
Differentiable Collision Avoidance Using Collision Primitives

Simon Zimmermann1, Matthias Busenhart1, Simon Huber1, Roi Poranne2, Stelian Coros1

Abstract— A central aspect of robotic motion planning is
collision avoidance, where a multitude of different approaches
are currently in use. Optimization-based motion planning is
one method, that often heavily relies on distance computations
between robots and obstacles. These computations can easily
become a bottleneck, as they do not scale well with the
complexity of the robots or the environment. To improve
performance, many different methods suggested to use colli-
sion primitives, i.e. simple shapes that approximate the more
complex rigid bodies, and that are simpler to compute distances
to and from. However, each pair of primitives requires its own
specialized code, and certain pairs are known to suffer from
numerical issues. In this paper, we propose an easy-to-use,
unified treatment of a wide variety of primitives. We formulate
distance computation as a minimization problem, which we
solve iteratively. We show how to take derivatives of this
minimization problem, allowing it to be seamlessly integrated
into a trajectory optimization method. Our experiments show
that our method performs favourably, both in terms of timing
and the quality of the trajectory. The source code of our
implementation will be released upon acceptance.

I. INTRODUCTION

Collision avoidance is an integral part of robotic motion plan-
ning. Cluttered environments like construction sites, where
many potential collisions may occur, are burdened with great
computational load. Planning paths for multiple robots re-
quires dynamic and flexible collision avoidance, making the
problem more difficult. Furthermore, where human collabo-
rators are involved, robots need to plan ahead while treating
the humans as unpredictable, moving obstacles. Indeed, the
increasing complexity of tasks that robots are expected to
perform certainly requires an equal increase in the efficiency
of motion planning algorithms.
Our goal in this paper is to derive a simple, yet robust
and customizable approach for collision avoiding trajectory
optimization. A common practice with this approach is to
utilize distance functions between obstacles and define mo-
tion planning as a constrained optimization problem. In that
sense, the distance functions are used to penalize proximity
of the robot to obstacles. Computing the true distance to
an obstacle, however, can be computationally demanding.
Instead, previous approaches opted to use approximations
in the form of collision primitives. That is, they replace
the complex geometry of robots and obstacles by simpler
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shapes, such as spheres, that are easy to compute distances
to. However, the accuracy of the approximation depends on
the number of collision primitives used. Indeed, an oblong
shape such as the links in a robot’s arm might only be
faithfully represented by a multiplicity of spheres, depending
on their length and widths. Follow up work suggested using
alternative primitives, such as ellipsoids, capsules, boxes, and
their combinations, that can better fit to different geome-
tries, and thus reduce the number of primitives necessary
[1]. However, this typically requires specialized code that
computes distances for every type of primitive pair, which
could be cumbersome to maintain, especially when using
gradient-based methods. In addition, some of the computa-
tions involved are known to be numerically sensitive [2],
which can cause numerical issues throughout the planning
process, especially when derivatives are required.
Our approach is to formulate distance computation as a
low-level, differentiable optimization problem, where we
explicitly handle numerical issues for all primitive pairs
by adding a simple regularization term. We combine this
approach with a straight-forward parameterization of dif-
ferent collision primitives, resulting in a light-weight and
easy-to-understand implementation, and we will release the
corresponding code written in C++ upon acceptance. We
show how to take derivatives of the distance computation
by leveraging sensitivity analysis. Finally, we integrate this
approach into a high-level trajectory optimization problem
for collision-free multi-robot motion planning with dynamic
obstacles. We evaluate the efficacy of our method based on
a variety of simulated and real-world experiments, involving
single- as well as multi-robot scenarios.

II. RELATED WORK

The literature on path planning and collision avoidance is
vast, with many conceptually different approaches currently
in use, each with its own benefits and drawbacks. Therefore,
we only highlight a few selected papers, and focus our
attention on collision-free path planning via smooth trajec-
tory optimization. In these type of formulations, collision
avoidance is typically incorporated in form of inequality
constraints, similarly to our approach.
Some of these related methods are agnostic to the repre-
sentation of the obstacles, and rely on collision detection
only to define an optimization problem [3]. A straightfor-
ward approach is to describe the robot and obstacles as
polyhedrons, which leads to disjunctive linear inequalities
that can be addressed in a mixed-integer problem [4]. Using
Farkas’ lemma, it is also possible to convert these disjunctive
inequalities into standard inequalities [5]. A more recent
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Fig. 1. An armada of Spot robots are finding their way through a gap without colliding. Several poses are overlaid.

approach presented in [6] can also handle more general
ellipsoidal obstacles. It employs duality theory to formulate
simple, differentiable constraints. The resulting optimization
problem is then solved using IPOPT [7], a generic interior
point solver.
Another common approach we briefly mention uses potential
fields. First presented in [8], the idea is to create an artifical
potential that attracts the robot to the goal and a potential
that repels the robot away from obstacles. A few examples
can be found in [9]–[14]. A related approach uses distance
fields instead of potential fields. It is used to constrain the
distance between a robot and an obstacle to be greater than
a certain safety margin. Notable examples are CHOMP [15]
and STOMP [16], both of which sample a distance field on
a regular grid as a preprocessing step. While this approach
is fairly efficient, it is limited to static obstacles and a single
robot scenarios. In addition, the memory requirements might
be prohibitive.
We take an approach that, in some sense, lies between
the above-mentioned methodologies. We utilize collision
primitives, i.e. simple shapes that allow simple and efficient
distance computations, to approximate the robots and obsta-
cles in the scene. This has been a common strategy in past
as well as in recent work. Particularly spheres are applied as
collision primitives in countless papers due to their ease-of-
use [17], [18]. Ellipsoids and capsules are also commonly
found [1], [19]–[21], as well as boxes [22]. Our approach
unifies all of these primitives in an easy-to-use manner.
An alternative methodology is presented by Schulman et
al [23]. There, robot bodies and obstacles are represented
by convex shapes, using a support mapping representa-
tion. The distance between two shapes is formalized using
signed distance functions, which are computed using the
Gilbert–Johnson–Keerthi (GJK) distance algorithm. Colli-
sion avoidance is then incorporated into a high-level sequen-
tial convex optimization problem, where they approximate
the corresponding derivatives by linearizing the signed dis-

tance function. Our approach presents a different strategy:
We start with basic collision primitives like spheres and
extend the concept to more complex shapes. With this
approach, we can easily handle degenerate cases that plague
the GJK algorithm and result in numerical issues, which
occur surprisingly often in practice.

III. METHOD

To simplify the exposition, we first describe our approach
using a simple example of two rigid bodies. The method
is easily generalized to multiple robots and obstacles, both
stationary or mobile, which we discuss at the end of this
section.

A. Collision-Free Motion Planning
Our goal is to plan a smooth, collision-free trajectory for
two free-floating rigid bodies denoted by BA and BB , re-
spectively. We formulate this as a time-discretized trajectory
optimization problem. To this end, let xA

i and xB
i be the

corresponding states of BA and BB , comprising of a rotation
and a translation in world coordinates at a specific trajectory
step i. We represent the entire state by stacking both states
into one vector xi = (xA

i ,x
B
i ). Then, x := (x1, ...,xN )

represents the entire state trajectory that we want to optimize,
consisting of a total number of N steps. Furthermore, let
DAB(xi) be the squared distance between the two rigid
bodies at trajectory step i, defined as the shortest squared
distance between any pair of points on the two rigid bodies
in their respective states. We include a safety margin with
each of the individual rigid bodies, which we denote by rA

and rB , respectively. Collision avoidance is formulated as
an inequality constraint, which forces the shortest distance
between the rigid bodies the be greater than the sum of their
safety margins. With these definitions, we write the trajectory
optimization problem as

min
x
O(x) (1a)

s.t. DAB(xi) ≥ rA + rB ∀i ∈ 1, ..., N (1b)



with objective O, which typically consists of two terms. The
first term expresses a goal objective, which matches the state
of the rigid bodies at a given trajectory step i to a predefined
target x̄i. The second term is a regularization term that
encourages smooth motions by penalizing high accelerations
throughout the trajectory. We discretize the acceleration as
ẍi ≈ xi−2xi−1+xi−2

h2 , where h is the step duration. The
objective (1a) is then

O(x) =
∑
i∈I
‖xi − x̄i‖2 + wS

N∑
i=1

‖ẍi‖2, (2)

where I is the set of fixed target states x̄i, and wS denotes
the regularization weight.

B. Collision Primitives

The problem stated in Eq. (1) is an idealized one, as DAB

is set to compute the true distance between the two bodies
BA and BB . However, this is often not practical since
the computation of this distance – and its derivatives –
can be expensive for general shapes. Instead, a common
practice is to approximate rigid bodies using simple colli-
sion primitives, which are endowed with simpler distance
computation routines. The simplest primitives used (for
trajectory optimization) are perhaps spheres. They can be
seen as points with a safety margin corresponding to the
radius, and therefore require only point-to-point distances.
Furthermore, when a rigid body has a shape that can not
be approximated by one sphere sufficiently well, several
smaller spheres can easily be used together to obtain a
better approximation. The drawback, however, is that some
shapes require too many spheres to be approximated well,
offsetting the computational benefit of using them in the
first place. In these cases, more elaborate primitive shapes
such as ellipsoids, capsules, or boxes can be used at the
cost of slightly increased computation times, as mentioned
in Sec. II. Therefore, creating an efficient approximation
of an object using collision primitives requires balancing
the complexity of the primitives with their numbers. To
simplify the process, we propose a unified formulation for
a set of different collision primitives. This formulation is
based on the simple observation that common primitives can
be described parametrically using a point p and a varying
number of vectors vl, each scaled by a parameter tl. Hereby,
the number of vectors and scale parameters depends on the
type of primitive. For example, a primitive with no scaled
vector simply results in a point p, which, combined with
its radius as a safety margin, results in a sphere collision
primitive. In the same manner, a point and one scaled vector
p + t1v1, 0 ≤ t1 ≤ 1 describes a line segment, which can
be used as a capsule primitive by choosing its radius as a
safety margin again.
We now extend this formulation for the general case: For a
rigid body B with state xi, let ti be the set of parameters
stacked into one vector that describe all points lying on
the corresponding collision primitive. In the following, we
neglect the subscript i for brevity, and consequently use x to

represent the state of a single trajectory step. Let P(x, t) be
a function that returns a specific point on the primitive as a
function of x and t. In this work, we select a set of collision
primitives that can all be described by

P(x, t) = p(x) +

L∑
l=1

tlvl(x), 0 ≤ tl ≤ 1, ∀l (3)

where p(x) is a point on the primitive, and vl(x) denote
a varying number L of vectors, depending on the type of
primitive. All primitive shapes used in this work are visu-
alized in Table I. We find that this set of simple primitives
is sufficient for our application. Nevertheless, we note that
more constraints can be added to create different shapes,
e.g.

∑L
l=1 tl ≤ 1 for a simplex. Additionally, any convex

collision primitive that can be described parametrically in a
continuously differentiable manner with respect to both x
and t can be used as well.

C. Shortest Distance Computation

We return to the two rigid bodies BA and BB , and assume
their collision primitives are given by PA(xA, tA) and
PB(xB , tB), where we stack t = (tA, tB). The squared
shortest distance between the two primitives can be written
as

DAB(x) = min
0≤t≤1

DAB(x, t) (4)

with

DAB(x, t) = ‖PA(xA, tA)−PB(xB , tB)‖2. (5)

This problem can be solved analytically for the cases we
discuss in this paper. However, this must be done in a
case-by-case manner, and additionally can result in some
numerical issues, especially when computing derivatives. For
example, for two capsule primitives parameterized as line
segments, these issues occur when the two lines are close
to being parallel, as the closest points between them go to
infinity [2]. Similar issues arise for other pairs of primitives
as well, and we find that they frequently occur in practice.
Instead of treating each individual case, we propose a more
generic approach: We solve Eq. (4) using iterative numerical
optimization. This also allows us to include regularization
terms, and to make the collision constraints soft, which in
turn makes collision avoidance more robust. Concretely, we
add a regularization term

R(t) = ‖t− 0.5‖2, (6)

which regularizes the t’s such that the resulting points on
the primitives are closer to their center. This simple term
effectively avoids the numerical issues described above. In
addition, we replace the box constraints 0 ≤ t ≤ 1 in Eq.
(4) by soft barrier constraints. Specifically, we define two
unilateral quadratic barrier functions as

S+l (t) =

{
0 t ≤ l
(t− l)2 t > l

, S−l (t) =

{
(t− l)2 t ≤ l
0 t > l

.

(7)



TABLE I
Collision primitives used in this work. All can be parameterized using Eq. (3). For simplicity, we temporarily drop all dependencies from x.

Primitive Sphere Capsule Rectangle Box

P(x, t) = p p+ t1v1 p+ t1v1 + t2v2 p+ t1v1 + t2v2 + t3v3

Thus, we rewrite the optimization problem (4) as

UAB(x) = min
t
UAB(x, t) (8)

with

UAB(x, t) = DAB(x, t) +wRR(t) +wC(S+1 (t) + S−0 (t)),
(9)

where wR, wC are the regularization and penalty weights.
We solve this unconstrained optimization problem using
Newton’s method.

D. Computing Derivatives

To solve the motion planning problem (1), we want to be
able to compute the derivatives of the distance function D
w.r.t. to x. Following the derivation above, D is not only a
function of x, but also of t, which in turn has to be seen as
a function of x as well. Consequently, D(x) := D(x, t(x)),
and computing the gradient requires the use of the chain rule

dDAB

dx
=
∂DAB

∂x
+
∂DAB

∂t

dt

dx
. (10)

The Jacobian dt
dx is known as the sensitivity matrix, as it

describes how t changes with respect to changes in x. Since t
is computed numerically by solving the optimization problem
(8), there is no direct analytical expression to compute dt

dx .
However, as described in [24], we can readily compute this
Jacobian by leveraging the implicit function theorem. For our
particular application, it can be applied when the gradient of
the optimization problem (8) is zero, i.e. ∂UAB

∂t = 0. This is
the case when the optimization has been solved. Then, by
using the resulting solution for t, the sensitivity matrix can
be computed analytically as

dt

dx
= −∂

2UAB

∂t2

−1
∂2UAB

∂t∂x
. (11)

We refer the reader to [24] for a full derivation, and simply
state the Hessian for our particular use-case. Just as in [24],
we use an approximation of the true Hessian, as it avoids
the costly computation the higher-order terms. This results
in the expression

d2DAB

dx2
≈

(
dt

dx

T ∂2DAB

∂t2
+ 2

∂2DAB

∂x∂t

)
dt

dx
+
∂2DAB

∂x2
,

(12)
where we can re-use the Jacobian from the gradient compu-
tation.

E. Extension to Robot Motion Planning

As a final step, we extend our formulation from two rigid
bodies to the case of robotic motion planning. To this end,
we model a robot as a kinematic arm with floating base:
Let xi ∈ Rn+6 denote the state of a robot at trajectory step
i ∈ [1, ..., N ], where N and n denote the total number of
trajectory steps and joint angles, respectively. The state xi

consists of the position and orientation of the base, as well as
the joint angles of the arm. Same as before, we describe the
entire robot trajectory by stacking all states xi into one vector
x := (x1, ...,xN ). Using these definitions, we can now
extend the optimization problem presented in Eq. (1). Since
we are now handling kinematic arms, it is more convenient
to include end-effector targets into our formulation: Let zi
be the target pose in global coordinates for the robot’s end-
effector at a predefined trajectory step i. Let K(xi, l) be
the forward kinematics function that transforms the local
coordinates l of the end-effector into its global pose at
state xi. We can then formulate an inverse kinematics (IK)
objective as

‖K(xi, l)− zi‖2 (13)

for each end-effector and trajectory step we wish to set a
target for. Furthermore, physical limitations of an individual
robot like joint, velocity and acceleration limits need to be
considered for motion planning. This can be included into
the formulation in form of box constraints

bl ≤ h(xi) ≤ bu, ∀i (14)

where bl and bu denote the lower and upper bounds, respec-
tively, and h(xi) returns the corresponding value at trajectory
step i. Velocities and accelerations are approximated using
finite differences.
In order to apply collision avoidance, a robot can be approx-
imated by different collision primitives in the same manner
as in the single rigid body case. Examples for two different
robots are given in Fig. 2. This can be done conveniently by
expressing a specific collision primitive in local coordinates
of the body it approximates. Since the robot’s bodies are
connected via a kinematic chain, the formulation as presented
in (1b) needs to be slightly adjusted, as the world coordinates
of the collision primitives have to be computed using the
forward kinematics function K. Therefore, the inequality
constraints are written as

Dab(K(xi, c
a),K(xi, c

b)) ≥ ra + rb, ∀i,∀a, b ∈ C, (15)



Fig. 2. The YuMi (right) and Kinova (left) robot approximated by collision
primitives. The YuMi uses three boxes for the body and five spheres and
two capsules per arm. The Kinova uses three capsules and four spheres.

where ca and cb denote the local coordinates of collision
primitive a and b, respectively, and C includes all collision
primitives used in the scene. These constraints formulate self-
collision avoidance of an individual robot for all trajectory
steps. In case primitives are used to approximate static
obstacles, the dependency on K can be dropped, as the state
of the obstacle can be written directly in world coordinates.
This formulation can easily be extended to plan motions for
multiple robots. To this end, we simply stack the states of
all robots in the scene into one large optimization vector
x. Then, the inequality constraints (15) not only cover self-
collision avoidance, but also avoidance between different
robots. We solve this multi-robot motion planning problem
using Newton’s method. To this end, we convert all inequal-
ity constraints into soft constraints using barrier functions as
presented in Eq. (8). Then, we can compute the gradient and
Hessian of the total objective O(x) in order to apply Newton
steps until convergence. An overview of the overall solving
strategy is given in Algorithm 1. We note that in practice, we
only compute the exact distance and its derivatives between
individual primitive pairs if they are in close proximity to
another. To this end, we first roughly estimate the distances
between each pair according to the distance of their center
points.

IV. RESULTS

We evaluate the efficacy of our method on a variety of sim-
ulated and real-world experiments. These comprise of path
planning tasks for different robotic platforms in both single-
and multi-robot scenarios. Our method outputs collision-
free, smooth motion trajectories for every robot in the
scene. It avoids self-collision for a single robot, collisions
between two different robots, and collisions with obstacles.
We encourage the reader to watch the accompanying video,
where all conducted experiments are shown. An extended
version of this video can be found online1. More quantitative

1Accompanying video: https://youtu.be/et0bu--wuy4

Fig. 3. Three instances from the package packing demonstration, visualized
both in simulation and in real-world: the Kinova robot places a package into
a slightly larger box.

information about the individual experiments can be found
in Table II. An Intel Core i7-7709K 4.2Ghz PC has been
used to record all measurements.

A. Experiments

Interactive Avoidance. We demonstrate our collision avoid-
ance method in an interactive, real-world setting using a dual-
armed YuMi robot [25]. Two users move around obstacles
that tracked by a motion capture system and approximated
by collision spheres in the planning framework. The robot
successfully avoids the obstacles while ensuring that its two
arms do not collide with each other. Motion planning in
this case is run in a receding horizon fashion. The motion
optimization objective for the robot contains a regularization
term that encourages the robot to return to its rest pose when
it is undisturbed by the obstacles.
Legged Armada. This experiment demonstrates kinematic
path planning for the bases of multiple legged robots. We
use the simulation model of several Boston Dynamics’ Spot
robots [26], which are modeled as floating bases with pose
and velocity constraints that resemble those of the physical
Spot. The accompanying video and Fig. 1 show different
scenarios where the robots are tasked with switching posi-
tions while avoiding each other as well as some large world
obstacles. We note that motion planning is only conducted for
the robot’s bases, but leg motions are kinematically computed
in post-processing for visualization purposes.
Package Packing. A statically mounted robot arm picks up
a package, and places it in a slightly larger, empty box.
The empty box is approximated by four rectangular collision
primitives, one for each closed side. This experiment is
also conducted in the real world by passing the nominal
trajectories computed in simulation onto the physical robot
in an open-loop manner. We use a Kinova Gen3 7Dof robot
[27] equipped with a Sake EZGripper [28] to do so. Fig. 3
show different frames of this experiment.
Table Reach. A Kinova arm mounted on a Spot robot (see
[29]) is tasked with retrieving an object that lies under a
table. The table is modeled by five box primitives, one for
each leg, and one for the plate. The grasp maneuver is shown
in simulation in the video, and is depicted in Fig. 4.



Algorithm 1: Collision-free multi-robot kinematic trajectory optimization using Newton’s method
Input: Total objective O(x) (including collision avoidance constraints as soft constraints), initial x
Output: Optimal motion trajectories x∗

while convergence criterion not reached do
Compute t by solving optimization problem (8) for each primitive pair in close proximity using Newton’s method
Compute gradient dO

dx and Hessian d2O
dx2 (includes the use of Eq. (10) and (12) by following the chain rule)

Compute search direction ∆x by solving linear system d2O
dx2 ∆x = −dO

dx
Run backtracking line search on α in x := x + α∆x

Fig. 4. The combined platform consisting of Spot and Kinova are retrieving
a ball from under a table. Several poses of the motion trajectory are overlaid.
The motion both start and end at the most upright pose.

Gap Handover. The YuMi robot is used to hand over a
package from one gripper to the other through a gap in a wall.
The wall is modeled with four rectangle collision primitives.
The video shows the experiment both in simulation and
performed on the physical robot.
House Assembly. This demonstration employs a kinematic
model of the Robotic Fabrication Lab (RFL) setup at ETH
Zurich [30], which includes four large robotic arms con-
nected by bridges. These robot arms cooperatively assemble
a simplified house by planning collision-free paths around
each other as well as the structure that has already been built.
While a robot is holding a building block in its gripper, the
corresponding collision primitive becomes part of the robot,
and otherwise it is treated as an obstacle. The assembly is
broken down into individual pick and place tasks, where the
assembly order and task assignment is done by the user. Fig.
5 shows different scenes from the assembly process.

B. Primitive Configuration

Generally, using more primitives has the greater potential
to better approximate the shape of a body. However, more
primitives lead to a higher computational cost. We illustrate
this using a simple example shown in Fig. 6. There, we solve
a trajectory optimization problem involving two cube-shaped
obstacles. We approximate one cube using a varying number
of spheres and capsules to compare the timings. We show that
using more primitives reduces the approximation error, given
here by the Hausdorff distance, but increases the computation
time per iteration. We can see that for the same Hausdorff
distance, fewer capsules than spheres are needed, and despite

Fig. 5. Four different frames of the house assembly experiment: The RFL
robots cooperatively assembly the structure of a small wooden house.

Fig. 6. A free-floating rigid body and a world obstacle, both in form of
a box, are approximated by different number of primitives. We compare
the Hausdorff distance with the average run-time to compute Newton steps.
Approximating both boxes with multiple spheres or capsules decreases the
Hausdorff distance, but has a quadratic effect on the computation time. For
this example, it is highly beneficial to use a box primitive.

the slight increase in distance computation time per capsule,
the overall time is significantly shorter. Naturally, using the
cube itself as the primitive is the ideal choice, and this is
also evident in the figure. We additionally show in Table III
the times required to compute the shortest distance between
different primitive pairs using our method. Again, making the
primitive higher-dimensional introduces additional Newton
steps, which also contributes to higher computation times,
but the overall effect for the path planning problem is a
reduction in time.

C. Comparison to Other Motion Planners

We conducted several experiments in order to compare our
method to three well-known motion planners: OMPL [31],
CHOMP [15], and STOMP [16]. Hereby, we used the default



TABLE II
Quantitative results for the different experiments. The state dimension is the sum of all robot state sizes in the corresponding scene. The last two columns
show the average computation time per solver iteration and the total computation time (by multiplying the values of the two columns before), respectively.

Experiment # Robots # Primitives State Dim. # Traj. Steps # Iterations ∅ Time / Iteration Total Time

Interactive Avoidance 1 (dual arm) 19 20 1 9 0.003 s 0.027 s

Legged Armada 8 - 10 8 - 12 48 - 60 100 446 - 1577 0.217 - 0.488 s 97 - 770 s

Package Packing 1 5 13 160 32 0.218 s 7 s

Table Reach 1 12 13 120 215 0.783 s 168 s

Gap Handover 1 (dual arm) 6 20 160 184 0.373 s 69 s

House Assembly 4 16 - 33 48 30 15 - 68 0.004 - 0.080 s 0.06 - 5.44 s

TABLE III
Number of Newton steps and average time per step for the distance

computation between each pair of primitives. Time measurements are
averaged over 10’000 runs and expressed in microseconds.

Sphere Capsule Rectangle Box

Sphere 0 / 0.0 - - -
Capsule 1-2 / 0.85 1-3 / 1.54 - -
Rectangle 1-7 / 1.65 1-5 / 2.30 1-11 / 3.34 -
Box 1-5 / 2.25 1-11 / 3.13 2-9 / 3.86 2-14 / 4.60

parameter settings (including initialization procedures) set
in their individual ROS implementations. The experimental
setup involved a Kinova arm [27] tasked with finding a
collision-free path around an obstacle modeled by either a
sphere, a capsule (a cylinder in ROS), or a box. We ran the
experiment multiple times, where we gradually increased the
size of the individual obstacles to make the path planning
problem more elaborate. All methods usually succeeded in
finding a feasible path around the obstacle. An overview
of the individual measurements is given in Table IV. We
note that the overall computation time is dependent on the
convergence criteria of the individual planners. When using
the default settings, the computation times of all methods
were usually comparable. However, we noticed a difference
in the quality of the solution. Especially for larger obstacles,
some of the planners seemed to struggle to find a smooth
path. Our method usually provided a smoother and more
direct path, both in terms of joint angles (see Fig. 7) as well
as for the robot’s end-effector (see Table IV).

V. DISCUSSION

To summarize, our approach provides a unified, straight-
forward framework that can be applied to various collision
primitives, and safely handles numerical issues that can
arise when computing distances and its derivatives. There-
fore, our distance computation scheme can seamlessly be
integrated into other path planners that profit from these
properties. In terms of limitations, our overall trajectory
optimization framework suffers from the same drawbacks
as other gradient-based methods: it can only find a local
minimum. Consequently, in very cluttered environments and
tight spaces, our method might fail to find a collision-
free trajectory without a proper initialization. One solution
would be to find an initial trajectory using a sampling-based

Fig. 7. Resulting joint velocities for different motion planners for the
experiment described in section IV-C using the largest box obstacle. The
number of trajectory steps was chosen by the individual planners, and we
chose 100 steps for our method for all experiments. Our method produced
smoother velocities and found a more direct path.

method and use it as a starting point for the optimization.
However, due to the relatively quick iteration time and
predictable behaviour, we believe it to be simpler for a user
to provide input and guide the process toward a feasible
solution. Additionally, we experimented with an automatic
continuation method that shows promising results. With these
methods, infeasible cases can be resolved by starting the
optimization in an obstacle-free environment, such that an
initial, collision-free trajectory can be generated. Then, ob-
stacles are gradually introduced into the scene while keeping
the optimization process running. Further analysis in this
regard will be part of future investigations. Another avenue to
explore is the automatic generation of primitives that would
cover the objects. Currently, this is done manually based
on previous experience. However, we believe that finding
an optimal configuration of primitives that achieves the best
performance would be of great value.

REFERENCES

[1] D. Rakita, H. Shi, B. Mutlu, and M. Gleicher, “Collisionik: A
per-instant pose optimization method for generating robot motions
with environment collision avoidance,” CoRR, vol. abs/2102.13187,
2021. [Online]. Available: https://arxiv.org/abs/2102.13187

[2] D. Eberly, “Robust computation of distance between line segments,”
2015.



TABLE IV
Performance comparison to other planners. The table shows both the total

computation time (in seconds) as well as the distance travelled by the
robot’s end-effector (in meters) for the final solution. All measurements
have been averaged over several runs using the largest obstacle sizes.

While the computation times are usually comparable, our method typically
provides a smoother and more direct path.

Planner OMPL CHOMP STOMP Ours

Sphere
Time [s] 0.258 2.211 4.163 0.623
Dist. [m] 3.601 1.316 1.426 0.920

Capsule / Time [s] 0.371 2.31 2.95 0.652
Cylinder Dist. [m] 1.491 1.615 1.449 0.972

Box
Time [s] 0.158 1.830 0.348 0.822
Dist. [m] 1.343 1.166 1.200 0.740

[3] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. Beardsley, “Collision
avoidance for aerial vehicles in multi-agent scenarios,” Auton Robot,
vol. 39, no. 1, pp. 101–121, Jun. 2015. [Online]. Available:
https://doi.org/10.1007/s10514-015-9429-0

[4] L. Blackmore and B. Williams, “Optimal manipulator path planning
with obstacles using disjunctive programming,” in 2006 American
Control Conference. IEEE, 2006, pp. 3–pp.
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