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Abstract— Real-world robotic manipulation tasks remain an
elusive challenge, since they involve both fine-grained environ-
ment interaction, as well as the ability to plan for long-horizon
goals. Although deep reinforcement learning (RL) methods have
shown encouraging results when planning end-to-end in high-
dimensional environments, they remain fundamentally limited
by poor sample efficiency due to inefficient exploration, and
by the complexity of credit assignment over long horizons. In
this work, we present Efficient Learning of High-Level Plans
from Play (ELF-P), a framework for robotic learning that
bridges motion planning and deep RL to achieve long-horizon
complex manipulation tasks. We leverage task-agnostic play
data to learn a discrete behavioral prior over object-centric
primitives, modeling their feasibility given the current context.
We then design a high-level goal-conditioned policy which (1)
uses primitives as building blocks to scaffold complex long-
horizon tasks and (2) leverages the behavioral prior to accel-
erate learning. We demonstrate that ELF-P has significantly
better sample efficiency than relevant baselines over multiple
realistic manipulation tasks and learns policies that can be
easily transferred to physical hardware.

I. INTRODUCTION

One of the collective visions of robotics is a world where
robots help humans with daily household chores, such as
setting up a table or emptying the dishwasher. An immediate
challenge is that, to operate in the physical world, a robot
must be able to reason in a mixed decision space. That is,
it must combine decisions relating continuous motions with
discrete subtasks in order to accomplish complex tasks. For
example, the task of emptying the dishwasher requires the
robot to first go to the dishwasher, then open it, grab a single
dish, open the cupboard and place the dish inside, and repeat
until the dishwasher is empty. Failing to perform a single
subtask or ordering them incorrectly would ultimately lead
to a failure. The ability to reason over long horizons, we
argue, is thus a crucial milestone in achieving the above-
mentioned vision.

Despite significant improvements in several fields of
robotics, ranging from motion planning to robust control
[1]-[4], long-horizon problems involving several tasks still
presents a considerable challenge. While planning algo-
rithms can efficiently search well-defined state spaces and
plan over relatively long horizons, they generally struggle
with complex, stochastic dynamics, and high-dimensional
systems, in particular featuring narrow passages (i.e. low-
measure regions which have to be traversed to reach a
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Fig. 1. Overview of ELF-P. A discrete behavioral prior learned on play
data is used to discard infeasible actions at every state, enabling a high-
level RL agent to search over a smaller space of behaviors. Each action is
mapped to a motion primitive, which is executed through classical motion
planning methods. After training in simulation, the policies can be easily
deployed on real hardware.

goal). Moreover, they often require accurate models of the
environment or handcrafted distance measures [S]—[7].

Learning methods have thus emerged as a more scalable
approach for handling the high-dimensionality of the real
world. While capable of obtaining hard-to-engineer behav-
iors [8]-[11], learning-based methods are similarly limited to
short horizons tasks in general, since longer plans involving
multi-level reasoning aggravate the challenges of exploration
and temporal credit assignment [12].

In this work, we introduce ELF-P, a novel approach for
robotic learning of long-horizon manipulation tasks, bridging
motion planning and deep reinforcement learning (RL). In
a two-level hierarchy, high-level planning is entrusted to
a goal-conditioned policy, trained through deep RL and
designed to deal with the high-dimensionality and com-
plexity of real-world dynamics. This policy operates at a
coarser time scale and controls the execution of primitives,
which lie at the lower level in the hierarchy (see Figure [I).
Crucially, we sidestep the instability of jointly learning high
and low-level policies and thus rely on a predefined library
of object-centric primitives (such as grasping or reaching a
target configuration in a collision-free path) obtained through
classical motion planning.

While planning over primitives substantially reduces the
burden of the higher level, uniform exploration may still be
insufficient in long-horizon tasks with sparse rewards, as the
space of possible behaviors grows rapidly with the size of the
action space and number of steps to the goal [13]. Although
humans excel at inferring the set of behaviors enabled
by a situation, uninformed RL agents tend to repeatedly
attempt futile actions, resulting in poor sample efficiency and
potentially unsafe exploration.

We thus additionally propose to prune the high-level action
space to a subspace of feasible primitives, inferred dynam-



ically at each step. In practice, this is modelled through
a discrete behavioral prior learned from task-agnostic play
data.

While existing works on behavioral priors largely rely on
soft integration schemes, we instead propose to discretize
the prior into a hard, binary constraint. We then define
an algorithm that only explores and exploits over the set
of feasible actions, effectively performing Q-learning in a
reduced Markov Decision Process (MDP). Theoretically, a
near-optimal solution to this MDP can be retrieved more
efficiently and under mild assumptions, can be generalized
to the original MDP. Empirically, we observe improved
performance in a variety of complex manipulation tasks and
highlight the ease of transferring the policy to real-world
hardware.

Our approach represents a promising step towards learning
to solve long-horizon tasks in a hierarchical manner by
combining task-agnostic play data, RL and motion planning
algorithms. Our contributions can be summarized as follows:
(a) we explore the integration of RL with classic motion
planning algorithms and show its feasibility in a simulated
manipulation environment; (b) we highlight how the ex-
ploration problem can be further addressed by introducing
a prior model learned from play data; (c) we evaluate
our proposed algorithm both theoretically and empirically,
while comparing it against relevant baselines; (d) we show
how learned policies can be deployed to physical hard-
ware. Videos and additional information can be found at
nuria95.github.io/elf—p.

II. RELATED WORK
A. Planning Algorithms

Classical motion planning methods to move a robot in
a collision-free path are based on sampling [16]-[18] or
constrained optimization [19], [20] and can efficiently find
long-horizon paths. However, they do not allow a robot to
alter the world. Task-and-motion planning (TAMP) methods
are used when planning for a robot that operates in environ-
ments containing a large number of objects, taking actions
to navigate the world as well as to change the state of the
objects [21]-[25]. Despite performing well in long-horizon
planning, they are limited by the need of a world model, their
task representations, the dimensionality of the search space
and the inability to execute high-dimensional, complex tasks
robustly.

B. Model-Free Learning

Model-free learning offers a promising alternative when
dealing with unknown environments but relies on a reward
function defining the task at hand. Additionally, model-free
methods are sample inefficient [26] in general and have
difficulties reasoning over long horizons. Hierarchical RL
(HRL) [27]-[31] methods have been proposed as a scalable
solution that directly leverages temporal abstraction but in
practice, they struggle with sample complexity and suffer
from brittle generalization [32]. Several HRL algorithms rely
on goal-conditioned policies [33]-[36] for low-level control

but they tend to make training unstable (see discussion in
[12]). To address this, several works have adopted classical
motion planning techniques to replace the high-level policy
(e.g. tree search methods [5], [6]). In contrast, we sidestep the
problem by replacing the low-level policy with a predefined
set of task-primitives and train a model-free high-level policy
to control their execution. Closely related to our work,
[32], [37], [38] use Parameterized Action MDPs [39] in
which the agent executes a parameterized primitive at each
decision-making step. These methods also rely on a specified
library of primitives but, unlike ours, they are parameterized.
However, this versatility in primitive instantiation comes at
a low efficiency cost since the agent needs to explore large
amounts of parameters to solve long horizon tasks. Other
methods also use motion planners as a low-level controller
and learn an RL policy in a high-level action space [40]-[42].

C. Guiding Exploration in Large Action Spaces

As exploration remains a fundamental challenge for RL
agents, previous works have attempted to ease the burden of
planning in complex spaces by pruning the actions available
at each step. Invalid action masking has been proposed in
large strategy games to restrict sampling to a fixed subset of
the action space [43]-[45]. However, these methods assume
that the set of illegal actions is given a priori. The case in
which a random subset of all actions is available at each step
was also formally studied by [46]. When prior information
is not available, several methods naturally propose to learn
which actions are suitable. In the action elimination liter-
ature, this is achieved with [47] or without [48] assuming
the availability of additional supervision from the environ-
ment, although the latter case remains constrained to tabular
settings. Another relevant framework is that of affordances
[49]-[51], which measure the possibility for single actions to
achieve desired future configurations. Affordances can again
be learned from an explicit signal from the environment [50]
or utilize prior information. Our method is perhaps more
closely related to behavioral priors, which can be learned
from offline trajectories [52]-[54] or online interaction [55]
and can be used to direct exploration [54] or regularize
learned policies [55]. Behavioral priors can be modeled as
conditional probability distributions over the action space.
Our method also learns a state-conditional model of possible
actions from data and does not require explicit supervision
(i.e. validity labels for the agent’s actions). However, while
behavioral prior literature largely focuses on continuous
actions and soft constraints (e.g. KL-regularization), our
method learns over a discrete set of actions and relies on
a hard integration of the prior into the training process.

III. PROBLEM STATEMENT

We model the environment as a goal-conditioned
Markov Decision Process represented as an 8-tuple
(8,6, A, P, R, po, pg,7y) With possibly continuous states s €
S and goals g € G, discrete actions a € A, transition kernel
P(:|s,a), reward function R(s,g), initial state distribution
po, goal distribution p, and discount factor . We focus on
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sparse reward signals: R(-|s,g) = 1y|(s)—g|s<e}» Where |-|g
is an arbitrary distance metric, f : S — G is a projection and
€ is a threshold. We additionally denote by 7 : S x G — A
a goal-conditioned stationary policy.

Crucially, we assume access to a fixed dataset collected
through play, following an unknown behavior policy mg.
Play data [56] can be inexpensively collected by a human
operator controlling a robot to achieve arbitrary environment
configurations while interacting with the objects at hand.
This is useful to extract affordances [49], representing the
subset of possible actions which are feasible in a current
situation. For example, a drawer can be pushed or pulled, but
not moved sideways. In our framework, play happens at a
high level, more specifically at the level of motion primitives
or skills, where a human can choose from a predefined set
of primitives, which are generally available (e.g. precoded
behaviors for real-word hardware such as for Spot robot
[57] or as in [58]). Another solution, which could involve
recording low-level action sequences, and segmenting them
into meaningful skills as in [59]-[61], is left for future works.
The resulting play dataset consists of N high-level state-
action pairs D = {(s;,a;)}~_; where a high level action a;
represents the primitive enacted by the play agent in state s;.

Following the goal-conditioned framework [62], we intend
to find a policy 7 : S X G — A that maximizes the expected
discounted return

J(m) = Egpy Z’YtilR(St,g) ) ey
t=1
under the trajectory distribution

1 (71g) = po(so) [T;20 P(se+1lse, ar) with ay = 7(sy, g).
We remark that through this paper, the notation of atomic
actions a € A is used to represent non-parametric motion
primitives. We effectively abstract away the complexity of
low-level control and let the action space .4 be composed
of a finite set of high-level behaviors which are, in practice,
executed through established motion planning methods. As
a consequence, a single timestep in the MDP corresponds
to the execution of a single primitive. We finally remark
that, while the method described in Section [[El is designed
and deployed in this particular setting, it remains generally
applicable (e.g. in MDPs with low-level actions).

IV. EFFICIENT LEARNING OF HIGH LEVEL PLANS FROM
PLAY (ELF-P)

We now present our algorithm ELF-P for solving long-
horizon tasks with motion primitives and play-guided RL. To
address exploration, we first learn a discrete behavioral prior
that eliminates infeasible actions from the set of primitives
and hence prunes the search space (Section [[V-A] Figure [2).
Next, in Section[[V-C] we propose and motivate an integration
scheme for the learned prior onto Q-learning. Consequently,
our agent can focus on learning Q-values for feasible state-
action pairs only, as the prior generally lifts the burden of
learning to avoid infeasible actions.

A. Learning a Prior from Play

Let wus start by considering the play dataset
D = {(s1,a1),...(sn,an)} introduced in Section
While lacking explicit exploitative behaviors, play data
inherently favors actions that are feasible: while not
necessarily desirable for a given goal, those actions are
likely to be successfully executed given the current state
of the environment. We aim to extract this information by
estimating a (goal-independent) behavioral prior 7°(-|s),
modeled as a conditional categorical distributions over
primitives, which associates feasible primitives to higher
likelihoods.

We parameterize 7° through a neural network with learn-
able parameters w, which can be trained via standard mini-
batch first order techniques to minimize the negative log-
likelihood ENLL(w):

1
_ _ B
Lyrrn(w) —BIED |B|( %EB logm(als)|, (2)

where B represents a batch of state-action pairs sampled
uniformly from the dataset D.

B. Selecting Feasible Actions

Given the learned behavioral prior 7g(-|s), we propose
to turn its soft probability distribution into hard, binary
constraints on the action space. We thus define a threshold-
based selection operator a: S — P(A):

a(s) = {a € A|mg(als) > p}, 3)

where P(-) represents a powerset. Ideally, an action a & «(s)
would not be chosen by an optimal goal-conditioned policy
in state s. We refer to a(s) as the set of feasible actions for
state s. See Figure 2] for a visualization.

C. Learning in a Reduced MDP

The learned selection operator «(s) enables the definition
of an auxiliary MDP M’, which we refer to as reduced MDP.
The definition and solution of the reduced MDP lay at the
core of our method. We model M’ through a generalized
definition of MDPs [63] in which available actions depend on
the current state: in the state s, the action space is restricted
to a subset a(s) C A.
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Fig. 2. The trained behavioral prior 77 learns to estimate the set of feasible
primitives in different environment configurations. (Left) When the agent is
at the center of the space, the prior favors primitives that involve reaching
elements through a free-collision path (go to door, drawers or above the
object), but prevents actions that involve object manipulation. (Right) When
being close to the door, the prior learns correct object affordances such as
grasp or slide.



Definition 1 (Reduced MDP): Given an MDP
M =(S,G,A,P,R,py,pg,y) and a selection operator
a : 8 — P(A) such that for all s € S, a(s) # 0,
the reduced MDP M’ is defined as the 9-tuple
(S7ga~’47 Pa Rv POanaOé7'7)~

where the assumption on «(s) ensures that there exist a
feasible action in each state and Q-values can be well-
defined. Intuitively, M’ encodes the same environment as
M but restricts the set of action-state pairs.

We note that in PAC RL settings, the analysis of sample
complexity [64] (i.e. the number of steps for which a learned
policy is not e-optimal with high probability) produces
upper bounds that are directly dependent on the number of
state-action pairs [65]. In particular, model-free PAC-MDP
algorithms can attain a sample complexity that is O(N),
where N < |S]||A| is the number of state-action pairs, and
O(-) represents O(-) where logarithmic factors are ignored
[66]. Learning in M’ instead of M is thus desirable and
could lead to near-linear improvements in sample efficiency
as the number of infeasible actions grows. Crucially, under
mild assumptions, the optimal policy for M’ can not only be
retrieved more efficiently but also attains optimality in the
original MDP M (see |Appendix

We thus propose a practical modified Q-learning iteration
on the original MDP M, which is equivalent to perform-
ing Q-learning directly in the reduced MDP M’. Given a
transition (s, a,s’,g,7):

Q(s,a,9) + (1-0)Q(s,a,9) +0(r+~ Jmax Q(s',d . g)),
4)

where the value of the next-state s’ is only computed over
feasible actions and ¢ is the learning rate.

Under common assumptions (i.e. infinite visitation of
each state-action pair and well-behaved learning rate in
tabular settings [67]), this algorithm converges to Q7.
from which we can easily extract 73,(s,g) = i (s,9) =
arg MaX,eq(s) @ (8, a, g). For simplicity, we will from
now on refer to Q¢ as Q.

In practice, following the goal-conditioned framework
[62], we scale this algorithm by parameterizing Qg (s, a, g)
through a neural network. Inspired by recent success in
scaling Q-learning [68] to high-dimensional spaces [69]—[71]
while reducing overestimation bias, we learn the parameters
0 of the Q-function using Clipped Double Q-learning [71],
which minimizes the temporal difference (TD) loss:

'C(GJ) = IE(s,a,s/,g,r)NB [(yj - Qaj (Sta atvg))2]7 with (5)

y; =7+ min Qp (s, argmax Qo; (8t+1,a141,9),9),
1=1,2 v
arp1€a(se41)

where j € {1,2}, and 0, 0 are the parameters for Q and tar-
get Q-networks respectively and where (s, a, s, g,7) tuples
are sampled uniformly from an experience replay buffer [72]
B exploiting the off-policy nature of Q-learning. We collect

experience following an e-greedy exploration mechanism

I'See our website: nuria95.github.io/elf-p/ for all Supplemen-
tary Materials .

on the feasible action set a(s) C .A. We summarize our
approach in Algorithm [I]

Algorithm 1: ELF-P

input Trained prior 75 , randomly initalized Qy and Q-target

Qg with @ = ¢, probability threshold p, learning rate 7,
replay buffer D = (), soft update parameter .
for episode=1,... N do
Sample s ~ po, g € pg.
for step=1,...7 do
Compute feasible action set a(s;) in (), compute
Qo(st, a, g) for each a € A.
With probability e sample a¢ ~ U{a(s:)}, else select
ar = argmaX,cq (s, ;) Qo(st,a,9).
Execute a; and store transition (s¢, at, 7+, St+1,¢) in D.
Sample minibatch of transitions (s;,a;,7;, Sj+1,9)
uniformly from D.
Compute TD loss Lq(0) in ().
Gradient step 6 < 0 — nVLq(6).
Perform soft-update on ' < uf + (1 — u)é’.
end for
end for

V. RESULTS

In this Section, we empirically evaluate the performance
of ELF-P against several baselines. We investigate whether
ELF-P can retrieve optimal policies more efficiently than
existing approaches that leverage prior data, and whether the
number of infeasible actions that are attempted throughout
the training process is reduced. We evaluate ELF-P on a
variety of manipulation tasks in a simulated environment and
then deploy the learned policies on real hardware to evaluate
the ease of transfer. For further details on the environment,
additional experiments and extended results, see /Appendix
and

We compare ELF-P with an unmodified DDQN [69], with
DDQN with Hindsight Experience Replay (DDQN+HER)
[34], with two other state-of-the-art methods that can lever-
age prior data, namely DDQNfD [73] (with 1-step returns
and unprioritized experience replay for a fair comparison),

Center
Object

Start)

Start: object inside cabinet Goal: block inside mid drawer
Plan:

1. center 6. drawer2 11. door 16. grasp

2. drawer3 7. grasp/release  12. grasp/release  17. center

3. grasp/release 8. push/pull 13. slide 18. go-to-goal
4. push/pull 9. grasp/release  14. grasp/release  19. release

5. grasp/release  10. center 15. object

Fig. 3. An example of a task. Starting from an arbitrary configuration, the
agent needs to place the block, which is hidden behind the cabinet door, in
the mid drawer, which is blocked by the drawer above. The sequence of 19
actions required to achieve the goal is shown below.
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DDOQN-+Prefill, which initializes its replay buffer with the
task-agnostic data D, and with SPiRL [52], which also uses
play data to constrain exploration, but adopts an actor-critic
framework with soft prior regularization, which we adapted
to operate over discrete action spaces. Extended details are

in /Appendix/ [A.3.3]
A. Simulation Experiments

We train and evaluate the algorithm on a variety of
simulated long-horizon manipulation tasks in which a robot
needs to interact with a realistic desk environment featuring
several household items. Possible behaviors include sliding a
cabinet door, opening several drawers and moving a wooden
block (see Figure [3). The tasks are defined in the same
environment that play data was obtained in. While play data
can be collected by humans, for simplicity we use a scripted
policy (details are in [Appendix/[A.3). The goal of each task
is to place the block in an arbitrary desired position, which
generally also requires manipulating the rest of the items.
The episode ends when exceeding a predefined number of
steps or when the goal is achieved. The reward function is
sparse and is equal to one if and only if the task is completed
in time, otherwise a reward of zero is given.

We evaluate on tasks distributions with two levels of
difficulty: Medium (M) and Hard (H). The average number of
actions required to solve the (M) tasks for an expert planner
is 14, with the longest task requiring 16 steps. For the (H)
tasks, the average is 23 steps, with the longest task requiring
29 steps. See Figure [3] for an example.

1) Performance Analysis: Figure[dshows the success rate
and the number of infeasible actions attempts averaged over
50 evaluation episodes across the two task distributions. In
the (M) tasks ELF-P shows the same sample efficiency as
the best baseline, while in the (H) tasks it is significantly
better than all competitors. For both (M) and (H) tasks, the
number of infeasible actions that are attempted by the agent
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Success rate and number of infeasible actions attempts for the Medium (left) and Hard (right) task variants. (Results are averaged across 10

is significantly lower than other baselines. We note that the
execution of infeasible actions is due to inaccuracies in the
trained prior.

While vanilla DDQN cannot master the (M) task and fails
to solve the (H) task, Prefill+ DDQN and DDQNfD manage
to solve the (M) task as efficiently as ELF-P, proving that
having access to task-agnostic play data is beneficial for
the learning process. However, when the action space grows
in size, their performance decreases significantly. We also
notice that although managing to reach over 0.5 success rate
for both tasks, SPIRL shows a much lower performance
than our method and most competitive baselines, hence
integrating a soft prior via KL-regularization might not be
beneficial in this setting. Finally, we observe that adding
HER relabeling helps slightly on the (H) tasks but hurts
performance on the (M) tasks. We report that using HER
with ELF-P also hurts performance (see/Appendix[A.2). HER
relies on a gradual growth of the frontier of achieved goals,
which can be used for relabeling. Since the dynamics in our
environment are not smooth (i.e. a single action often leads to
large changes in the state), we hypothesize that HER cannot
interpolate to unseen goals and hence hurts performance.
This behavior was also pointed out by [6].

We note that all methods in this section that can leverage
prior data have access to a play dataset with 10* datapoints,
which simulates an amount of data that could in practice, be
collected by a few human operators.

2) Robustness to Play

x 108
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. o
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£o0.25

fects the amount of data &
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of data used to pre- Fig 6. Effect of play dataset size

on sample complexity (DDQN+Prefill
fails to solve the task with 1000 data-
points).

fill the replay buffer for
DDQN-+Prefill). In partic-
ular, we measure the num-
ber of timesteps required to reach a success rate of 0.95 on
(H) tasks when using different dataset sizes. We report results
in Figure [ We observe that our method retains most of its
performance when the prior is trained on minimal quantities
of data whereas DDQN+Prefill struggles in low-data regimes.
This shows that our method is more suited for the setting of
play, and is able to learn efficiently with reasonable amounts
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of data, i.e., data that could in practice be collected by a
few human operators (~ 1h30min of interaction data). When
more data is available, we generally find the performance
gap between methods to decrease, while ELF-P consistently
outperforms baselines in all data regimes. See Appendix
for additional results.

3) Sample Complexity: 5 x10°
We further analyze the g
gains in sample complex- %1'0
ity and compare them 3
with the theoretical rates £ 0.5
mentioned in Subsection £
n

0.0 0.2 04 0.6 0.8

rate invalid state-action pairs

[[V-C| which hypothesize a
linear dependency on the

number of feasible action-
state pairs in PAC-RL set-
tings. In particular, we
measure the number of timesteps required to reach a success
rate of 0.95 on (M) tasks with increasing values for the
threshold p, thus pruning the state-action space more ag-
gressively. In Figure |/| we plot this quantity against the ratio
of infeasible state-action pairs for each value of p, computed
according to the visitation distribution of a random policy.
While our algorithm recovers the performance of DDQN for
p = 0, we indeed observe a linear trend in the decrease of
sample complexity as the number of infeasible action-state
pairs increases. Further details are in Appendix|[A.2.2]

4) Soft Prior Integration: We implement Soft-ELF-P, an
ablation for our method which softens the integration of the
prior into learning. This modification could potentially allow
Soft-ELF-P to recover from degenerated priors, i.e., when
play data has significant distribution mismatch with the target
tasks of interest. Soft-ELF-P samples from the prior (instead
of sampling from the feasible set a)) both during initial ex-
ploration phase and while performing e-greedy exploration.
Additionally, during exploitation, it multiplies the softmax
of Q-values by the prior, thus biasing the greedy action
selection towards the prior. Finally, given the soft integration
of the prior, it performs Q-learning over the set of all actions,
instead of over the reduced set of feasible actions. In Figure
[l we compare the performance of ELF-P with Soft-ELF-P
on the (H) task. Results on the (M) task are in the Appendix
[A.2.3] We observe that while Soft-ELF-P is able to learn both
medium and hard tasks, it has lower sample efficiency than
ELF-P. The hard prior integration of ELF-P alleviates the Q-
network from learning values for all state-action pairs: it can
focus on learning Q-values for feasible state-action pairs only
and ignore Q-values for unfeasible actions. This shows one of
the main contributions of our algorithm. While binarizing the
prior results in greater learning efficiency, a soft integration
could be useful when dealing with degenerated priors and
we reserve further exploration on the topic for future work.

Fig. 7. Effect of p on sample com-
plexity. Means across seeds are con-
nected by lines.

B. Real-world Experiments

In this experiment, we evaluate how ELF-P performs
when transferred to physical hardware. Figure |1| (upper right)

depicts our physical robot workspace and further details can
be found in the Appendix We use Boston Dynamics Spot
robot [57] for all our experiments because of its stability and
robustness when following desired end-effector trajectories.
The high-level planner, trained in simulation, is used at
inference time to predict the required sequence of motion
primitives to achieve a desired goal. We then instantiate each
of them using established motion planning methods [74] to
create optimal control trajectories. For further implementa-
tion details, we refer the reader to [75].

We show that ELF-P can be easily transferred to physical
hardware while maintaining its goal-reaching capabilities. In
Figure [2) we show the agent executing several primitives in
order to complete a task. We refer the reader to Appendix
and the video material for extended visualizations.

VI. DISCUSSION AND FUTURE WORK

We present ELF-P, a method that bridges motion planning
and deep RL to achieve complex long-horizon manipulation
tasks. We show that by integrating a discrete behavioral prior
learned from easily collectable play data, we can achieve
significant gains in sample efficiency compared to other
baselines that leverage prior data. This approach has the
added benefit of largely avoiding infeasible actions during
training. By planning in a two-level hierarchy, we show how
our method allows reasoning over long-horizons in a mixed
decision space in an efficient manner. We finally demonstrate
that within this framework, ELF-P can be easily transferred
to physical hardware without further modifications, showing
the potential of combining readily available motion planners
with sample efficient RL algorithms.

Despite showing promising results, our method assumes
full observability of the state space and perfect execution of
the motion primitives. These limitations could be addressed
by introducing perception and by querying ELF-P at higher
frequencies at inference time to ensure primitive completion.
Furthermore, choosing a suitable level of abstractions for
skills remains an open question, whose answer could relax
the need for providing a predefined set of skills, while
still maintaining a low-dimensional parametrization. Future
work may also actively learn the behavioral prior instead
of leveraging a static play dataset, reaching a compromise
between sample complexity and reliance on collected data.

We expect our work to enable future research directions
such as a tighter coupling between the training of the
high-level planner and the execution of motion primitives.
Although introducing motion planning in the training loop
is time consuming, we believe that the significant gains in
sample efficiency demonstrated in this work can help address
this challenge.
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