can compute the optimal
controls Ji+1(xi+1,Ui+1). Let

Vi(xi) = min
Ui

Ji(xi,Ui) (15)

be the optimal cost-to-go. By the assumption, we have an
expression for Vi+1(xi+1) = Vi+1(f(xi,ui)). The dynamic
programming principle, a.k.a. Bellman’s equation, is then
framed in the following formula:

Vi(xi) = min
ui

[`(xi,ui) + Vi+1(f(xi,ui))]. (16)

DDP suggests to use a quadratic model for Vi+1. We follow
the standard notation by removing the subscripts and defining
V ′ = Vi+1. We define the argument of (16) by

Q(x,u) = `(x,u) + V ′(f(x,u)) (17)

and expand it to second order

Q(x + dx,u + du) = Q+QT
xdx +QT

udu+

+
1

2

(
dx
du

)T (Qxx Qxu

Qux Quu

)(
dx
du

)
,

(18)

where we use a subscript to denote the partial derivative
w.r.t. that variable to be consistent with the standard DDP
derivation. The derivatives can be evaluated to

Qx = `x + fTx V
′
x, Qu = `u + fTuV

′
x (19a)

Qxx = `xx + fTx V
′
xxfx (+V ′x · fxx) (19b)

Quu = `uu + fTu V
′
xxfu (+V ′x · fuu) (19c)

Qux = `ux + fTu V
′
xxfx (+V ′x · fux). (19d)

The terms in parentheses are the optional tensor terms
mentioned before. They distinguish between DDP and iLQR.
By taking the gradient of Q(x + dx,u + du) w.r.t. du and
setting it to zero we get

Qu +Quxdx +Quudu = 0. (20)

Solving this equation for du results in

ū = u + k +K(x̄− x), (21)

where the indices are again removed, and

k = −Q−1uuQu, and K = −Q−1uuQux. (22)

What remains to compute is V ′ and its derivatives, and we
refer the reader again to [22], [23] for the full expressions.

B. Extended DDP

We extend DDP to the case where the cost and the tran-
sition function depends also on previous states and controls,
which is the case in (6). Such problems are also known as
higher-order Markov processes [26]. This has to be done to
support implicit integration, that rely on velocities and accel-
erations. Similarly, we consider cost functions that depend
on previous states and controls too. This allows us to put
objectives on velocities and accelerations of the controls and
states. We denote the sequence of controls starting from ui

and going back j steps by Ui
j , i.e Ui

j = (ui, . . . ,ui−j) and
likewise for Xi

j . Then we define the trajectory optimization
problem by

min
x,u

`f (Xn
j ) +

n−1∑
i=0

`(Xi
j ,U

i
j) (23a)

s.t. xi+1 = f(Xi
j ,ui). (23b)

In contrast to the standard DDP, the recursive cost-to-go
relation at time step i cannot be expressed solely as a
function of the current state xi and current and future
controls Ui. Rather, it must also depend on some earlier
states and controls:

Ji
(
Xi

j ,U
i−1
j−1,Ui

)
= `(Xi

j ,U
i
j) + Ji

(
Xi

j ,U
i
j−1,Ui+1

)
.

(24)
The optimal cost-to-go is thus

Vi(X
i
j ,U

i−1
j−1) = min

Ui

Ji
(
Xi

j ,U
i−1
j−1,Ui

)
, (25)

and Bellman’s equation takes on the following form:

Vi(X
i
j ,U

i−1
j−1) = min

ui

[`
(
Xi

j ,U
i
j

)
+

+ Vi+1

(
(f(Xi

j ,ui),X
i
j−1)︸ ︷︷ ︸

Xi+1
j

,Ui
j−1
)
]. (26)

To make this appear more familiar, we can define X̃i =
(Xi

j ,U
i−1
j−1), and then (26) becomes

Vi(X̃i) = min
ui

[`(X̃i,ui) + Vi+1(f̃(X̃i,ui))], (27)

where f̃(X̃i,ui) = X̃i+1. In other words, we can treat the
previous controls Ui−1

j−1 simply as state variables, for the
purpose of estimating the optimal ui.

An alternative derivation is obtained by explicitly adding
auxiliary state variables, which equivalently removes the
dependency on past states and controls. We replace each xi

by x0
i , . . . ,x

j−1
i , where x0

i = xi represents the current state,
and xl

i stores the previous l states. For each ui, we add state



Algorithm 1: Trajectory optimization: Newton
Input: Dynamical system, initial u, initial x0, ẋ0

Output: Optimal control trajectory u
while criterion not reached do
Compute x(u) using forward simulation
Compute dO

du (Eq. (7a))
Compute H (Eq. (10) or (11))
Solve Hd = −dO

du
Run backtracking line search on α in
u := u + αd

variables y1
i , . . . ,y

j−1
i . We avoid adding y0

i as we wish to
preserve the standard DDP form. Then the problem becomes

min
x,u

`f (xn,x
1
n, . . . ,x

j−1
n )+ (28a)

+

n−1∑
i=0

`(xi,x
1
i , . . . ,x

j−1
i ,y1

i , . . . ,y
j−1
i ,ui), (28b)

s.t. x0
i+1 = f(xi,x

1
i , . . . ,x

j−1
i ,y1

i , . . . ,y
j−1
i ,ui), (28c)

y1
i+1 = ui, (28d)

xl
i+1 = xl−1

i , yl
i+1 = yl−1

i , l = 1, . . . , j − 1, (28e)

which can directly be solved with standard DDP.

C. DDP with implicit integration

With the foundation laid, we can finally solve (6) using
DDP. The remaining challenge lies in computing the deriva-
tives of Q, since we do not have an explicit expression for f .
To be clear, we seek the derivatives of the implicit equivalent
of (23b), and similar to (6b), i.e.

g(xi+1,X
i
j ,ui) = 0. (29)

These are readily available using the implicit function theo-
rem again. To be consistent with the previous notation, we
denote x′ = xi+1, and x = Xi

j ,u = ui. Then, we can state
that

fx =
∂g

∂x′

−1 ∂g

∂x
, fu =

∂g

∂x′

−1 ∂g

∂u
. (30)

Subsequently, Qx in (19) is

Qx = `x +

(
∂g

∂x′

−1 ∂g

∂x

)T

V ′x, (31)

and similarly for the rest of the derivatives. We summarize
the algorithms for Newton’s method and DDP in the presence
of implicit integration in Algorithm 1 and 2.

V. ANALYSIS

A. Complexity

In this section we discuss the complexities of Newton’s
method and DDP, and the strengths and weaknesses of each
method. We validate the analysis experimentally on a set
of problems where we vary both the length of the planning
horizon, and the dimensionality of the dynamical systems
that are manipulated. This was discussed to some extent in
[27], in the context of asymptotic complexity, and our finding
generally supports their conclusion.

Algorithm 2: Trajectory optimization: DDP
Input: Dynamical system, initial u, initial x0, ẋ0

Output: Optimal control trajectory u
while criterion not reached do
Compute x(u) using forward simulation
/* Backward pass */
Vn ← `f (xn)
for i← n− 1 to 1 do

Compute derivatives of Qi and Vi ((31),[22])
Compute Ki and ki (Eq. (22))

/* Forward pass */
α← 1
while O is not reduced do

for i← 0 to n− 1 do
Compute ūi (Eq. (32))
Simulate xi+1.

Evaluate O
α← α/2

Recall that nt is the number of time steps, nc is the
number of control variables, and let ns be the number of
state variables. Starting with the complexity of Newton’s
method, we note that it is dominated by the computation
of the sensitivity matrix S in (9) and the solution to the
system in (12). The Hessian in (12) signifies the contribution
of each control variable in each time step, and is generally
dense. Its dimensions are ntnc × ntnc, and therefore, due
to its dense structure, the time for solving (12) scales like
n3tn

3
c . As noted in [27], instead of the condensation approach

the problem can be solved by a Riccati based factorization,
which is equivalent to DDP, and which we discuss next.

The computational overhead of DDP is dominated by the
terms k and K, which must be evaluated in each step of
the backward pass. This involves the solution of a system
including Quu, which has dimensions nc × nc. To compute
Quu, and the other derivatives, we require fx, and fu, which
in turn, requires us to solve a square linear system with ns
equations (eq. (30)). Consequently, each DDP iteration scales
cubically with ns and nc and linearly with nt.

To conclude, the major difference is that Newton’s method
scales cubically with the number of time steps, while DDP
scales linearly. This is also supported by the experiments
shown in Fig. 3. However, there is a caveat, as for short
trajectories, Newton seems to outperform DDP. The reason
can be traced back to the computation of fx (30). It also
scales linearly with the number of columns of ∂g

∂x , which
equals to the size of the state times the number of previous
time steps.

B. Regularization and line-search

Since the problem is not convex, both Newton and DDP
require a modification to ensure that each step produces a
descent direction. A Newton step is guaranteed to result in
a descent direction if the Hessian is positive definite. If an
ascent direction is generated instead, then the Hessian must
be transformed into a positive definite matrix. One strategy
to achieve that is to add a regularization term in the form of a
scaled identity λI to the Hessian. An equivalent result exists
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Fig. 3: Timing plot showing the average time per iteration for
different experiments and different trajectory lengths (nt).
Newton’s method seems to outperform DDP for shorter
trajectories. The trajectory length at which both methods
achieve similar performance depends on the number of state
(ns) and control (nc) variables. DDP performs better with
increasing control size, and worse with increasing state size.
Note that in the dual-armed towel example (bottom right),
Newton’s methods can fail due to lack of memory.

for DDP: in this case, Quu is required to be positive definite
for each time step [18]. Likewise, when not the case, adding
λI to Quu should resolve the problem. In our experiments,
we noted that DDP seems to be very sensitive to the choice of
λ. We show the convergence plot for a typical example with
different λ’s in Fig. 5. In this case, best results were achieved
for λ ∈ [1e−3, 1e−2]. Adaptive techniques that can find λ
exist (e.g. [19]), but we instead found them empirically.

We also note that in addition to regularization, both
Newton’s method and DDP required a line-search procedure.
We follow the simple backtracking strategy. For Newton’s
method, the next control candidate is given by ū = u+αd,
where α is the line-search parameter that starts at 1, and
is iteratively halved. The evaluation of O(x, ū) in each line
search iteration must be preceded by a forward simulation
using ū in order to update x according to the dynamics.
Standard DDP uses the following line-search iteration in the
forward-pass

ūi = ui + αki +Ki(x̄i − xi), (32)

similarly initializing α with 1.

VI. RESULTS

We verify the efficacy of our implementation by experi-
menting with several tasks for the YuMi to carry out. On one
hand we use these different scenarios to compare the perfor-
mance of the batch Newton method with extended DDP. On
the other hand we investigate the dynamic manipulation of
deformable objects using robots. The implementation was
done in C++ using Eigen [28], and all the experiments
run on a computer with an Intel Core i7-7709K 4.2Ghz.
We present results in simulation, and additionally execute

some of the tasks on the physical platform to study to what
extent they carry over to the real world. These experiments
are presented in length in the accompanying video. Details
regarding parameters used for the individual demonstrations
appear in table I. The mass density was determined by
measuring total mass and volume of the foam piece. The
corresponding shear and bulk modulus were found empiri-
cally by matching the pose of the simulated mesh with its
physical counterpart. The initial configuration of the robot
was chosen such that all joints are reasonably far away from
its physical limits. It is considered by the algorithms as a
fixed initial condition. Therefore, choosing a different initial
configurations would result in different optimal trajectories.
The objective for all experiments include quadratic penalties
that match a specific mesh node to a specified target in world
coordinates at a given moment in time. To induce smooth
control trajectories, we additionally add a regularizer that
penalizes high joint accelerations. These are approximated
using finite difference.
Whipping. One set of tasks that we experimented with was
whipping. The goal is to find a trajectory such that the
tip of the “whip” hits a predefined target with maximum
speed. This setup generates fairly dynamic motions. We
began by running preliminary experiments with a pendulum,
modeled as a point mass connected to the robot’s gripper by
a unilateral cable. We demonstrate this small-scale wrecking
ball example with one, two, and four targets (in form of
wooden blocks). The setup of these experiments is shown
in Fig. 4. Next, we increased the problem’s complexity by
manipulating a soft rod modeled with FEM instead. Again,
the objective was to hit one or more targets with the tip of
foam stick with maximum velocity. We present cases where
the robot manages to whip one and two targets, respectively
(see Fig. 1).
Laying a cloth on the dining table or a sheet on the bed is
a task that typically requires dynamic manipulation. We use
our framework to explore the robot’s capabilities to perform
this task. Fig. 6 shows strategies to lay the lower part of a
strip of foam onto a table using one arm, as illustrated in.
This task was formulated as an objective that measures the
distance of the nodes of one end of the mesh with predefined
positions on the table. Fig. 7 shows a similar example, but
where the robot uses both arms to lay a larger piece of foam.
We present a side-by-side comparison of the physical and
simulated experiment in . In a third case it uses the same
model to flip the soft body around (see accompanying video).

VII. DISCUSSION AND FUTURE WORK

We presented two trajectory optimization techniques based
on Newton’s method and DDP for robotic manipulation
of deformable objects. Both methods rely on a forward
simulation model of soft objects, which we developed based
on the Finite Element Method and implicit integration. In
this setting, we showed how to leverage sensitivity analysis
to analytically compute all the derivatives that are required
for the two trajectory optimization methods.



Fig. 4: Robot using a pendulum to hit four targets in a single dynamic motion.
TABLE I: Parameters that were used for the different experiments.

System and Objective # Nodes # Arms # Steps Overall time Mass (Density) Shear modulus Bulk modulus
Pendulum: Hit 1 / 2 / 4 target(s) 1 1 60 / 60 / 100 0.667 / 1.5 / 1.667 s 0.045kg − −
Soft rod: Whip 1 / 2 target(s) 68 1 40 1.0 / 0.889 s 34.722 kg

m3 21149 kg
ms2

98696 N
m2

Thin cloth: Toss onto table 120 1 40 0.8s 50.71 kg
m3 35714 kg

ms2
166667 N

m2

Cloth: Toss / Flip onto table 160 2 40 1.0s 50.588 kg
m3 35714 kg

ms2
166667 N

m2
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Fig. 5: Convergence plot showing the value of the total
control objective per iteration for different regularizer values
for DDP.

Beginning of trajectory End of trajectory

Fig. 6: Robot tossing a thin piece of foam onto the table
using one arm. Several poses of the robot and the mesh are
overlaid.

DDP vs Newton. With appropriate regularizers and line
search mechanisms, both DDP and Newton’s method con-
verge quite reliably. Our analysis and experiments show
that DDP scales better than Newton’s method in terms of
the length of the planning horizon. We have also observed
that the overall computational cost heavily depends on the
dimensionality of the object’s state space and likely its
sparsity structure. Overall, the relative performance seem
to be highly dependent on the nature of the problem (Fig.
8). Nevertheless, we see opportunities when it comes to
improving the performance of both methods. For example,
the matrices used for sensitivity analysis exhibit a sparsity
structure that could be exploited by specialized solvers that
might not be equivalent to either approach. In the future, we
plan to develop such specialized solvers, as well as adaptive
regularization techniques that have the potential to drastically
improve convergence rates.

1 2

3 4

Fig. 7: Robot laying a piece of foam on a table. Four time
instances are shown, comparing the physical and simulated
motions on the left and right side, respectively. Note that
although the motion is anticipated correctly, there is a
mismatch between the simulation and the physical result in
frame 3.
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Fig. 8: Convergence plot comparing Newton’s method and
DDP. The relative performance of the two algorithms highly
depends on the nature of the problem.

Direct collocation. An alternative TO approach is the direct
collocation method, which solves (7) using constrained op-
timization. Direct collocation, using e.g. the interior point
method, allows the constraints to be violated during op-
timization, where in some cases, this could speed up the
optimization process. This largely depends on the heuristics
employed by the solver. The advantage of single shoot-
ing is that every iteration is feasible, and is better than
the previous iteration. Whether or not this is a desirable
feature depends on the application. We implemented direct
collocation using Ipopt [29], an open sources interior point
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Fig. 9: Convergence and constraint violation plot comparing
Newton’s method, DDP and Ipopt. While the dynamics
constraint is satisfied at each iteration for Newton and DDP,
Ipopt only generates a feasible solution in the end.

optimizer. We tested several Ipopt settings, and found that
using the Gauss-Newton approximation works better. Fig. 9
shows a comparisons of the three methods for a smaller scale
version of the whipping experiment, in terms of convergence
and constraint satisfaction. While all methods converge to
the same solution, Ipopt requires more iterations. We also
note that, as expected, the objective is not monotonically
decreasing, and the dynamics are only satisfied at the very
end of the optimization procedure. We note that our code
has not been optimized. However, we made our best effort
to run a fair comparison, which indicated that the time per
iteration of Ipopt is similar.
Sim-to-real. To investigate the extent to which the results of
our trajectory optimization methods carry over to the real
world, we executed several experiments involving robotic
manipulation of physical objects. We calibrated the real and
simulated cameras so we can easily visualize the differences
(Fig. 7). For a simple dynamical systems like a pendulum
(Fig. 4), the simulated motions predict the behavior of the
physical system well. For the foam we experimented with,
the calibration of the underlying simulation models becomes
more challenging. Fig. 7 shows mismatches between the
simulation and the real world: the simulation model predicts
that the lower end of the soft sheet will lift up higher than
it does in reality. While parameter identification suffices in
the quasi-static case, dynamical motions remains a chal-
lenge due to internal energy dissipation. Recent methods
track and analyze the motion of physical prototypes in
order to accurately reconstruct their viscoelastic material
parameters [30] promise to alleviate such problems. Another
interesting future avenue to cope with these problems is
to include feedback control into the current feed-forward
process. Combining a measurement technique for the mesh
with either a model-based or a more traditional feedback
loop applied in real-time is a challenge that deserves it own
investigation.
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