
Gradient-Based Trajectory Optimization With Learned Dynamics

Bhavya Sukhija, Nathanael Köhler, Miguel Zamora, Simon Zimmermann,
Sebastian Curi, Andreas Krause, Stelian Coros

Abstract— Trajectory optimization methods have achieved an
exceptional level of performance on real-world robots in recent
years. These methods heavily rely on accurate analytical models
of the dynamics, yet some aspects of the physical world can only
be captured to a limited extent. An alternative approach is to
leverage machine learning techniques to learn a differentiable
dynamics model of the system from data. In this work, we
use trajectory optimization and model learning for performing
highly dynamic and complex tasks with robotic systems in
absence of accurate analytical models of the dynamics. We show
that a neural network can model highly nonlinear behaviors
accurately for large time horizons, from data collected in
only 25 minutes of interactions on two distinct robots: (i) the
Boston Dynamics Spot and an (ii) RC car. Furthermore, we
use the gradients of the neural network to perform gradient-
based trajectory optimization. In our hardware experiments,
we demonstrate that our learned model can represent complex
dynamics for both the Spot and Radio-controlled (RC) car,
and gives good performance in combination with trajectory
optimization methods.

I. INTRODUCTION
Robots are expected to perform complex and highly dy-

namic maneuvers in unknown environments [1]–[5]. Tradi-
tional trajectory-based optimal control approaches are often
used for this purpose [6]. Trajectory optimization methods
are well established and give physically accurate trajectories
which exhibit complex and dynamic behaviors [7]–[9].

However, trajectory optimization methods require an ac-
curate dynamics model of the system. Traditional modeling
approaches either rely on simplified models and/or invest
immense engineering effort in selecting relevant features
for system identification [10]–[13]. For highly dynamic and
complex systems, it is difficult—if not impossible—to de-
rive models following these approaches. For example, the
Boston Dynamics Spot robot1 has an on-board inaccessible
low-level controller, and only allows control of high-level
commands. This makes the Spot a complete black box and
possibly non-Markovian system. Thus, deriving a dynamics
model for the Spot’s high-level behavior is very challenging.
However, understanding its behavior is extremely essential
for planning, especially when operating the robot in unknown
environments (Fig. 1).

The goal of this work is to leverage gradient-based trajec-
tory optimization methods for dynamic robotic systems, such
as the Spot and the RC car, whose dynamics are unknown

The authors are with the Department of Computer Science, ETH, Zürich,
Switzerland. nate@striking.ch; (bhavya.sukhija;
miguel.zamora; simon.zimmermann;
sebastian.curi, stelian.coros)@inf.ethz.ch;
krausea@ethz.ch

1https://www.bostondynamics.com/products/spot

Fig. 1: We evaluate two distinct robots Boston Dynamics
Spot and a dynamic RC car. For the Spot, we consider a
normal and slippery terrain. We simulate the slippery terrain
by using socks at its feet. This causes the spot to slip and
lose balance, as depicted on the top three images.

and challenging to model. Towards that goal, we use data-
driven methods to obtain the dynamics model. Specifically,
we record short spans of data (around 25 minutes) directly
on the system and learn a model from the recorded data.
We employ parametric models such as multilayer feedfor-
ward neural networks [14] and Recurrent Neural Networks
(RNN) [15] to capture the dynamics. This allows us to model
the system while requiring no first principles or engineered
solutions. We then leverage the learned model to perform
complex and dynamic maneuvers through trajectory opti-
mization. This approach is evaluated on two distinct mobile
robots: the Spot, and a drifting RC car (Fig. 1). For the Spot,
we consider two different terrains; normal/nominal terrain,
and slippery terrain that we simulate by putting socks at the
robot’s feet (see the top half of Fig. 1). In our results, we
demonstrate that we can reliably learn the robot’s dynamics
with data collected in around 25 minutes, and leverage the
model to execute a complex trajectory using trajectory opti-
mization. Furthermore, when operating on more slippery ter-
rain, we show that by recording just 15 minutes of additional
data, we can adapt our model to the new surface successfully.
Similarly, on the RC car, we show that after collecting a small
corpus of data consisting of 15 minutes of interactions, we
can perform highly complex and dynamic maneuvers like
drifting, which are generally difficult to model [16], [17].

Our contributions are as follows, we demonstrate that
(i) our learned model works successfully for trajectory
optimization, (ii) can be adapted for different operating
conditions, (iii) is capable of achieving complex drifting

https://www.bostondynamics.com/products/spot

maneuvers, and (iv) gives significant performance gain in
lap-time for the RC car compared to a human expert. Lastly,
to the best of our knowledge, we are the first to demonstrate
on the example of the Spot, a dynamic, black box, and
closed-loop system, that a RNN dynamics model can be
learnt from scratch in 25 minutes and enable agile control
using gradient-based trajectory optimization. Refer to the
accompanying video2 for more details.

II. RELATED WORK

There has been a considerable amount of research in
learning-based control for robotic systems [18]–[27]. Most
works typically use Gaussian processes (GPs) [28] to learn
the system dynamics [29]. GPs are powerful non-parametric
machine learning models that can exhibit strong theoretical
guarantees, but they scale poorly for large datasets [28].
Alternatively, neural networks have been suggested as an
expressive class of parametric models [30], [31]. Specifi-
cally, Multilayer Perceptron (MLP), and RNN have shown
promising results in modeling unknown nonlinear dynamical
systems [32]–[34]. Neural networks can capture complex
behaviors, and therefore are often used in deep model-based
reinforcement learning (MBRL) [24]–[27]. Here, generally,
the methods either also learn a control policy, i.e., end-to-end
control (for instance, an MLP that outputs control signals for
a given state), or use population-based search heuristics such
as the cross-entropy method [35] for trajectory optimization.
Nonetheless, there are notable exceptions such as [36], [37]
that deploy traditional trajectory optimization solvers. In
[36], local time-varying linear dynamics are learned and
then integrated into an iLQG [38] based trajectory optimizer,
which is finally used to learn a parametric policy. In contrast,
we learn a global dynamics model and use a gradient-
based direct shooting trajectory optimization approach for
simplicity. Our approach is straightforward to implement and
works successfully on two distinct and challenging mobile
robots. A similar approach is used in [37], where trajectory
optimization is performed using the out-of-the-box Adam
optimizer [39]. Specifically, their work focuses on regu-
larizing trajectory optimization to prevent the exploitation
of model inaccuracies using denoising auto-encoders. The
proposed scheme is then tested in simulation. However,
the objective in our work is different since we focus on
the successful deployment on real hardware. Particularly,
we want to demonstrate how our learned models can be
successfully leveraged to optimize trajectories and deploy
them on real, and dynamic robots. Most closely related to our
approach are [23], [40]. The approach in [40] uses a neural
network to learn the dynamics of a RC car and perform
dynamic maneuvers through a model predictive controller
with a sampling-based optimization scheme. However, in
our work, we can achieve similar dynamic behavior using
our gradient-based trajectory optimization approach, which is
fast, especially in high dimensions, and known to have strong

2http://crl.ethz.ch/videos/spot icra compressed f
inal.mp4

local convergence guarantees [41]. In [23] a model for the
Spot is learned and leveraged for gradient-based trajectory
optimization. However, [23] considers a parametric model
with hand-picked features. For a black-box system like the
Boston Dynamics Spot, hand-picking features is a time-
consuming, and often unintuitive process. We overcome
this limitation by employing RNNs instead of hand-picking
features. RNNs are suitable for sequence modeling by de-
sign [42], and have been successfully used to learn dynamic
models for predicting longer time dependencies [32], [34],
[43]–[45]. However, most of these works focus on simulation
setups, and do not consider complex and dynamical real-
world systems like the Spot. Especially on the case of the
Spot, due to its low-level controller and gait cycle, the system
might not be non Markovian [46]. However, the RNN allows
us to capture its dynamics by a learning the hidden state.

III. METHOD

The goal of this paper is to find an optimal finite-horizon
control sequence for our dynamical system. We formulate
this as a time-discretized trajectory optimization problem: Let
X := (x1, ...,xn) and U := (u0, ...,un−1) be the stacked
state and control input vectors for a total of n trajectory
steps. Given a known initial state x0, we write the trajectory
optimization problem as

min
U

ℓ(X,U) (1)

s.t. xi+1 = xi + f(xi,ui), ∀i = 0, ..., n− 1

with total cost ℓ and a deterministic state transition function
f . The latter models the dynamics of the physical system we
want to control.

A. Trajectory Optimization
We solve the trajectory optimization problem as stated

in Equation (1) through a gradient based method. Hereby,
we are interested in finding the optimal control parameters
that minimize the total cost ℓ(X,U) := ℓ(X(U),U). By
following the chain rule, we can compute the gradient as

dℓ

dU
=

∂ℓ

∂X

dX

dU
+

∂ℓ

∂U
. (2)

We then perform gradient-based optimization either using
standard optimizers such as Adam [39] or a simple line
search for the step size. To avoid convergence to bad local
optimas, we run the optimization with random initialisations
and pick the best sequence.

The Jacobian dX
dU depends on the state transition function.

Specifically, it is a lower diagonal matrix that can also be
computed via the chain rule:[

dX

dU

]
i,j

=
∂xi
∂uj

, (3)

∂xi
∂uj

=

∂xi

∂xi−1

∂xi−1

∂uj
, ∀j < i− 1,

∂f
∂u

∣∣∣
(xi−1,ui−1)

j = i− 1,

0 else,

http://crl.ethz.ch/videos/spot_icra_compressed_final.mp4
http://crl.ethz.ch/videos/spot_icra_compressed_final.mp4

∂xi
∂xj

=

∂xi

∂xi−1

∂xi−1

∂xj
, ∀j < i− 1,

1 + ∂f
∂x

∣∣∣
(xi−1,ui−1)

j = i− 1,

1 j = i,

0 else.

1) Control Costs
We construct the cost function, ℓ(X,U)(Equation (1)),

as a sum over input penalties and state-wise immediate costs.
In particular, we encourage smooth trajectories by penalizing
both high magnitudes and high changes in the control inputs
throughout the entire time horizon. The corresponding cost
can be written as

ℓreg(U) = wu

n−1∑
i=0

∥ui∥2 + wjerk

n−1∑
i=1

∥ui − ui−1∥2. (4)

Here, wjerk and wu, are weights used to penalize jerks, and
large control magnitudes respectively. We define the state-
wise immediate costs as

ℓtarget(X) =
∑
i∈I

∥xi − x̄i∥2, (5)

Here, x̄i is the predefined target state at time step i ∈ I . We
select the target state according to a reference trajectory we
want the system to follow. The overall cost is a weighted
sum of the two objectives,

ℓ(X,U) = wtargetℓtarget(X̂) + wregℓreg(U). (6)

B. Learning the Dynamics
Though trajectory optimization in itself is well studied, the

main challenge for us stems from the unknown dynamics f .
To this end, we represent f as a parametric model fθ, and
learn the parameters θ. Specifically, we record a dataset of
transitions {xk, uk, xk+1} directly on the robots and use the
collected data to learn the dynamics in a supervised manner
by maximizing the data likelihood. The learned model fθ
is then used for trajectory optimization. Then, we fix the
learned model fθ, and leverage it to perform trajectory
optimization to find the optimal control input U∗:

min
U

ℓ(X̂,U) (7)

s.t. x̂i+1 = x̂i + fθ(x̂i,ui), ∀i = 0, ..., n− 1

where X̂ := (x̂1, ..., x̂n) is the concatenation of predicted
n-step trajectory using the learned model.

1) Learning for the Spot
In this work, we consider a three-dimensional input space

for the Spot, which corresponds to the forward, sideward,
and angular velocities. This allows us to move the robot’s
base in a 2D plane only. Therefore, the states of the Spot we
consider are the position, orientation, and velocities in the
local frame, i.e.,

x = [plx, p
l
y, ψ, v

l
x, v

l
y, ψ̇]

T .

Furthermore, when considering mobile robots operating on
homogeneous terrains, we can assume that the dynamics
are invariant with respect to the robot’s global position.
Therefore, we do not consider the global positions as input
for f when learning the dynamics. This reduces the input
space for f and potentially helps in faster generalization.

We control the Spot at a 20Hz frequency and fix its gait to
trot. For the state measurements, we use the on-board Spot

state estimator. From initial experiments, we notice that the
leg joint configuration and gait cycle of the Spot influences
its behavior. This influence is not captured by description of
our state space. To this end, we learn a hidden state by using
an RNN, specifically a gated RNN (GRU) [47], with the hope
that the hidden state can represent the true dynamics of the
robot better. Moreover, we deliberately choose a simple state-
space representation of the Spot and leverage the learned
hidden state to compensate for other unaccounted influences.

2) Learning for the RC car
We use an RC car with a high torque motor, which

allows us to perform dynamic maneuvers that involve loss
of traction and drifting. The state of the car consists of
three degrees of freedom, two for its position, and one for
its orientation. This corresponds to the same state space as
the Spot. The inputs for the car are the forward velocity
and steering angle. We use the Optitrack for robotics motion
capture system3. We use a feed-forward neural network to
capture the dynamics.

3) Regularization and Continuous Activation Functions
Since we use our learned model for gradient-based tra-

jectory optimization, we prefer smooth derivatives. Smooth
derivatives not only ease the trajectory optimization itself
but also result in smoother action sequences. To this end,
we choose continuous activation functions, such as Gaussian
Error Linear Units (GELU) [48] for our neural networks and
apply a L2 regularization to avoid overfitting.

Our approach is summarized in Algorithm 1.

Algorithm 1 Learned Model for Trajectory Optimization

Require: Data: D, Initial Input Sequence U0

Train model from dataset D: θ∗ ← minθ L(D|fθ).
k ← 0
while Not Converged and k < Nmax do

Uk+1 ← Uk − ηk dℓ̂θ
dU

k ← k + 1
return Uk

IV. RESULTS

This section presents experimental results on hardware
achieved through trajectory optimization using learned mod-
els. The aim of our experiments is to demonstrate that our
learned models can (i) capture nonlinear dynamics of the
robots well, and (ii) be successfully used for trajectory
optimization. Therefore, we learn models for two mobile
robots, the Spot and the RC car. To demonstrate the strength
of our models, we perform open-loop trajectory optimization.
Lastly, we demonstrate how our learned model can be suc-
cessfully integrated into closed-loop trajectory optimization
on the example of the RC car on a race track. A summary
table of our open-loop trajectory optimization results is
presented in Table I. We also provide a video (see Section I)
of our dynamic motions on hardware.

3https://optitrack.com/applications/robotics/

https://optitrack.com/applications/robotics/

Fig. 2: Spot’s behavior on normal terrain (red) vs predictions using the first principle model (green), and the learned model
(blue) over 3 independent runs for forward, backward, and turning motion commands (black-dashed line).

A. Boston Dynamics Spot Experiment
Due to the black-box nature of the Spot, it is difficult to

derive a model from the first principles. A simple model one
may consider is vlx,k+1 = uForward

k , vly,k+1 = uSideward
k , and

ψ̇k+1 = uTurning
k , i.e., desired/commanded velocities are equal

to the actual velocities of the robot. From this, the positions
can be determined using Euler forward integration. This
model is compared to our learned model on test trajectories
with forward and turning motions (Fig. 2). From Fig. 2, we
can deduce that our learned model is considerably better than
the simple first principles model. For instance, it is noticeable
from the figure that given the low-level controller, the robot
cannot walk backward as fast as commanded. Particularly,
it can walk forward faster than backward. While the simple
model cannot capture this behavior, our learned model can.
This highlights the importance of learning a dynamics model
for the Spot and also showcases the limitations of our first
principle model. On the left in Fig. 4, we compare the test-
error accumulation over open-loop predictions for varying
horizons between (i) simple model, (ii) neural network
model, and (iii) RNN (GRU) model. The errors of the
simple model increase drastically with the horizon length.
Nonetheless, the neural network model and the GRU model
show better performance, with the GRU giving better results.

To further demonstrate the benefits of learning for the
robot, we simulate a slippery terrain by putting socks at
the feet of the Spot. The socks cause the Spot to slide and
therefore slip (Fig. 1). As depicted in Fig. 3, this leads to a
slight difference in Spot’s tracking performance. We capture
this change in dynamics, by recording another dataset for
the slippery case for 15 minutes and adapting the learned
model from before by retraining on the new dataset. On the
right-hand side of Fig. 4, we compare the adapted model
with the unadapted one for test data recorded on the slippery
surface. From the figure, we can conclude that the adapted
model performs slightly better than the unadapted one as the
prediction horizon increases.

1) Trajectory Optimization
We leverage our learned model to perform trajectory

optimization. In order to quantify the prediction strength of
our model, we execute an open-loop rollout and measure
the deviation between the expected and observed trajectory.

Fig. 3: Tracking performance of the Spot on normal and
slippery terrain (Spot with socks).

Fig. 4: Left: Normalized mean prediction error accumulation,
in log-scale, over multiple horizon lengths for simple model,
neural network model, and RNN model for the normal
terrain. Right: Normalized mean prediction error accumu-
lation, in log-scale, over multiple horizon lengths for the
simple, unadapted, and adapted model for slippery terrain.

The Spot has a very good low-level controller, however
because we consider an open-loop input sequence, its motion
deviates considerably from the desired trajectory. For our
experiments, we provide a sinusoidal motion as a reference
to execute a dynamic zig-zag drill with the Spot (Fig. 5). The
horizon for this trajectory is 150. Therefore, for the open-
loop execution, an accurate model is required to avoid the
accumulation of errors over the horizon length. We execute
the same trajectory four times. Furthermore, we perform
trajectory optimization using the first principles model and
compare its performance to our learned one. In Fig. 6, we
compare the performance of the two trajectories. Specifically,
we depict the error between the predicted and real trajectory.

Our results show that the learned model performs consider-
ably better than the first principle one, i.e., has considerably
(around a factor of five) lower errors.

Fig. 5: Spot open-loop zig-zag trajectory obtained through
trajectory optimization with the learned model.

Fig. 6: Comparisons for Spot experiments. Left: Prediction
error using the first principles model (green) and the learned
model (blue). Right: Prediction error of the unadapted model
(blue) and the model adapted for the slippery floor (grey).
For both cases, we average over four independent trajectories
and also depict the standard deviation.

We perform the same experiment for the slippery setting.
Here, we compare the trajectory of our adapted model
to the unadapted one, i.e., the model solely trained on
nominal/normal terrain. Fig. 6 compares the performance
of the two trajectories. Our results show that overall we
achieve smaller errors when using our adapted model.
Furthermore, we notice that the standard deviation in our
executed trajectories on the slippery terrain is higher. We
believe this is due to the slipping of the robot.

B. RC Car
For the RC car, we execute multiple open-loop rollouts.

Furthermore, we evaluate the performance of our model in
closed-loop using model predictive control [49].

1) Trajectory Optimization
We perform trajectory optimization for three different

scenarios (i) parallel parking (Fig. 7), (ii) dynamic reverse,
and (iii) drifting turn (Fig. 9). All three scenarios include
dynamic drifting maneuvers. For each scenario, we repeat
the same experiment 20 times for slightly different starting
positions. The results are summarized in table I.

TABLE I: The error between the planned and achieved
position for open-loop trajectory optimization.

Spot
zig-zag
normal terrain

Spot
zig-zag
slippery terrain

Parallel
Parking

Dynamic
Reverse

Drifting
Turn

Trajectory
Length 150 150 40 40 60

Mean L2
Position Error [m] 0.31 0.24 0.38 0.21 0.37

STDev L2
Position Error [m] 0.03 0.09 0.10 0.074 0.21

Mean Absolute
Heading Error [rad] 0.07 0.01 0.13 0.50 0.10

STDev Absolute
Heading Error [rad] 0.01 0.03 0.08 0.10 0.10

2) Closed-Loop Trajectory Optimization
We perform experiments in an online trajectory opti-

mization setting by driving on a predesigned race track
(Fig. 10). Closed-loop trajectory optimization is the more
conventional approach to controlling robots. Thus, in this
experiment, we demonstrate how it can be successfully
achieved with our learned model. To this end, we apply
trajectory optimization in a receding horizon fashion. The
overall objective (introduced as costs ℓ(X,U)) is to advance
along the race track with a predefined high velocity for the
entire time horizon of the trajectory. Additionally, we add a
cost for track excursions. Hereby, we choose a horizon of
n = 20 and control the robot at a frequency of 20 Hz. We
leverage parallelization to estimate the derivatives dX̂

dU with
finite differences for this particular experiment. Additional
performance metrics of the RC car on the racetrack are
given in Fig. 10. As shown in the video, the car is able to
race through the track with high velocity while performing
dynamic maneuvers.

C. Discussion
In our open-loop trajectory optimization experiments, we

notice that model inaccuracies accumulate over the trajectory
horizon (Table I). Even though these inaccuracies are small,
they can still have an impact on the robot’s performance.
Nonetheless, we can compensate for these inaccuracies using
feedback control, as we demonstrate this on the example
of the RC car Section IV-B.2. Furthermore, during our
model selection process (Section III-B.3), we hypothesized
that paying close attention to regularization and selection
of activation functions would help in obtaining smoother
action sequences. Clearly, smoother action sequences are
preferred when deploying directly on real-world hardware.
We validate this hypothesis on the RC car example. As
depicted in Fig. 11, the control sequence resulting from the
network with GELU activations is considerably smoother
than the one obtained using Rectified Linear Units (ReLU)
activations. We trace this back to the gradient used for
trajectory optimization, which is much noisier for ReLU
as well. Lastly, for the Spot experiments, we simulate a
drastic shift in the robot’s operating condition in form of the
slippery terrain. However, given the robot’s state-of-the-art
low-level controller, we expect it to perform reasonably well
in settings where the shift in the operating conditions is not
drastic. To this end, we test the Spot on dry grass and notice
that at least for forward, backward, and turning motions, the

Fig. 7: Executed trajectory for the parallel parking scenario.

Fig. 8: Comparison of Spot’s behavior in the normal/nominal floor (in the lab), and dry grass terrain.

Fig. 9: The trajectory for the drifting turn scenario.

Fig. 10: The physical RC car (below) with feedback con-
troller.

tracking performance on the lab floor and dry grass is equally
good, see Fig. 8. Thus, we believe in such settings, we can
still leverage the model learned in the lab environment.

V. CONCLUSION AND FUTURE WORK

The goal of this work is to leverage traditional trajectory
optimization approaches for systems with unknown

0 5 10 15 20 25 30 35

0

5

10

G
ra

di
en

t

-1

-0.5

0

0.5

-5
1

C
on

tro
l s

eq
ue

nc
e

ReLU throttle
ReLU steer
GELU throttle
GELU steer

Trajectory step
40

Fig. 11: Comparison of gradients dℓ
du and control sequences

u for neural network architectures with ReLU and GELU
activations. ReLU activations results in noisier (i.e. more
fluctuating) gradients and input sequences than the network
with GELU activations.

dynamics. We demonstrate that this can be achieved through
machine learning on two distinct and challenging robots.
Specifically, our results show that we can capture the
dynamics of the robots, adapt our learned model to new
operating conditions, and perform dynamic maneuvers using
trajectory optimization.

This work opens various avenues for further research. For
instance, the exploitation of model inaccuracies by policy
optimizers has been investigated in the literature [25], [50],
[51]. Suggested strategies are the use of probabilistic en-
sembles [25], [27], [52]–[54], shorter task horizons [51] and
denoising autoencoders [37]. Since in our work we observed
an accumulation of model inaccuracies (Table I), in the future
these approaches can be integrated to study their influence
on performance. Additionally, in this work, the data used to
learn the model was recorded offline. However, methods such
as [27] automate the data acquisition by exploring the system
dynamics in an episodic online learning setting. Future work
may consider leveraging these advances. Furthermore, in this
work, we were interested in finding smooth rather than accu-
rate gradients. We think studying the influence of model se-
lection on learning accurate dynamics and gradients, as well
as leveraging structured learning techniques for capturing
robot dynamics [55], is an exciting direction for future work.

REFERENCES

[1] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile
robots: Concepts, methods, theoretical framework, and applications,”
International Journal of Advanced Robotic Systems, vol. 16, no. 2,
2019.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, Stanley: The Robot That Won
the DARPA Grand Challenge. Springer Berlin Heidelberg, 2007.

[3] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based
mav navigation in unknown and unstructured environments,” in 2010
IEEE International Conference on Robotics and Automation, 2010,
pp. 21–28.

[4] C. Gehring, S. Coros, M. Hutter, C. Dario Bellicoso, H. Heijnen,
R. Diethelm, M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger,
and R. Siegwart, “Practice makes perfect: An optimization-based
approach to controlling agile motions for a quadruped robot,” IEEE
Robotics Automation Magazine, vol. 23, no. 1, pp. 34–43, 2016.

[5] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, no. 47, 2020.

[6] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic
Machines and Robots, 1st ed. Springer Publishing Company, In-
corporated, 2008.

[7] M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski, and S. Coros,
“Skaterbots: Optimization-based design and motion synthesis for
robotic creatures with legs and wheels,” in Proceedings of ACM
SIGGRAPH, A. T. on Graphics (TOG), Ed., vol. 37. ACM, August
2018.

[8] J. M. Bern, P. Banzet, R. Poranne, and S. Coros, “Trajectory opti-
mization for cable-driven soft robot locomotion,” Robotics: Science
and Systems XV, 2019.

[9] S. Zimmermann, R. Poranne, J. M. Bern, and S. Coros, “PuppetMas-
ter,” ACM Transactions on Graphics, vol. 38, no. 4, pp. 1–11, 2019.

[10] K. Åström and P. Eykhoff, “System identification - a survey,” Auto-
matica, vol. 7, no. 2, pp. 123–162, 1971.

[11] L. Ljung, System Identification. John Wiley & Sons, Ltd, 1999.
[12] K. Kozlowski, Modelling and Identification in Robotics. John Wiley

& Sons, Ltd, 1998.
[13] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a

survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–340, 2011.
[14] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359–366, 1989.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[16] J. Z. Kolter, C. Plagemann, D. T. Jackson, A. Y. Ng, and S. Thrun, “A
probabilistic approach to mixed open-loop and closed-loop control,
with application to extreme autonomous driving,” in 2010 IEEE
International Conference on Robotics and Automation, 2010, pp. 839–
845.

[17] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, p. 628–647, Jul 2014.

[18] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based
reinforcement learning: A survey,” 2021.

[19] M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based
and data-efficient approach to policy search,” in Proceedings of the
28th International Conference on machine learning (ICML-11), ser.
ICML’11. Omnipress, 2011.

[20] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE transactions
on pattern analysis and machine intelligence, pp. 408–423, 2015.

[21] S. Kamthe and M. P. Deisenroth, “Data-efficient reinforcement learn-
ing with probabilistic model predictive control,” in Proceedings of
the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2018.

[22] J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-
based model predictive control for autonomous racing,” IEEE Robotics
and Automation Letters, vol. 4, pp. 3363–3370, 2019.

[23] S. Zimmermann, R. Poranne, and S. Coros, “Go fetch! - dynamic
grasps using boston dynamics spot with external robotic arm,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
2021, pp. 4488–4494.

[24] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-
free fine-tuning,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), 2018, pp. 7559–7566.

[25] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.

[26] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” in Proceedings of the
Conference on Robot Learning, ser. Proceedings of Machine Learning
Research, L. P. Kaelbling, D. Kragic, and K. Sugiura, Eds., vol. 100.
PMLR, 30 Oct–01 Nov 2020, pp. 1101–1112.

[27] S. Curi, F. Berkenkamp, and A. Krause, “Efficient model-based
reinforcement learning through optimistic policy search and planning,”
in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., 2020, pp.
14 156–14 170.

[28] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning).
The MIT Press, 2005.

[29] A. Chiuso and G. Pillonetto, “System identification: A machine learn-
ing perspective,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 2, no. 1, pp. 281–304, 2019.

[30] J. SjÃ¶berg, H. Hjalmarsson, and L. Ljung, “Neural networks in
system identification,” IFAC Proceedings Volumes, vol. 27, no. 8, pp.
359–382, 1994.

[31] K. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Transactions on
Neural Networks, vol. 1, no. 1, pp. 4–27, 1990.

[32] J.-S. Wang and Y.-P. Chen, “A fully automated recurrent neural
network for unknown dynamic system identification and control,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53,
no. 6, pp. 1363–1372, 2006.

[33] O. Ogunmolu, X. Gu, S. Jiang, and N. Gans, “Nonlinear systems
identification using deep dynamic neural networks,” arXiv preprint
arXiv:1610.01439, 2016.

[34] J. Gonzalez and W. Yu, “Non-linear system modeling using lstm neural
networks,” IFAC Conference on Modelling, Identification and Control
of Nonlinear Systems MICNON, vol. 51, no. 13, pp. 485–489, 2018.

[35] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, “Chapter
3 - the cross-entropy method for optimization,” in Handbook of
Statistics. Elsevier, 2013, pp. 35–59.

[36] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in
Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds., vol. 27. Curran
Associates, Inc., 2014.

[37] R. Boney, N. Di Palo, M. Berglund, A. Ilin, J. Kannala, A. Rasmus,
and H. Valpola, “Regularizing trajectory optimization with denoising
autoencoders,” in Advances in Neural Information Processing Systems,
2019.

[38] E. Todorov and W. Li, “A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
in Proceedings of the 2005, American Control Conference, 2005.,
2005, pp. 300–306 vol. 1.

[39] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 2014.

[40] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou.
(2018) Information-theoretic model predictive control: Theory and
applications to autonomous driving.

[41] H. Bharadhwaj, K. Xie, and F. Shkurti, “Model-predictive control
via cross-entropy and gradient-based optimization,” in Proceedings
of the 2nd Conference on Learning for Dynamics and Control, ser.
Proceedings of Machine Learning Research, vol. 120. PMLR, 2020,
pp. 277–286.

[42] A. Graves, “Generating sequences with recurrent neural networks,”
arXiv preprint arXiv:1308.0850, 2013.

[43] D. Ha and J. Schmidhuber, “Recurrent world models facilitate pol-

icy evolution,” Advances in neural information processing systems,
vol. 31, 2018.

[44] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
International conference on machine learning. PMLR, 2019, pp.
2555–2565.

[45] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” 2020.

[46] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[47] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” in NeurIPS
2014 Workshop on Deep Learning, December 2014, 2014.

[48] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”
arXiv preprint arXiv:1606.08415, 2016.

[49] C. E. GarcÃa, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice - a survey,” Automatica, pp. 335–348, 1989.

[50] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in International conference
on machine learning. PMLR, 2016, pp. 2829–2838.

[51] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[52] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv preprint arXiv:1610.01283, 2016.

[53] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel,
“Model-ensemble trust-region policy optimization,” arXiv preprint
arXiv:1802.10592, 2018.

[54] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and
P. Abbeel, “Model-based reinforcement learning via meta-policy opti-
mization,” in Proceedings of The 2nd Conference on Robot Learning,
ser. Proceedings of Machine Learning Research, vol. 87, 29–31 Oct
2018, pp. 617–629.

[55] A. R. Geist and S. Trimpe, “Structured learning of rigid-body dynam-
ics: A survey and unified view from a robotics perspective,” GAMM-
Mitteilungen, vol. 44, no. 2, 2021.

	Introduction
	Related Work
	Method
	Trajectory Optimization
	Control Costs

	Learning the Dynamics
	Learning for the Spot
	Learning for the RC car
	Regularization and Continuous Activation Functions

	Results
	Boston Dynamics Spot Experiment
	Trajectory Optimization

	RC Car
	Trajectory Optimization
	Closed-Loop Trajectory Optimization

	Discussion

	Conclusion and Future Work
	References

