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Abstract— Multi-Robot Systems (MRS) present many advan-
tages over single robots, e.g. improved stability and payload
capacity. Being able to operate or teleoperate these systems is
therefore of high interest in industries such as construction or
logistics. However, controlling the collective motion of a MRS
can place a significant cognitive burden on the operator. We
present a Mixed Reality (MR) control interface, which allows an
operator to specify payload target poses for a MRS in real-time,
while effectively keeping the system away from unfavorable
configurations. To this end, we solve the inverse kinematics
problem for each arm individually and leverage redundant
degrees of freedom to optimize for a secondary objective.
Using the manipulability index as a secondary objective in
particular, allows us to significantly improve the tracking and
singularity avoidance capabilities of our MRS in comparison
to the unoptimized scenario. This enables more secure and
intuitive teleoperation. We simulate and test our approach
on different setups and over different input trajectories, and
analyse the convergence properties of our method. Finally, we
show that the method also works well when deployed on to a
dual-arm ABB YuMi robot.

I. INTRODUCTION

Many industries have adopted collaborative robots for the
automation of repetitive or strenuous tasks. Their popularity
is driven by their ability to co-exist and execute tasks in the
same environment as humans. Their improved safety and
flexibility compared to traditional, industrial robots make
them more accessible and easy to set up. Advances in
Human-Robot Interaction (HRI) as a means of programming
these robots - via intuitive interactions rather than text-based
programming [1] - encourage further integration of collabo-
rative robots in a variety of tasks in different industries. One
can imagine, that future engineering teams might no longer
require members with strong programming skills in order
to automate processes, and that entirely new jobs to teach,
collaborate with, or supervise robotic systems will be created.
A well-known HRI approach to programming robots is kines-
thetic teaching, where an operator physically moves the robot
arm through a sequence of key positions, which are recorded
and replayed by the robot [2]. One of the main challenges is
to avoid singular configurations during the teaching phase as
well as during the replay phase. Singular or close-to-singular
configurations can cause the robot to freeze momentarily, or
move abruptly. These issues are accentuated in the case of
multi-arm cooperative systems. These systems have many
advantages, such as increased payload capacity and the
ability to re-grasp payloads, which makes them attractive for
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Fig. 1: Controlling a dual-arm YuMi via our MR interface.

many applications, e.g. on building sites, robotic fabrication
or in warehouses. But operating many robots simultaneously
makes it harder for the operators to recognize and correct
for close-to-singular configurations, because they can’t focus
on each individual arm anymore. It is therefore necessary
to introduce interaction methods, which lower the cognitive
load and make such systems intuitive and reliable. In the
single-arm case, several methods to guide the user away from
singularities have been proposed. These are mostly based
on generating a force field when approaching a singularity,
which opposes the operator’s movement (see e.g. [3], [4]).

These approaches, however, do not work well for immer-
sive teleoperation using Mixed Reality (MR) devices, which
generally lack the necessary tactile or force feedback. Such
interfaces typically consist of a head mounted display, also
known as headset, which tracks the user’s head movement
and displays virtual content. Some interfaces additionally
track the user’s hands through computer vision, while others
rely on wireless controllers as input devices. The use of
MR headsets presents many advantages over physical HRI
methods, e.g. the ability to teleoperate the arm from a
remote location, the ability to scale the robot or operate
from its point of view, or the option to display virtual
clones of objects, visualisations of the robot’s internal state
and previews of planned robot motion. On the other hand,
while hand-tracking or wireless controllers give the operator
a lot of freedom, the applicability of aforementioned methods
for singularity avoidance becomes limited, as the user’s



movement cannot physically be restrained. This makes it
necessary for the system to autonomously deal with bad
input, and adjust its state in a way that maximises tracking
fidelity, while effectively avoiding singularities.

We previously introduced a Virtual Reality (VR) environ-
ment, which allows us to provide real-time input for a multi-
arm collaborative manipulation task [5]. We also presented
a computationally inexpensive approach to optimize the
robots’ manipulability index. One of the shortcomings of
our previous method is, that it only searches along a local,
first order approximation of the manipulability, which can
lead to tracking errors and sub-optimal improvements. The
goal of this paper is to provide a principled approach for
real-time optimization, and demonstrate it on real hardware.
After an overview over the improved method in Sec. III,
we provide simulation results in Sec. IV and finally discuss
our implementation on a two-armed ABB YuMi, using an
Oculus Quest headset, as well as our implementation on
a Microsoft Hololens 2 in Sec. V. We furthermore discuss
some implementation considerations and potential extensions
of our method to more complex scenarios, like mobile robots,
dexterous grippers or systems which greatly differ in scale
compared to the human operator.

II. RELATED WORK

With the advances in VR and MR technology and the
availability of relatively affordable headsets, the interest of
the HRI community in these interfaces has increased con-
siderably. In this section, we briefly introduce some recent
work related to our target application outlined in Section I.
Single-arm and bi-manual teleoperation A motion re-
targeting method for single-arm robot control using wireless
controllers has been proposed in [6]. Instead of mapping the
operator’s motion to the robot arm directly, they introduce
a virtual plane as a proxy for interactions with the robot
end-effector. The authors conducted a user study, which
found that participants were reporting a subjectively better
feeling when using the VR controller interface compared to
traditional input methods, such as a tablet or a Geomagic
Touch device. They could also show objective improvements
in terms of time required to direct the robot through some
key points in 3D space. Rakita et al. proposed another VR
interface which allows users to teleoperate a robot arm for
pick-and-place tasks [7]. They use a weighted objective,
which leads to higher tracking fidelity for precise move-
ments, while avoiding singularities or self-collisions during
faster target motions. While this publication focuses on
the usecase of teleoperation, they published their approach
as a complete framework for weighted Inverse Kinematics
in a later paper [8]. An interesting bilateral teleoperation
approach has been presented in [9]. A VR interface for
control of a robot arm via an interaction proxy is combined
with a force feedback control approach via a Geomagic
haptic device. This bilateral approach allows two operators
to split a task into coarse, intuitive movement, using the
VR interface, while being able to receive force feedback for
more delicate movements via the haptic interface. Another

interesting work by the same author is presented in [10].
Using the same haptic device as in the bilateral approach, a
single operator can control a bimanual system for pick and
place tasks. The system transmits the remote contact force to
the operator and simultaneously uses force and orientation
regulation to guarantee a safe grasp during coupled motion.
Multi-Robot HRI in MR Although, to the best of our
knowledge, no MR interfaces which focus on multi-arm
HRI have been presented yet, some work has been done
in multi-agent coordination using VR or Augmented Reality
(AR) interfaces. In [11], the authors present an immersive
interface for multi-robot coordination. An operator is able
to select different viewpoints and assign different motion
paths to aerial or ground robots using a VR headset and
controllers. They report improved situational awareness,
reduced workload and better task performance compared
to conventional interfaces. They are able to teleoperate a
single robot arm to open a valve, but did not include any
cooperative tasks in their scenarios. An AR interface for
multi-robot task allocation is presented in [12]. The operator
is able to assign different tasks to mobile robots, in the
form of pushing objects to target locations. While the authors
show that they are able to track and interact with multiple
robots sequentially, there are no cooperative interactions
presented. In [13], the authors present several collaborative
multi-arm tasks, which are learned through demonstration
by human operators. The operators control a single arm
each and are able to communicate with eachother in order
to solve problems like lifting two glasses of water while
wiping a table. The user interaction happens via a video
stream through a web-browser or phone interface. After the
demonstrations are collected and used for learning, the tasks
can be autonomously executed by the multi-arm system.
Manipulability optimization as a secondary task In order
to give different tasks different priorities, one can project
the gradient of the lower priority task onto the nullspace
of the velocity Jacobian. This effectively only makes use of
redundant DoFs during the optimization of the lower priority
task. An early investigation of this principle can for example
be found in [14]. Several applications for this principle have
since been investigated, among others singularity avoidance
in kinematically redundant arms [15]. With the emergence of
collaborative robots, many methods have been developed to
apply nullspace projections in the dynamic, torque-controlled
domain. For an overview over these methods, see [16].

III. METHOD

For cooperative manipulation tasks, there is no need to
constantly match an exact target pose with each end-effector.
Instead, individual robots can only partially constrain the
payload position, and still guarantee the correct position and
orientation of the payload. This allows the robot arms to use
the redundant DoFs, such as the rotation around a handle, to
optimize for secondary objectives, which can improve their
ability to react to operator input or avoid obstacles. Real-
world examples are the installation of glass panels using
suction cups, or the positioning and fastening of pipes and



tubes to the ceiling on construction sites. The attachment
points in these tasks can be seen as available degrees of
freedom (DoFs), which should be leveraged. We propose to
utilize these DoFs in order to optimize the manipulability
index of the arms. In particular, we demonstrate that the ma-
nipulability index can be considerably improved by freeing
just one rotational degree of freedom. That is, we allow the
end effector to grasp the payload with a specific pose, with
respect to the payload’s frame of reference, but allow the
pose to rotate around one rotational axis.

We suggest to treat the problem as a bi-level optimization
problem, which optimizes manipulability in the null space
of the velocity Jacobian at a valid grasping pose. A sim-
ilar problem has been proposed in [17], but the solution
there requires an algorithm that operates in phases and is
too slow for real time interaction. Our approach is based
on minimizing our objective value via Newton’s method.
We elaborate in the following. Additionally, we derive the
analytical Hessian for the squared manipulability index here,
which to our knowledge has not yet been published in this
form.

A. The optimization problem

We begin by formulating our problem as a bi-level opti-
mization problem for each individual arm

max
q

m2(q) (1a)

s.t. q = arg min
q̂

‖K(q̂)− x‖2 (1b)

qmin < q < qmax, (1c)

where q are the stacked joint angles, qmin and qmax are the
joints upper and lower limits, K(q) is the forward kinematics
function for the pose of the robot’s end effector, x is the
target end effector pose, and m is the manipulability index.

The squared manipulability index [18] is defined by

m2(J(q)) = det(J(q)JT (q)) (2)

where J(q) is the velocity Jacobian.

B. Newton’s method

Newton’s method iteratively optimizes an objective func-
tion by solving the Newton equation Hdx = −g where g
and H are the gradient and Hessian of the objective, and
dx is the search direction, which is fed into a line search
procedure. The gradient and Hessian of the manipulability
index are somewhat more involved than the other terms, and
we provide them below.
Derivative of the manipulability As can be found for
example in [19], the derivative of the determinant of a matrix
A can be written as

∂ det (A)

∂x
= det (A) tr

(
A−1 ∂A

∂x

)
(3)

If we take A = J(q)J(q)
T , we can see that

∂m2

∂qk
= det (JJT ) tr

(
(JJT )−1 ∂(JJ

T )

∂qk

)
(4)

and finally, using

∂(JJT )

∂qk
=

∂J

∂qk
JT + J

(
∂J

∂qk

)T

(5)

we obtain

∂m2

∂qk
= det (JJT ) tr

(
(JJT)−1

(
∂J

∂qk
JT + J

(
∂J

∂qk

)T
))
(6)

Hessian of the manipulability Using the product rule we
get

∂2 det (A)

∂x∂y
=
∂ det (A)

∂y
tr

(
A−1 ∂A

∂x

)
+

+ det (A) tr

(
∂

∂y

(
A−1 ∂A

∂x

)) (7)

We can then again use Eq. 3 on the first term of the right-
hand side of Eq. 7 and the chain rule on the second to get

∂2 det (A)

∂x∂y
=

det (A) tr

(
A−1 ∂A

∂y

)
tr

(
A−1 ∂A

∂x

)
+

+det (A)

[
tr

(
∂A−1

∂y

∂A

∂x

)
+ tr

(
A−1 ∂

2A

∂y∂x

)] (8)

and finally, by using ∂A−1

∂y = −A−1 ∂A
∂y A

−1

∂2 det (A)

∂x∂y
=

det (A)

[
tr

(
A−1 ∂A

∂y

)
tr

(
A−1 ∂A

∂x

)
−

− tr

(
A−1 ∂A

∂y
A−1 ∂A

∂x

)
+ tr

(
A−1 ∂

2A

∂y∂x

)] (9)

If we plug in A = JJT again we end up with the following
expression for the Hessian

∂2m2

∂qk∂ql
= det (JJT) (t1 · t2 − t3 + t4) (10)

with

t1 = tr

[
2(JJT)−1 ∂J

∂qk
JT

]
t2 = tr

[
2(JJT)−1 ∂J

∂ql
JT

]
t3 = tr

[
(JJT)−1

(
∂J

∂qk
JT + J

(
∂J

∂qk

)T
)

(JJT)−1

(
∂J

∂ql
JT + J

(
∂J

∂ql

)T
)]

t4 = tr

[
2(JJT)−1

(
∂2J

∂ql∂qk
JT +

∂J

∂ql

(
∂J

∂qk

)T
)]

.

(11)

We then combine the Hessian and gradient for the inverse
kinematics objective with the projected gradient and Hessian
of the manipulability objective, as shown in Algorithm 1.



Algorithm 1 Assembling gradients of the objective function
In Current robot state qk Out Updated robot state qk+1

1: Initialise full gradient g as zero vector
2: Initialise empty Hessian matrix H
3: for every term of the objective function do
4: Calculate gradient
5: Calculate Hessian
6: if current term == manipulability term then
7: Project gradient into nullspace of the Jacobian
8: end if
9: Add gradient of the current term to the full gradient

10: Add Hessian of the current term to the full Hessian
11: end for
12: Compute Search Direction dq = −H−1 · g
13: Do bisection line search to find step size α
14: qk+1 = qk + α · dq

C. System

All optimization tasks were run on a Windows 10 machine
with an Intel Core i7-9750H CPU @ 2.60GHz, 32GB RAM
and an Nvidia Geforce RTX 2080 Max-Q GPU.
For the VR teleoperation interface we used an Oculus Quest
128GB headset and the accompanying wireless controllers.
For the MR interface we used a Microsoft Hololens 2
headset. Both interfaces were built in Unity3D and a UDP
implementation was used to wirelessly transmit manipulation
data to the Windows machine. For the real-world experiments
we used an ABB IRB 14000 YuMi with 2 arms and the
corresponding ABB smart grippers. The control of the robot
was handled via the abb_libegm library and the EGM
(Externally Guided Motion) interface of the robot controller.

IV. RESULTS

In order to make our results comparable to our previous
implementation in [5], we used the same datasets as pre-
viously: A circle trajectory and a square trajectory, with
a diameter and side length of 0.4m respectively, as well
as a VR trajectory which has been prerecorded from VR
input data. For the VR scenario, the maximum distance to
the starting point along the trajectory is 0.336m and the
trajectory is contained within a 0.34x0.38x0.38m box. The
starting point is located at the center of all robots, which
are placed on equidistant points on a circle with a diameter
of 1.5m for the UR5 setup and 1.2m for the YuMi setup.
The mean results and standard deviations for the positional
error, joint velocities, accelerations and jerk as well as the
manipulability index over the three different trajectories on
two YuMi robots and three UR5 arms are summarized in
Table I. We furthermore provide some qualitative examples
of the resulting manipulability index for the VR trajectory on
the UR5 and YuMi robots. For the VR case, we also provide
the positional error over the trajectory, which we will discuss
in the next section. Finally, we provide comparisons of the
computational performance on different setups.

A. Comparison of the tracking performance

YuMis The new method leads to significantly better tracking
for the circle and square trajectories regarding the average as
well as the standard deviation of the positional error as shown
in Table I. In the VR case, the tracking is not significantly
improved. This is mostly due to the fact that the handle
becomes unreachable for short periods of the trajectory.
This can be seen in Figure 3. Consequently, these distance
peaks influence the average values. As the standard deviation
indicates and as can be seen in the lower half of Figure 3,
the number of times where the handle could not be reached
while it should be reachable has been reduced significantly
with the newer method. While the average joint velocities
increase, they stay well below the theoretical limits according
to the YuMi’s datasheet [20]. In turn, the acceleration values
as well as the jerk could be reduced in all cases, indicating
an overall smoother motion with the new method.
UR5 arms The results paint a similar picture as for the
comparisons on the YuMi. In general, the positional error
decreases significantly, as do the joint acceleration and jerk,
while the average joint velocity increases slightly. Overall,
these results indicate good tracking while staying well within
the maximum values for joint velocities and accelerations as
specified in [21].

B. Comparison of the manipulability index

YuMis Additionally to better tracking, our new method is
also able to further improve the manipulability for all three
trajectories, with the biggest improvement in the VR case.
A qualitative analysis of the data in Figure 3 reflects the
results summarized in Table I: The new method is able
to reduce variation and overall improve the manipulability.
There are, however still two instances where the manipula-
bility value approaches a zero value. As mentioned before,
these coincide with brief instances where the handle does
become unreachable for an arm due to the user input. For
future implementations, an additional constraint to avoid this
behaviour should therefore be considered.
UR5 arms The manipulability index increases slightly on av-
erage for the circle and square trajectories, while significantly
improving for the VR trajectory. With the new method, no
singularities are encountered during the whole trajectory for
all arms. As can be seen in Figure 2 for arm 1, even after
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robots with our previous system ("Old") and with enabled
manipulability optimization.



TABLE I: Comparisons over different setups and trajectories

Pos. Err. [mm] Vel. [rad/s] Acc. [rad/s2] Jerk [10−3rad/s3] m(q)

YuMi Circle old 8.454± 16.152 0.030± 0.052 0.001± 0.003 0.066± 0.514 0.026± 0.007

YuMi Circle new 0.295± 0.690 0.154± 0.076 0.000± 0.000 0.002± 0.004 0.031± 0.007

YuMi Square old 9.577± 20.231 0.047± 0.114 0.002± 0.009 0.180± 1.203 0.025± 0.008

YuMi Square new 1.240± 5.395 0.261± 0.150 0.000± 0.001 0.003± 0.021 0.027± 0.010

YuMi VR old 4.614± 15.597 0.016± 0.080 0.001± 0.009 0.191± 1.417 0.026± 0.010

YuMi VR new 4.145± 20.339 0.086± 0.126 0.001± 0.001 0.013± 0.029 0.035± 0.010

UR5 Circle old 0.022± 0.013 0.071± 0.023 0.002± 0.003 0.384± 0.871 0.074± 0.013

UR5 Circle new 0.011± 0.019 0.080± 0.026 0.001± 0.001 0.028± 0.063 0.077± 0.008

UR5 Square old 0.024± 0.011 0.084± 0.024 0.001± 0.002 0.110± 0.592 0.074± 0.014

UR5 Square new 0.003± 0.010 0.095± 0.037 0.000± 0.001 0.009± 0.041 0.077± 0.009

UR5 VR old 0.498± 5.052 0.091± 0.586 0.011± 0.115 2.619± 33.046 0.057± 0.020

UR5 VR new 0.172± 0.458 0.055± 0.110 0.003± 0.006 0.177± 0.514 0.073± 0.016
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Fig. 3: Comparison between the VR trajectory on two YuMi
robots with our previous system ("Old") and with enabled
manipulability optimization.

a significant dip in manipulability the current algorithm is
able to recover, while in the previous case it still reached
very close to singular or singular configurations.

C. Comparison against different implementations

In order to further test our method, we conducted an addi-
tional experiment on the convergence behaviour of different
implementations. The four curves in Fig. 4 correspond to the
following four implementations:

1) Blue: The IK solution is forced to converge, before
manipulability is optimized via nullspace projection of
the gradient into the Jacobian nullspace.

2) Red: The same gradient projection, but run at every
update step, even if the IK problem has not converged
yet. This corresponds to Algorithm 1.

3) Yellow: IK is again enforced first, but afterwards we
project the computed Newton step of the manipulabil-
ity optimization into the nullspace of the Jacobian.

4) Black: Same projection method as for yellow, but
convergence of IK is not enforced at every step.
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Fig. 4: Analysis of the convergence properties of two imple-
mentations with our combined projection method (in black
and red) compared to their more standard counterparts (in
yellow and blue). The right graph’s y-axis is displayed on a
logarithmic scale.

Figure 4(b) shows the violation of the IK objective for
each implementation. Note that the y-axis of Fig. 4(b) is in
logarithmic scale for improved readability. While our imple-
mentation shows a higher error at first, the manipulability
improves at a higher rate than for its standard counterparts.
The error on the IK objective is very small (below 10−8),
which is in agreement with our other experimental results.
Additionally, due to the thresholds on the residuals for the
Newton search, the error is further driven down after it has
reached the threshold level for the isolated IK objective.
We furthermore verified experimentally that the algorithm
converges to a point that satisfies the first order optimality
conditions of the problem we want to solve. Our projection
method therefore generally allows us to improve the ma-
nipulability at a higher rate, while keeping the IK solution
very close to its goal and converging towards a solution of
Equation 1.

D. Computational performance

As the calculation of the Hessian of the manipulability
is quite involved, the computational performance of this
algorithm decreases compared to the previous method, which
had a largely negligible impact on performance. As can be
seen if Fig. 5, we are still able to stay at around 23 frames per
second for the VR trajectory with the YuMi on our system.
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Fig. 5: FPS analysis. Averages left to right: 1 YuMi, 22.88fps;
2 YuMis, 12.31fps; 3 UR5 arms, 57.27fps

This is still sufficient for our real-time teleoperation, as can
be seen in the accompanying video material. For the scenario
with two YuMis, the performance falls to around 12 frames
per second. While still usable for real-time operation, the
user can easily notice the drop in frames per second. With
an average of 57fps, the setup with 3 UR5 arms stays very
close to the capped maximum of 60fps.

V. DISCUSSION

In this paper, we focused on improving the method for
manipulability optimization for our VR/MR teleoperation
interface. We introduced a new formulation, providing the
gradient and Hessian of the square manipulability index
as a sub-objective for our Newton solver. To prioritize the
tracking task, we introduced a gradient nullspace projection.
At the same time, this removes the need to fine-tune the
weight parameters of the two objectives.

The results show a clear improvement of the tracking
performance as well as the manipulability over different
trajectories. The tracking errors could be reduced in all
cases. The good results for the prerecorded VR trajectories
could be confirmed on real hardware, as can be seen in the
accompanying video material. These improvements came at
the cost of a higher computational load, as well as a slightly
higher average joint velocity, while the overall smoothness
of the joint movements could be improved as can be seen in
the generally lower joint acceleration and jerk values.

Allowing the end-effector to rotate around the handle axis
enables us to use our method on robots which are non-
redundant, which is true for a large part of collaborative
robots. Additionally, this method can now be extended to
more DoFs, as for example with mobile bases. Some simu-
lations of the UR5 arms on a Clearpath Robotics Ridgeback
platform can be found in the accompanying video material

Fig. 6: Left: Interface for the Microsoft Hololens MR
headset. Right: Setup with 3 UR5 arms and mobile bases,
providing additional DoFs.

and in Fig. 6. Similarly, we can also use our method to only
optimize over a subset of the joints of a robot arm. Fig.
7 shows a configuration, where each UR5 arm is equipped
with an Allegro hand. While we are able to use the hand
as a complex gripper, which can be used as a sort of
damping component, we can optimize the manipulability for
the arm up to the wrist. This leads to a better ability to
follow the user input, while simultaneously not increasing
computational complexity unnecessarily. For future work, it
might be interesting to see if there are benefits to optimizing
the manipulability for each finger as well, although this might
require reducing the computational complexity first.

We have also expanded our interface to support a Mi-
crosoft Hololens 2 MR headset with hand tracking, such
that the user can scale and move the whole setup via hand
gestures to accommodate for different working environments.
The scaling is useful to make robots of different sizes easier
to teleoperate. The robot model shown in Figure 6 and the
accompanying video fills a construction hall, but its hologram
can be placed on a table for easier teleoperation.

A limitation of our method, which we intend to address in
future work, is the independent optimization for each end-
effector, which means that we cannot give grasp guarantees.
There is also some discussion in the robotics community
related to the use of the manipulability index as a metric.
Concretely, the need to invert JJT in the gradient can
lead to undesired behaviour and can be mitigated through
regularization of damping methods, but could be avoided by
using different metrics such as the kinematic sensitivity [22].

VI. CONCLUSION

We have proposed an optimization method and control
interface which improves a user’s ability to teleoperate a
multi-arm robot system via a MR interface. Optimizing the
manipulability index for each arm via a combination of
Newton’s method and a nullspace projection, we have shown
significant improvement in the tracking quality and manip-
ulability over our previous method. We have furthermore
implemented our algorithm on a real-world setup with a
two-armed ABB YuMi robot. In this setup, the user is able
to manipulate a target payload remotely and in real-time.
Finally we have provided a discussion of different interfaces
as well as an outlook over further possible improvements.

Fig. 7: Nullspace motion for a UR5 arm equipped with an
Allegro hand.
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