
Computational Co-Optimization of
Design Parameters and Motion
Trajectories for Robotic Systems

The International Journal of Robotics
Research
XX(X):1–14
c©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Sehoon Ha1 and Stelian Coros2 and Alexander Alspach3

and Joohyung Kim1 and Katsu Yamane1

Abstract
We present a novel computational approach to optimizing the morphological design of robots. Our framework takes as
input a parameterized robot design as well as a motion plan consisting of trajectories for end-effectors and, optionally,
for its body. The algorithm optimizes the design parameters including link lengths and actuator placements while
concurrently adjusting motion parameters such as joint trajectories, actuator inputs, and contact forces. Our key insight
is that the complex relationship between design and motion parameters can be established via sensitivity analysis
if the robot’s movements are modeled as spatio-temporal solutions to an optimal control problem. This relationship
between form and function allows us to automatically optimize the robot design based on specifications expressed as
a function of actuator forces or trajectories. We evaluate our model by computationally optimizing four simulated robots
that employ linear actuators, four-bar linkages, or rotary servos. We further validate our framework by optimizing the
design of two small quadruped robots and testing their performances using hardware implementations.

Keywords
Legged Robots, Motion Control, Mechanism Design

1 Introduction

In the not-so-distant future, a rich ecosystem of robots for
service, search and rescue, personal assistance and education
has the potential to improve many aspects of our lives.
The process of creating new types of robots, however, is
notoriously challenging because their motor capabilities are
intimately related to their design. For this reason, creating
new robots requires a great deal of experience, and is a
largely manual and time-consuming task. This tedious and
error-prone approach to creating robots is unfortunately
necessitated by the lack of formal models that can predict
the complex interactions between the design of a robot and
its ability to effectively serve its intended purpose.

Rather than relying on trial-and-error approaches, we seek
to develop a computational model with the predictive power
required to inform design decisions. To achieve this goal,
we must establish a relationship between the form and
function of robotic devices. To this end, we model a robot’s
movements as spatio-temporal solutions to optimal control
problems. The sensitivities of these optimal solutions enable
a guided exploration on the manifold that relates a robot’s
morphological design parameters and its motor capabilities
(Figure 1).

We test the effectiveness of our approach by optimizing
the designs of various robotic devices, including a
manipulator with linear actuators, a manipulator with four-
bar linkages, a quadruped with linear actuators, and a
quadruped with rotary servos, with the goal of minimizing
the actuator forces required to realize the desired motions.
Further, we fabricated two physical prototypes of small

Figure 1. A set of motion and task constraints implicitly define
a manifold of valid designs.

quadruped robots using 3D-printing and validate the
simulation results.

1Disney Research, USA
2ETH Zürich, Switzerland
3Toyota Research Institute, USA

Corresponding author:
Sehoon Ha, Disney Research Pittsburgh, 4720 Forbes Avenue, Lower
Level, Suite 110 Pittsburgh, PA 15213.
Email: sehoon.ha@disneyresearch.com

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

2 The International Journal of Robotics Research XX(X)

2 Related Work

Designing hardware and motion of robots is a complex
task that needs to consider numerous parameters and non-
intuitive relationships between them. To obtain a good initial
guess for this challenging problem, robot designers often get
inspiration from creatures in nature. Under this paradigm,
many robots have been successfully designed and built by
mimicking morphology and locomotion of real-life animals
including salamanders (Crespi et al. (2013)), cheetahs (Seok
et al. (2014))), kangaroos (Graichen et al. (2015)), and
chimpanzees (Kuehn et al. (2014)). Although these animals
can be good sources of inspiration, designing robots is still
a time-consuming process that requires repetitive design
revisions and performance tests. In this work, we focus on
providing an intuitive design framework that allows editing
with shorter cycles by identifying relationships between
design parameters and performance criteria.

To overcome the complex problem of designing robots,
there exists prior work to automate the design by
optimizing morphology for a given performance criterion,
such as locomotion speed or energy consumption. In
particular, evolutionary algorithms (EA), such as Genetic
Algorithm (GA) or Simulated Annealing (SA), have received
considerable attention for solving design optimization due to
its capability to handle discrete changes. This approach has
been successfully deployed to find the optimal morphology
for various types of robots, including virtual creatures (Sims
(1994)), manipulators (Leger (1999)), tensegrity robots
(Lipson and Pollack (2000)), and soft robots (Cheney
et al. (2013)). Recently, Baykal and Alterovitz (2017)
proposed a sampling-based approach for optimizing the
kinematic design of piecewise cylindrical robots in cluttered
environments. Although evolutionary algorithms have been
proven to be simple yet effective for exploring various
designs, the key limitations are limited guarantee on
optimality of the final design and difficulty to reproduce
the same results on subsequent trials. Instead of relying
on stochastic operations, our framework directly identifies
the required changes for optimizing the performance of the
robot.

In the robotics and computer graphics community, a
number of researchers take the approach of automating the
design process by optimizing the morphology of a robot
for a given task. In general, this approach solves a large
optimization problem that minimizes a performance criterion
while satisfying kinematic and dynamic constraints. The
task-based design optimization has been widely applied
to manipulators (Paredis and Khosla (1991); Ceccarelli
and Lanni (2004); Van Henten et al. (2009)), parallel
manipulators (Kim and Ryu (2003); Collard et al. (2005);
Yun and Li (2011)), and cable-driven mechanisms (Megaro
et al. (2017); Li et al. (2017)) for reaching desired workspace
and avoiding joint singularities. However, there exist only a
few studies on under-actuated robots, such as pipe-cleaning
robots (Jung et al. (2011)), stair-climbing mobile robots
(Kim et al. (2012)), virtual creatures (Wampler and Popović
(2009); Geijtenbeek et al. (2013)), or quadrupeds (Ha et al.
(2016)) due to complexity of required models.

Such monolithic design optimization is often not easy
to use in practice. One of the main problems is that this

(y0, z0)

y

z

f(y, z) = 0

g(y)=z

Figure 2. The implicit function theorem converts an implicit
relation f into an explicit function g at the given point (y0, z0).

approach usually takes long time (a few hours for simple
robots) to optimize the design. Furthermore, as the first run
of optimization rarely results in a satisfactory design, the user
needs to repeat the optimization many times while adjusting
the objective function. Instead, our framework provides an
iterative editing method that the user can provide the change
directions any time during the optimization process.

Two of the six examples used in this paper utilize linear
actuators, motivated by the recent robots empowered by
hydraulic or electronic linear actuators to realize large
joint torques in manipulators (Hyd), humanoids (Atl), and
quadrupeds (Semini et al. (2011); Rong et al. (2012); Spo
(a,b)). One of the difficulties of using linear actuators is
finding their optimal layout to realize large moment arms
while achieving the necessary range of motion, which
is not intuitive due to nonlinear relationships between
joint positions and forces. The examples demonstrate that
our framework can effectively handle linear actuators by
including their attachment locations as part of the design
parameters.

3 Background: Implicit Function Theorem

The implicit function theorem (Jittorntrum (1978)) is
a tool for converting an implicitly defined relationship
between two sets of variables to an explicit function.
Let the following implicit function f : Rn+m → Rm be a
relationship between two sets of variables, y ∈ Rn and z ∈
Rm:

f(y, z) = 0. (1)

For the given implicit relationships f , our goal is to convert
it to an explicit function g : ∆y 7→ ∆z within a small disk
around the current point, (y0, z0) (Figure 2). The Jacobian
Df describes linearized changes around the given point as:

(Df)(y, z) =
[δf
δy1

, · · · , δf
δyn
| δf
δz1

, · · · , δf
δzm

]
(2)

where y1, · · · , yn and z1, · · · , zm are entries of y and z.
When we change y0 and z0 by ∆y and ∆z, the change of
the function ∆f should be zero to remain on the manifold

Prepared using sagej.cls

Co-optimization of Robot Design and Motion 3

Design Parameters

Link Lengths

Actuator Layouts

Constraints

Kinematics

Dynamics

Task

Actuator Limits

Friction Cone

Implicit

Function

Theorem Explicit

Manifold

Numerical

OptimizationMotion Parameters

Joint Positions

Actuator Forces

Contact Forces

Desired Parameter Changes

Figure 3. Overview of the proposed framework. Our algorithm
co-optimizes the design and motion parameters by relating
them with the implicit function theorem.

defined by f :

∆f = 0 = (Df)(y0, z0)[∆y; ∆z]

=
[δf
δy1

, · · · , δf
δyn

]
∆y +

[δf
δz1

, · · · , δf
δzm

]
∆z.

(3)

If there are no additional inequality constraints, the explicit
function g can be obtained by simply taking the inverse of
the Jacobian matrix with respect to z:

∆z = −
[δf
δz1

, · · · , δf
δzm

]−1[δf
δy1

, · · · , δf
δyn

]
∆y. (4)

For the general k dimensional function f : Rn+m → Rk,
we could take the Moonre-Penrose pseudoinverse or employ
numerical optimization to obtain ∆z that satisfies Eq. (3) as
we describe in the next section.

4 Algorithm
When a robot executes a motion, the robot and motion can
be described by a set of design and motion parameters. Our
goal here is to develop a tool that can efficiently navigate
through the implicitly defined manifold of valid parameters.
In this section, we first describe how the implicit function
theorem can be applied to interactive robot design, followed
by the details of our problem formulation. We then present
the details on how to formulate the relationships between
various parameters as a linear system using the implicit
function theorem, and how to efficiently solve it using the
null space of the linear system.

4.1 Overview
A robot design can be described by a set of parameters
such as link lengths and actuator attachment points. A
robot motion, on the other hand, can be described by joint
positions, joint torques, and contact forces at every time
frame. These variables collectively form a set of design and
motion parameters that defines a robot design and its motion.

The design and motion parameters must satisfy various
constraints such as the equation of motion. In some cases, the
desired motion may be given as end-effector trajectories that
provide additional constraints on the end-effector positions
at every frame.

These constraints form the implicitly-defined manifold
of valid robot designs and their corresponding motions.
We apply the implicit function theorem to derive the
relationships among the design and motion parameters. By
grouping the parameters in various combinations into y and

z, we can compute how to change a subset of parameters
in response to the changes in the other parameters while
maintaining the constraints. For example, if we form y by
all the design parameters and include all motion parameters
in z, we can compute how the motion should be changed
according to a design change.

We can even perform certain types of optimization using
this technique (Figure 3). Consider choosing the maximum
force of a specific actuator as the only element of y, and
giving a small negative value as ∆y. In this case, Eq. (4)
gives how to concurrently change the design and motion to
reduce the peak force. Alternatively, we can choose to fix
the design and change only the motion by adding the design
parameters to y and specifying zero changes for them.

This formulation provides an entirely new approach to
the robot design problem: the user can choose the subset
of parameters and their change directions, and the algorithm
will automatically compute how the other parameters should
be changed for the system to stay on the constraint manifold.
In contrast to traditional numerical optimization, the user
no longer has to formulate the cost function for each
set of optimization variables, or indirectly manipulate the
optimization result by adjusting the weights in the cost
function.

4.2 Problem Description
4.2.1 Parameters In our problem, we have two sets
of parameters: design parameters and motion parameters.
Design parameters, such as link lengths l and attachment
points of linear actuators α, define the robot’s morphology
that is constant over time. On the other hand, motion
parameters describe the state and control signals of the
motion at each of the N sample frames. Motion parameters
include joint positions qi, actuator forces τ i, and contact
forces at the M end-effectors fi,j (i = 1, 2, . . . , N, j =
1, 2, . . . ,M). We assume that only the end-effectors make
contact with the environment. Finally, we introduced the
motion plan scale parameters κ = [κx, κy, κz]T that change
the scale of the given motion plan. For instance, the
optimization can elongate the step length of a quadruped
robot by increasing κ in the forward direction.

By collecting all the design and motion
parameters, we define the parameter vector x as
x = [lT ,αT ,qT

1 , . . . ,q
T
N , τ

T
1 , . . . τ

T
N , f

T
1,1, · · · , fTN,M ,κ]T .

We denote the size of x by P .

4.2.2 Constraints A set of design and motion parameters
is valid only when it satisfies the task and physics constraints.

The first constraint we consider is that the motion of the
robot must satisfy the equation of motion. We therefore
define the objective function associated with the equation of
motion as

wEOM
i (x) = |Mq̈i + c−Rτ i −

M∑
j

JT
j fi,j |2 = 0 (5)

where M is the joint-space inertia matrix, c is the sum of
gravitational, centrifugal and Coriolis forces, R is a moment
arm matrix that maps actuator forces to joint torques, and
Jj is a Jacobian matrix of the position of the jth end-
effector with respect to the joint positions. For brevity of

Prepared using sagej.cls

4 The International Journal of Robotics Research XX(X)

k k
a

joint k

qk qk
a

Figure 4. Four-bar linkage example.

representation, we omit the dependency of matrices: for
instance, the moment arm matrix R depends on l, α, and qi.
The velocity q̇i and acceleration q̈i are computed from finite
differences of qi. When the robot has an unactuated floating
base, we set the corresponding values of τ i to zero and
remove them from the free variables. Because we describe
the dynamics of the robot using the full equations of motion,
we do not have any specific assumptions such as quasi-static
stability.

The moment arm matrix R is introduced to uniformly
represent various actuation mechanisms including rotary
servos, four-bar linkages, and linear actuators. When joint
k is actuated by a rotary servo directly located at the joint
axis, the (k, k) element of R, Rkk, is 1. When joint k is
driven by a four-bar linkage as shown in Figure 4 where
the black joint is actuated and white ones are passive, we
simplify the formulation by dividing the mechanism into the
main chain (thick gray lines) and supporting structure (thin
dashed lines). We treat the supporting structure as a pure
torque source and ignore its mass and inertia. Note that some
linkage structures, such as the Jansen’s linkage, do not have
this assumption. In this case, we can represent its dynamics
using either the Lagrangian approach (equations of motions)
or the Eulerian approach (body dynamics + constraints).

In Eq. (5), the active joint torque τak,i is included in τ i

while the equivalent main joint angle qk,i is used in qi.
From now, we will omit the frame index i for brevity. The
velocities of the main and active joints are related by the ratio
hk as follows:

q̇ak = hk(qk)q̇k. (6)

The principle of virtual work yields

τkδqk = τak δq
a
k . (7)

In the four-bar linkage case, therefore, we have Rkk =
hk(qk). For linear actuators, Rkk is:

Rkk = (rk × sk)Tak (8)

where sk is the actuator force direction, ak is the direction
of the joint axis, and rk is a vector pointing from a point on
the joint axis to a point on the line of action of the actuator
force.

Many tasks can be described by a set of desired end-
effector trajectories and its objective function can be defined
as:

wEE
i,j (x) = |ej(l,qi)− ēi,j |2 = 0 (9)

where ej(∗) evaluates the j-th end-effector position and ēi,j

is the desired position of the j-th end-effector at the i-th
frame.

When the robot has linear actuators or four bar linkages,
the morphology of the robot has closed kinematic loops. We
enforce jth kinematic loop constraint at ith frame as follows:

wClosed
i,j (x) = |pA

i,j(l,qi)− pB
i,j(l,qi)|2 = 0. (10)

where this constraint indicates that positions of two points
pA and pB should be matched.

In case of cyclic motions such as locomotion, we place an
additional constraint that the joint positions for the first and
last frames must be identical:

wLoop(x) = |q1 − qN |2 = 0 (11)

In addition to the equality constraints that represent the
implicit relationships, we need to define a set of inequality
constraints to limit the range of some of the parameters and
enforce contact forces to stay within a friction cone. For
brevity, we will omit the details of these straightforward
inequality constraints.

For robots with rotary actuators, the lower and upper limits
for joint positions can be simply defined as bounds on the
elements of qi. If the robot includes linear actuators, their
joint positions are limited by the stroke ranges. Therefore,
we place the following constraint on the positions of each of
the K actuators as

llok ≤ li,k(x) ≤ lhik (12)

where llok and lhik are the lower and upper bounds of the k-th
linear actuator, and li,k(∗) computes its position at the i-th
frame.

4.3 Formulation of Linear System
A change in any subset of parameters will likely cause
violation of some constraints, and such violation must be
corrected by changing the other parameters. We apply the
implicit function theorem to obtain the linear relationships
between the parameters in order to constrain the parameter
changes to stay on the manifold. In the following, we refer
to the previously defined H constraints as w1, . . . , wH , and
their gradients with respect to x as C1, · · · ,CH .

Defining f = (w1 . . . wH)T may seem to be the most
natural choice to apply the implicit function theorem.
Unfortunately, we cannot directly use the objective functions
because their gradients are always zero for all parameters on
the manifold due to their quadratic forms. Instead, we use the
gradient Ci of the constraints as the implicit relationships,
where the Jacobian of gradients (i.e. Hessian of Wi) must be
equal to zero.

Because the change of the gradient function ∆Ci should
be zero, we can build a linear system of ∆x as:

∆Ci = Di∆x = 0, (13)

where Di is the Jacobian of the gradient [δCi/δx]. We apply
finite difference to compute Di because it is impossible or
very difficult to analytically compute them. To improve the
accuracy, however, we use analytical gradients for computing
Ci with respect to some of the parameters as detailed in
Section 4.6.1.

Prepared using sagej.cls

Co-optimization of Robot Design and Motion 5

The constraints on linear actuator positions (Eq. (12)) are
also converted to a linear system of ∆x using the chain rule:

llok ≤ l0i,k + Li,k∆x ≤ lhik (14)

where l0i,k is the initial actuator position li,k(x0) and Lk is
the Jacobian matrix δli,k/δx.

By collecting all equality and inequality constraints, the
linear system is formulated as follows:

A1∆x = b1

A2∆x ≥ b2,
(15)

where

A1 =

 δC1/δx1 δC1/δx2 . . . δC1/δxP
...

...
. . .

...
δCH/δx1 δCH/δx2 . . . δCH/δxP

 (16)

b1 =
[
0 · · · 0

]T
(17)

A2 =

L1,1

−L1,1

...
−LN,K

 (18)

b2 =
[
llo1 − l01,1 −(lhi1 − l01,1) · · · −(lhiK − l0N,K)

]
.

(19)

Note that the matrices of the formulated linear system are
very sparse, because the motion parameters only affect the
constraints on the corresponding frames.

The final component of the system is the user input
specifying the desired changes of a subset of parameters ∆ȳ.
We denote the remaining unknown parameters by ∆z, which
we shall determine such that the constraints are maintained
after ∆ȳ is applied. Without losing generality, we can divide
the equality and inequality constraints of Eq. (15) as

A1y∆ȳ + A1z∆z = b1

A2y∆ȳ + A2z∆z ≥ b2.
(20)

4.4 Optimization
Instead of using the pseudoinverse as in Eq. (4), we compute
z by applying numerical optimization because 1) we also
have inequality constraints, and 2) there may exist multiple
solutions or there may be no exact solution, depending on
the size of ȳ. The optimization problem can be derived from
Eq. (20) as

min
∆z

∆zTS∆z

s.t. A1z∆z = b1 −A1y∆ȳ

A2z∆z ≥ b2 −A2y∆ȳ,

(21)

where S is a positive definite, diagonal weight matrix, where
we use 0.01 for actuator forces τ , 10.0 for contact forces f ,
and 1.0 for others.

Although this is a standard quadratic programming
problem, it is numerically difficult to solve due to a large
number of constraints. We therefore represent the feasible
solution space with respect to the linear constraints using the
null space of the coefficient matrix A1z:

∆z = ∆z0 + Nu (22)

where ∆z0 = A+
1z(b1 −A1yȳ) and N represents the null

space of A1z . Note that both A+
1z and N can be efficiently

computed from one singular value decomposition. Eq. (21)
can now be reduced into

min
u

(∆z0 + Nu)TS(∆z0 + Nu)

s.t. A2z(∆z0 + Nu) ≥ b2 −A2y∆ȳ
(23)

which can be solved much more efficiently than the original
optimization problem. Once we obtain the solution u∗, we
can compute the solution of the original problem (Eq. (21))
∆z∗ using Eq. (22).

The formulated optimization is solved using Sequential
Quadratic Programming. In future, we consider to improve
the performance of the solver by exploiting sparsity of the
matrix A1 (Saad (2003)).

4.5 Summary
Algorithm 1 summarizes the optimization algorithm
described in this section. It takes the initial parameters x0

as input, and finds the optimal parameters x∗ that realizes
the desired change and also maintain the design and motion
on the constraint manifold. In Algorithm 1, E represents the
sum of the objective functions:

E =

H∑
i

wi(x). (24)

A non-zero E implies violation of constraints due to
numerical errors caused by linear approximation. At each
iteration, we attempt to correct this error as described in
Section 4.6.2. We run the optimization until it reaches the
maximum iteration (1000 in our implementation), or the
error E is greater than a threshold Ē (10−6).

Algorithm 1 Design Optimization Algorithm

Require: Initial design and motion parameters x0

1: x← x0.
2: while not reach the maximum iteration do
3: determine ∆ȳ by selecting the desired changes.
4: formulate A1, b1 from the equality constraints.
5: formulate A2, b2 from the inequality constraints.
6: obtain ∆z by solving Eq. (21).
7: x← x + (∆ȳT ∆zT)T .
8: correct numerical errors (Section 4.6.2)
9: calculate E using Eq. (24).

10: if E > Ē then
11: break.
12: end if
13: x∗ ← x.
14: end while
15: return x∗

In line 3 of Algorithm 1, we could also let the user
interactively choose ∆ȳ as demonstrated in Section 5.1.
This version of the algorithm provides an intuitive interface
for optimizing the design of a robot by specifying desired
changes to any of the design or motion parameters. For
example, the user could choose to reduce the maximum
torque, or adjust the link length depending on the design
requirements.

Prepared using sagej.cls

6 The International Journal of Robotics Research XX(X)

Table 1. The problem parameters.
Problem # Parameters # Expanded Nodes

Robot Actuation # Actuators # Frames Lengths Actuator
Points

Joint
Positions

Actuator
Forces

Contact
Forces

Plan
Scale

Total
Parameters

Time per
Iteration

Manipulator Linear 4 7 4 8 28 28 0 0 68 0.8s
Four-bar Arm Rotary 3 11 5 2 55 55 0 0 117 1.5s

Large Quadruped Linear 16 13 8 16 208 208 156 0 596 40.2s
Small Quadruped Rotary 14 13 5 N/A 182 182 120 0 489 32.1s
Tetrabot, Rolling Rotary 16 8 3 N/A 176 128 81 3 391 4.3s
Tetrabot, Walking Rotary 16 16 6 N/A 352 256 177 3 794 9.9s

Tetrabot, Both Rotary 16 8 3 N/A 528 384 258 3 1176 15.1s

4.6 Implementation Note
4.6.1 Computation of Gradients It is desirable to cal-
culate the analytical gradient vector Ci with respect to
all parameters. Unfortunately, most of the constraints are
nonlinear and it is difficult to analytically calculate their
gradient with respect to some of the parameters, such as
the partial derivative of the Coriolis forces with respect to
the joint velocities. Instead, we only compute the analytical
gradients that can be easily derived. In our experience, this
compromise provides enough accuracy while keeping the
computational cost reasonable.

For instance, the gradient of end-effector constraints with
respect to the link lengths can be simply computed as:

δwEE/δl = JT
j (ej(l,q)− ē). (25)

Similarly, the analytical gradients of the equation of motion
constraint can be easily calculated for the joint forces and
contact forces as:

δwEOM/δτ = RT (Mq̈i + c−Rτ i −
M∑
j

JT
j fi,j)

δwEOM/δf =

[J1 · · ·JM]T (Mq̈i + c−Rτ i −
M∑
j

JT
j fi,j).

(26)

4.6.2 Correction of Numerical Errors Because we apply
linear approximation to the nonlinear constraints, numerical
errors will accumulate and eventually lead to physically
invalid solutions. Our framework prevents this numerical
deviation by re-optimizing only the motion parameter for the
equality constraints.

First, we optimize the joint angles considering only the
end-effector constraints (Eq. (9)):

qi = argmin
qi

wEE . (27)

We then optimize the actuator forces and contact forces to
satisfy the equation of motion (Eq. (5)):

τ i, fi,1, · · · , fi,M = argmin
τ i,fi,1,··· ,fi,M

wEOM . (28)

Note that the design parameters are not changed in the error
correction process.

5 Experiments
In this section, we discuss the simulation and hardware
experiments for validating the proposed design optimization
algorithm. We tested three sets of examples: simulation

Table 2. The results on manipulators with linear actuators.

Link Lengths(cm) Actuator
Positions (cm)

Maximum
Force (N)

Design Link1 Link2 Link3 Link4 Link2 Link3 Manipulation
Initial 20.0 30.0 30.0 20.0 15.0 5.0 5.89×102

Motion Optimized 20.0 30.0 30.0 20.0 15.0 5.0 4.87×102

Design Optimized 19.7 24.4 29.5 24.9 14.5 8.3 3.83×102

Length Edited 24.0 24.4 29.1 24.9 10.8 8.3 4.80×102

of linearly actuated manipulators, simulation of linearly
actuated quadrupeds, and hardware of quadrupeds with off-
the-shelf rotary servos. The algorithm is implemented in
Python with the PyDART (PyDART) and SciPy library
(Jones et al. (2001)) on Ubuntu Linux, and the computations
are conducted on a single core of 3.40GHz Intel i7 processor.
The parameters for all problems are described in Table 1.

5.1 Simulation of Manipulators with Linear
Actuators

We first show a proof of concept of our algorithm by
optimizing the design of a linearly actuated manipulator.
First, we provide an initial manipulator design with link
lengths of 20 cm, 30 cm, 30 cm, and 20 cm. The manipulator
has four degrees of freedom fully actuated by four actuators,
each of which with 25 cm body length and 16 cm stroke.
The actuators are monoarticular with 5 cm moment arms
except the second biarticular actuator with a 15cm moment
arm. The attachment points of actuators can be adjusted
vertically, except the points on the base link that can adjusted
horizontally. The input task is to move a 5 kg-object along the
target trajectory that has the 60cm maximum distance from
the base link. Note that the initial design is generated based
on simple rules rather than pre-tuned for any performance
index.

In this example, we demonstrate two editing modes: force-
driven mode for reducing the maximum actuator force, and
length-driven mode for adjusting the length of the target link.

We begin with the force-driven editing mode, which
provides an intuitive interface for editing the design such that
the maximum actuator force is reduced. At each iteration,
our algorithm selects the maximum force parameter during
the entire motion, and set the desired change as −1 % of its
value. Using our algorithm, we are able to find the optimal
design that reduces the maximum actuator force from 589 N
to 383 N, which happens at the third actuator. The parameters
of the resulting design are shown in Table 2, and the visual
comparison is provided in Figure 5. In general, the algorithm
increases the moment arm for the third actuator by changing
its attachment point, and adjusts the second and fourth link
lengths to secure the necessary range of motion. Further
increasing the moment arm of the third actuator cannot

Prepared using sagej.cls

Co-optimization of Robot Design and Motion 7

Figure 5. Comparison of the original (top) and optimized
(bottom) manipulators. Note the larger moment arm for the third
actuator in the optimized manipulator.

0.0 0.5 1.0 1.5 2.0
Time (s)

0

100

200

300

400

500

600

T
h
e
 T
h
ir
d
 A
ct
u
a
to
r
Fo

rc
e
(N

)

Initial

Motion Optimized

Design Optimized

Figure 6. Force profiles of the third actuator in three designs:
the initial design and motion (red), the initial design with
optimized motion (green), and the concurrently optimized
design and motion (blue). The concurrent optimization of the
design and motion parameters results in the most efficient
actuator force profile.

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Le
n
g
th
 (
m
)

Force-driven Editing Length-driven Editing

Link 1

Link 2

Link 3

Link 4

0 50 100 150 200 250
Iterations

350

400

450

500

550

600

Fo
rc
e
 (
N
) Maximum Actuator Force

Figure 7. Changes in link lengths and the maximum actuator
force the third actuator during the manipulator design
optimization process. The first half was edited in the
force-driven mode for minimizing the maximum torque, while the
second half was edited in the length-driven mode for increasing
the length of the first link.

5 10 15 20 25 30

The number of time steps in the motion

0

1

2

3

4

5

6

D
u
ra
ti
o
n
 (
s)

3 Links

4 Links

5 Links

Figure 8. Average time duration for computing a single iteration
of Algorithm 1 with various numbers of links and discrete time
steps.

Table 3. The results on manipulators with four-bar linkages.

Link Lengths(cm) Four bar
Lengths (cm)

Maximum
Torque (Nm)

Design Link1 Link2 Link3 Bar1 Bar2 Manipulation
Initial 35.0 30.0 15.0 20.0 20.0 9.81

Motion Optimized 35.0 30.0 15.0 20.0 20.0 9.74
Design Optimized 50.0 12.4 17.2 8.56 43.1 5.59

maintain the range to perform the entire desired motion,
which triggers the break condition in line 10 of Algorithm 1.

In our experience, the optimization is not very sensitive
to the initial parameters. Optimization trials with different
initial layout parameters converge to solutions similar to the
one shown in the bottom of Figure 5.

Our algorithm also allows optimization of the motion
parameters only, which gives another pair of design and
motion where the design is the same as the initial one but the
force profile is different. Figure 6 compares the torque profile
of the third actuator for the three pairs of design and motion.
Although optimizing only the motion can also reduce the
maximum torque, its final result (487 N) is worse than the
result of concurrent design and motion optimization (382 N).

Let us consider the scenario where the user is not satisfied
with the proportion of the optimized design and is willing to
sacrifice the maximum force to increase the length of the first
link. The user can then start the length-driven editing mode
and set the desired change of the first link length as +1 mm.
Given the new input, the algorithm successfully increases
the link length while properly adjusting other design and
motion parameters as shown in the second half of Figure 7.
The maximum achievable length is 24 cm, beyond which the
range of motion becomes too small to perform the desired
motion. Our algorithm automatically relocates the bottom
attachment point of the second actuator closer to the joint
in order to obtain the required range of motion. Please refer
to Extension 1 for more details.

To demonstrate the scalability of the algorithm, we plot the
timing data for computing a single iteration of the algorithm
while varying the number of links in the manipulator (design
parameters) and the number of time steps in the motion
(motion parameters) in Figure 8. The result indicates that
the speed of the optimization is slightly more dependent on
the number of design variables while showing near-linear
relationship to the number of motion parameters.

5.2 Simulation of Manipulators with Four-bar
Linkages

A four-bar linkage is the simplest closed chain mechanism.
It consists of four rigid links that are connected in a closed

Prepared using sagej.cls

8 The International Journal of Robotics Research XX(X)

Figure 9. Comparison of the original (top) and optimized
(bottom) linkage manipulators. Note that we differentiate the
active and passive joints by rendering the servos as green
cylinders.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

−2

0

2

4

6

8

10

T
h
e
 F

i
st

 S
e
 v

o
 T

o
 q

u
e
 (
N
m

) Initial

Motion Optimized

Design Optimized

Figure 10. Torque profiles of the first servo in three designs:
the initial design and motion (red), the initial design with
optimized motion (green), and the concurrently optimized
design and motion (blue).

loop by four hinge joints. This simple one degrees of freedom
(DoF) mechanism is a great tool for generating complex
end-effector trajectories and adjusting torque ratios between
input and output joints. However, it is hard to find the proper
link lengths due to non-linear relationships between design
and motion parameters. In this section, we will demonstrate
that the proposed framework can be used for editing robotic
systems with four-bar linkages.

As a proof of concept, we employ a planar three DoFs
robotic arm with a four-bar linkage as the target platform.
We manually provide the initial design parameters of the
robotic arm and let the framework to co-optimize the design
and motion. The base link and end-effector are connected by
three links with 35 cm, 30 cm, and 20 cm lengths. In addition,
we create the four bar mechanism at the shoulder joint by
attaching two 20 cm links to the base link and the upper
arm link. Therefore, the total number of design parameters
for this robot arm is seven: five link length parameters, the
position of the passive joint on the first link, and the position

Table 4. The results on large quadrupeds with linear actuators.

Link Lengths(cm) Actuator
Positions (cm)

Maximum
Force (N)

Design Rear
Hip

Rear
Thigh

Rear
Shin

Rear
Foot

Rear
Knee

Rear
Ankle

Slow
Walking

Fast
Walking

Initial 15.0 30.0 30.0 20.0 4.0 4.0 1.30×103 2.15×103

Slow Walking 10.0 35.2 31.9 16.1 9.2 9.0 0.68×103 N/A
Fast Walking 16.1 31.2 32.2 17.1 6.1 3.3 0.89×103 1.29×103

of the actuated servo on the base link. The input task is to
move the 1 kg-object 60 cm horizontally with the 10 cm
sinusoidal height.

The objective of the optimization is to minimize the
maximum servo torque, which can potentially allow the
robot to execute difficult tasks that are previously infeasible
due to torque limits. Similar to the previous experiment on
manipulators with linear actuators, we generate two pairs of
design and motion by optimizing motion parameters only
(motion optimization mode) and co-optimizing design and
motion parameters (design optimization mode).

The resulting design changes are illustrated in Table 3 and
Figure 9. In our experiment, the design optimization mode
successfully reduces the maximum servo torque from 9.81 N
to 5.59 N that corresponds to 44 % reduction (Figure 10).
Especially, the algorithm increases the joint velocity of the
first servo by decreasing the length of the first link (dark
red in Figure 9) in the four-bar mechanism. In addition,
it also reduces the moment arm of the second servo by
shortening the distances between the end-effector and the
servo. However, the motion optimization mode was not very
effective due to limited degrees of freedom, which results
in less than 1 % torque reduction. As demonstrated in the
results, co-optimization of design and motion achieves much
better performances than motion optimization. For more
details, please refer to Extension 2.

5.3 Simulation of Large Quadrupeds with
Linear Actuators

This set of examples involves a large-size quadruped robot
with linear actuators. The initial design of the quadruped
has 1.2 m body length and 0.95 m shoulder height at
its rest pose with a mass of approximately 90 kg. Each
leg has four degrees of freedom digitigrade configuration
with four linear actuators. Two biarticular actuators are
attached to the hip joints, and two monoarticular actuators
are attached to the knee and ankle joints. All the actuators
have the same length (25 cm) and stroke range (16 cm)
as the actuators for the manipulator example. The design
parameters are constrained to be left-right symmetric during
the optimization process. We choose a manually-created
initial design and generate the input base link and end-
effector trajectories by solving space-time optimization
using the technique described in Megaro et al. (2015). We
treat the motion of the floating base as input.

The goal of this experiment is to optimize the initial design
and motion parameters for two different tasks: slow walking
with 0.15 m step length and fast walking with 1.0 m step
length. In both cases, we optimize the design and motion
parameters such that the maximum actuator force is reduced.

Our algorithm successfully derives different designs that
reduce the maximum torques by 48 % and 40 % for the

Prepared using sagej.cls

Co-optimization of Robot Design and Motion 9

Figure 11. Comparison of the optimized linearly actuated
quadrupeds for slow (top) and fast (bottom) walking tasks. We
highlighted a few noticeable differences. In general, the design
for slow walking has larger moment arms than the design for
fast walking.

0.0 0.5 1.0 1.5 2.0
Time (s)

−1000

−500

0

500

1000

1500

A
ct
u
a
to
r
Fo

rc
e
(N

)

Initial

Optimized

0.0 0.5 1.0 1.5 2.0
Time (s)

−500

0

500

1000

1500

2000

2500

A
ct
u
a
to
r
Fo

rc
e
(N

)

Initial

Optimized

Figure 12. Force profiles of the back right knee in the slow
walking optimized (top) and fast walking optimized (bottom)
designs.

slow and fast walking tasks respectively (Table 4). Figure 11
compares the optimized design and motion while Figure 12
plots the force profile of the knee actuator that requires
the maximum force in the original design. Please refer to
Extension 3 for the details of the metamorphosis process.
The most notable difference of the two optimized designs
is in their knees: the moment arm is increased in the slow
walking quadruped while it is kept small in the fast walking
optimized design in order to realize larger range of motion. In
addition, the algorithm elongated the rear thigh for the slow
walking task, while increasing the length of the rear hip for
fast walking. For the slow walking task, we have expected
straight-knee configuration similar to those of elephants
or rhinos, but the algorithm did not result in such design

Table 5. The results on small quadrupeds with rotary actuators.
Link Lengths(cm) Maximum Torque

Design Front
Thigh

Front
Shin

Rear
Thigh

Rear
Shin

Rear
Feet

Simulation
Torque (Nm)

Hardware
Current (mA)

Initial 8.00 16.0 8.00 8.00 8.00 2.08 (7.66±0.37)×102

Optimized 7.87 12.9 9.43 7.28 8.00 1.42 (5.35±0.23)×102

because the enlargement of moment arm has larger effect
than the reduction of the joint torque.

We also cross-validate the optimal designs by re-
optimizing the motion parameters with fixed design
parameters. As we expected, the fast walking optimized
requires 31 % more maximum actuator forces than the slow
walking optimized design due to larger moment arms at
knees. On the other hand, the slow walking optimized design
cannot execute the fast walking task due to its limited range
of the motion.

5.4 Hardware of Small Quadrupeds with
Rotary Actuators

We also validate our algorithm in hardware by implementing
a small-size quadruped with off-the-shelf rotary actuators
and 3D printed links. The robot has 20 cm body length and
24 cm shoulder height at its rest pose. Each leg has four
Dynamixel XM-430 W-210 (Dynamixel (2016)) servos that
have 3.7 Nm stall torque at 14.0 V, and each foot is fabricated
as rubber-coated hemisphere. For testing purpose, we put
four 500 g weights on the top of the base link. We tether
the robot to an external computer and replay the motion plan
without any balance controller.

We manually choose an initial design of the quadruped
and optimize the design such that the maximum joint torque
is minimized. Once again, the initial motion plan is generated
using the method described in Megaro et al. (2015). Table 5
compares the initial and optimized parameters. Because the
initial design requires a maximum torque of 2.08 Nm at its
front knees, the algorithm reduces the lengths of the front leg
links to create near singular configurations (Extension 4). On
the other hand, the algorithm applies minor changes to the
rear leg because their torque profiles are predicted to be lower
than the front legs. As a result, the algorithm successfully
reduces the maximum torque to 1.42 Nm, which is 32% less
than the original value (Figure 13).

For hardware validation, we 3D-print new links with
the optimized lengths and assembled a new quadruped
(Figure 14, Extension 4). After fabrication, we replay the
new motion plan that is also concurrently optimized with
the design parameters. As the actuators do not have torque
sensors, we use the maximum current as the performance
criteria. Figure 13 shows the current profiles of two designs
at the front right knee for a single cycle of the motion.
We choose the cycle with a median peak value among
five trials. The maximum current is successfully reduced to
535 mA in the optimized design, which is 30 % less than the
original maximum current (766 mA) and roughly matches
the reduction ratio in simulation. The predicted torque and
actual current profiles do not exactly match but show a large
positive Pearson’s correlation coefficient of 0.7.

Prepared using sagej.cls

10 The International Journal of Robotics Research XX(X)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5
T
o
rq
u
e
 (
N
m
)

Initial

Optimi ed

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

−400

−200

0

200

400

600

800

1000

C
u
rr
e
n
t
(m

A
)

Initial

Optimi ed

Figure 13. Comparison of the front right knee torques in
simulation (top) and on fabricated hardware (bottom).

Figure 14. Comparison of the original (top) and optimized
(bottom) small quadrupeds with rotary actuators.

5.5 Simulation of Spherically-Symmetric
Quadruped Robots

Inspired by the work of Pai et al. (1995), we select the next
testing platform as a spherically-symmetric quadruped robot.
It is called Tetrabot because its shape resembles a tetrahedron
(Figure 15). The robot consists of a spherical body and four
legs where each leg has a single yaw joint followed by
three pitch joints. The radius of the base link is 7 cm and
the initial link lengths of legs are set to 6 cm, 12.5 cm,
and 19 cm, where these parameters are manually selected
by engineers based on prior knowledge. Since all four legs
should be exactly the same to maintain the spherically
symmetric morphology of Tetrabot, we cannot distinguish
the legs within its morphology.

Figure 15. A spherically symmetric quadruped robot, Tetrabot.
(Top) The zero pose of Tetrabot is similar to a tetrahedron.
(Bottom) Each leg has four DoFs including one yaw joint and
three pitch joints.

In this section, we are interested in optimizing the design
parameters of Tetrabot for two motions: the rolling gait and
the walking gait.

The first target motion is the rolling gait that walks as
tumble, which is also originally introduced in the work of
Pai et al. (1995) (The first and second rows of Figure 16). In
this motion, Tetrabot begins the gait by gradually pushing its
body toward the edge of the support polygon while the “top”
leg prepares the landing. When the “top” leg touches the
ground, the robot moves its COM to the adjacent equilateral
triangle and lifts the “back” legs until it gets back to the
initial pose. The advantage of this rolling gait is that the
robot can easily choose one of the three possible walking
directions by rotating the “top” leg. To generate the initial
motion plan, we first create the end-effector trajectories from
the rolling motion of a tetrahedron. Then we solve inverse
kinematics (IK) to match the end-effector positions, while
restricting its center of mass position in the corresponding
support polygon.

In addition, we design the walking gait, which is
more similar to regular quadruped locomotion (The third
and fourth rows of Figure 16). In this motion, Tetrabot
sequentially moves its back, right, left, and front legs while
supporting its body with other three legs. The step length of
the gait is set to 8 cm with the duration of 4.0 seconds. Once
again, the end-effector trajectories and footfall patterns are
manually designed by engineers and the joint trajectories are
generated by solving IK problems.

The number of design parameters is three if we constrain
the design to be spherically symmetric. However, all four
legs of the robot do not need to be same for the walking
gait. Therefore, we select six design parameters for when
we optimized the design for the walking. The first three are

Prepared using sagej.cls

Co-optimization of Robot Design and Motion 11

Figure 16. The optimized designs and motions of Tetrabot. For the rolling gait, the optimized design (the second row) has shorter
link lengths than the initial design (the first row) to avoid large torques at the red and yellow legs. For the walking gait, the optimized
design (the fourth row) has the shorter red and yellow legs but has the longer blue and green legs than the original design (the third
row).

Table 6. The results on Tetrabot for the rolling gait.
Rolling Link Lengths(cm) Maximum

Torque (Nm)Design Thigh Shin Foot
Initial 6.00 12.5 19.0 2.30

Motion
Optimized 6.00 12.5 19.0 1.88

Design Optimized
For Rolling 9.70 7.09 15.1 1.21

Design Optimized
For Both 7.15 10.2 16.6 1.58

Table 7. The results on Tetrabot for the walking gait.

Walking Link Lengths(cm) Maximum
Torque (Nm)Front & Back Left & Right

Design Thigh Shin Foot Thigh Shin Foot
Initial 6.00 12.5 19.0 same 2.49

Motion
Optimized 6.00 12.5 19.0 same 1.55

Design Optimized
For Walking 5.90 10.4 25.0 5.99 6.49 11.7 0.96

Design Optimize
For Both 7.15 10.2 16.6 same 1.58

for the front and back legs, and the latter three are for the
left and right legs. We do not optimize the radius of the
base link because it has the specialized internal structure
to equip a on-board computer and a battery. Finally, we
allow the optimization to change the scale of the motion
plan by introducing the motion plan scale parameter κ
(Section 4.2.1).

One of the biggest differences between the implementa-
tion of Pai et al. (1995) and ours is the constraints on joint
angles. Because our robot is larger and heavier, we need more
supporting structure that limits the range of joint angles.
Therefore, we set the limits for hip, knee, and ankle joint
position variables as 105◦, 120◦, 130◦, which have been also
considered in the optimization.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

T
h
e
 L
e
ft
 A
n
kl
e
 T
o
rq
u
e
 (
N
m
) Initial

Motion Optimized

Design Optimized For Rolling

Design Optimized For Both

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

T
h
e
 L
e
ft
 A
n
kl
e
 T
o
rq
u
e
 (
N
m
)

Initial

Motion Optimized

Design Optimized For Walking

Design Optimized For Both

Figure 17. Torque profiles of Tetrabot for the rolling gait (Top)
and walking gait (Bottom).

We summarize the results of the design optimization in
Table 6 and Table 7. For the rolling gait, the optimal design
requires only a maximum torque of 1.21 Nm, which is much
less than 2.30 Nm of the initial parameters and 1.88 Nm
of the motion-optimized scenario (Top graph in Figure 17).
In our observation, the optimization decreases the torques at
the left and right legs by shortening the shin and foot while
increasing the thigh to secure the desired range of the motion.
In the case of the walking gait, the design optimization mode
also reduces the maximum servo torque by 61.4 %, which
is much larger than 37.8 % of the motion optimization mode

Prepared using sagej.cls

12 The International Journal of Robotics Research XX(X)

Figure 18. Physical prototype of Tetrabot.

(Bottom graph in Figure 17). The resulting design has much
shorter left and right legs because they are heavily loaded,
while it has longer lengths for the front and back legs. Also
note that the algorithm automatically changes the update
direction of the design parameters a few times when some
parameters are near limits. Another interesting observation
is that all the optimization tends to increase the scale of the
plan from 5 % to 8 %, which results in one to two centimeter
larger support polygons. Please refer to Extension 5 and
Figure 16 for more details of the optimized designs and
motions.

In addition, we optimize the design of Tetrabot for both
rolling and walking gaits by creating a new motion plan by
concatenating the two motions. We assume that all four legs
have the same link length parameters because the motion
includes the rolling gait. The algorithm finds the optimal
design that decreases the maximum torque from 2.49 Nm
to 1.58 Nm, which is 36.5 % reduction. Naturally, the
optimized maximum torque is larger than the specialized
designs for each individual task because the robot needs
to execute multiple tasks. For the walking task, it is even
larger than that of the motion optimization. This is because
this multi-gait optimization reaches the lower bound for
the rolling gait first and does not continue to optimize the
maximum torque for the walking gait (Figure 17).

5.6 Hardware of Spherically-Symmetric
Quadruped Robots

We demonstrate the validity of the optimized design and
motion in Section 5.5 by fabricating a physical prototype
using 3D printing and off-the-shelf servos. We select the
length parameters that are optimized for both rolling and
walking gaits: 7.15 cm , 10.2 cm, and 16.6 cm for
thigh, shin, and foot links, respectively. We print the body
frame and legs using Stratasys Objet260 Connex (Stratasys)
with VeroWhitePlus and VeroClearPlus materials. An Intel
UpBoard 1.92 GHz controller (Intel) and a 16.8 V, 4000 mA
lithium-ion battery are enclosed in the body. Each leg is
actuated by four Dynamixel XM-430 W-350 servos whose
stall torque is 4.5 Nm at 14.0 V. The controller software
is written in Python using the official Dynamixel SDK
(Dynamixel (2016)) and runs on Ubuntu 16.04.

In our experiments, the fabricated hardware can success-
fully execute the given motion plans even though there
exist some errors due to many reasons, such as differences
between simulation and real hardware or lack of the feed

forward term in PD controller. For the rolling motion, the
robot safely lands with its top leg without making huge
impacts. The robot slips slighly during the walking motion,
resulting in a decreased step length of 6.7 cm compared
to the theoretical value of 8.0 cm. We believe that the
accuracy of the motions can be improved by applying system
identification or model learning (Khalil and Dombre (2004);
Abbeel et al. (2006)).

6 Discussion and Future Work
We presented a novel algorithm for optimizing robot design
parameters, such as link lengths and actuator layouts, and
the associated motion parameters including joint positions,
actuator forces, and contact forces at every frame. To
guide the optimization, our algorithm first linearizes the
local manifold of valid designs implicitly defined by a set
of constraints. It then changes the design parameters in
the direction of the locally defined gradient. Our problem
formulation can also take additional inequality constraints,
such as position limits of linear actuators or friction cones
of contact forces. We demonstrated that our algorithm is
general enough to optimize designs of various types of robots
such as manipulators and legged robots, with both linear and
rotary actuators. We also validated the optimized designs in
simulation as well as on fabricated hardware using off-the-
shelf actuators and 3D-printed links.

There are a few possible directions for future work.
The presented design optimization algorithm selects one

target parameter and specifies its change, and determines the
changes in other parameters required to stay on the constraint
manifold. We implemented this simple update rule because
it only needs to select a single parameter for each time
step. Although we demonstrated that the proposed scheme
is sufficient in various optimization scenarios, it may require
many iterations to reach the desired design or even fall
into sub-optimal solutions. Therefore, it would be interesting
to incorporate more complex optimization algorithms into
our framework for selecting the target parameters and their
desired changes.

Our algorithm can only consider continuous parameters,
such as link lengths or actuator forces. For future research,
we would like to include discrete variables, such as the
number of actuators, footfall patterns, or the number of
joints actuated by a single actuator (e.g. monoarticular
or biarticular), because they are also critical to robot
performance. However, current implementation of the
framework cannot handle discrete variables because it
requires the first and second derivatives of the constraints
with respect to the parameters. For instance, the moment
arm of a linear actuator discontinuously changes when
the actuator switches between monoarticular and biarticular
configurations.

Although we demonstrated one example of motion
planning formulation, our approach is agnostic to specific
instances of parameterization and problem formulation. As
long as we can compute gradients of constraints with
respect to variables, our idea of co-optimizing design and
motion parameters using the implicit function theorem can
be applied to the given scenario. For instance, we can easily
adopt a new parameterization method such as (Wampler and

Prepared using sagej.cls

Co-optimization of Robot Design and Motion 13

Figure 19. We fabricated the prototype of Tetrabot, which is optimized for both the rolling (Top) and walking (Bottom) gaits.

Popović (2009)), or add a new constraint such as collision
avoidance.

In our implementation, we only used box-shaped links
due to their simplicity for parameterization. One interesting
direction of future work is to include additional design
parameters for editing link shapes. By incorporating the
existing shape optimization techniques for adjusting inertial
properties (Prévost et al. (2013)) or structural strength
(Musialski et al. (2016)), our algorithm will be able to
generate more energy efficient and robust robot designs.

In all examples, our input motion plans are quite simple
consisting of only a single instance of manipulation or
locomotion, resulting in designs specialized for the given
motion plan. Although we did a preliminary experiment on
two motion plans, it would be also interesting to optimize
the design for a family of parameterized motion plans, such
as walking with continuous turning angles. We could also
consider tasks that require more complex interactions with
the environment, such as climbing up stairs.

Appendix A: Index to Multimedia Extensions

Table 8. Index to Multimedia Extensions
Extension Media Type Description

1 Video Results on Manipulators with Linear Actuators
2 Video Results on Manipulators with Four-bar Linkages
3 Video Results on Large Quadrupeds with Linear Actuators
4 Video Results on Small Quadrupeds with Rotary Actuators
5 Video Results on Spherically-Symmetric Quadruped Robot

Acknowledgements

We would like to show our gratitude to Kevin Gim at Disney
Research for his help on hardware experiments.

References

Atlas. URL http://www.bostondynamics.com/robot_

Atlas.html.
HydroLek. URL http://www.hydro-lek.com/.
Spot, a. URL https://youtu.be/M8YjvHYbZ9w.
SpotMini, b. URL https://youtu.be/tf7IEVTDjng.
Pieter Abbeel, Morgan Quigley, and Andrew Y Ng. Using

inaccurate models in reinforcement learning. In Proceedings of
the 23rd international conference on Machine learning, pages
1–8. ACM, 2006.

Cenk Baykal and Ron Alterovitz. Asymptotically optimal design
of piecewise cylindrical robots using motion planning. In
Robotics: Science and Systems, 2017.

Marco Ceccarelli and Chiara Lanni. A multi-objective optimum
design of general 3R manipulators for prescribed workspace
limits. Mechanism and Machine Theory, 39(2):119–132, 2004.

Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson.
Unshackling Evolution: Evolving Soft Robots with Multiple
Materials and a Powerful Generative Encoding. Proceeding of
the Fifteenth Annual Conference on Genetic and Evolutionary
Computation, 2013.

Jean-François Collard, P. Fisette, and P. Duysinx. Contribution
to the Optimization of Closed-Loop Multibody Systems:
Application to Parallel Manipulators. Multibody System
Dynamics, 13(1):69–84, 2005.

Alessandro Crespi, Konstantinos Karakasiliotis, Andre Guignard,
and Auke Jan Ijspeert. Salamandra Robotica II: An amphibious
robot to study salamander-like swimming and walking gaits.
IEEE Transactions on Robotics, 29(2):308–320, 2013.

Dynamixel. 2016. URL http://robotis.com.
Thomas Geijtenbeek, Michiel van de Panne, and a. Frank van der

Stappen. Flexible muscle-based locomotion for bipedal
creatures. ACM Transactions on Graphics, 2013.

Knut Graichen, Sebastian Hentzelt, Alexander Hildebrandt, Nadine
Kärcher, Nina GaiBert, and Elias Knubben. Control design for
a bionic kangaroo. Control Engineering Practice, 2015.

Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and
Katsu Yamane. Task-based Limb Optimization for Legged
Robots. International Conference on Intelligent Robots and
Systems, 2016.

Intel. UpBoard. URL http://www.up-board.org.
K Jittorntrum. An implicit function theorem. Journal of

Optimization Theory and Applications, 1978.
Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open

source scientific tools for Python, 2001. URL http://www.

scipy.org/.
Chang Doo Jung, Won Jee Chung, Jin Su Ahn, Myung Sik Kim,

Gi Soo Shin, and Soon Jea Kwon. Optimal mechanism design
of in-pipe cleaning robot. IEEE International Conference on
Mechatronics and Automation, pages 1327–1332, 2011.

Wisama Khalil and Etienne Dombre. Modeling, identification and
control of robots. Butterworth-Heinemann, 2004.

Dongmok Kim, Heeseung Hong, Hwa Soo Kim, and Jongwon Kim.
Optimal design and kinetic analysis of a stair-climbing mobile
robot with rocker-bogie mechanism. Mechanism and Machine

Prepared using sagej.cls

http://www.bostondynamics.com/robot_Atlas.html
http://www.bostondynamics.com/robot_Atlas.html
http://www.hydro-lek.com/
https://youtu.be/M8YjvHYbZ9w
https://youtu.be/tf7IEVTDjng
http://robotis.com
http://www.up-board.org
http://www.scipy.org/
http://www.scipy.org/

14 The International Journal of Robotics Research XX(X)

Theory, 50:90–108, 2012.
Sung Gaun Kim and Jeha Ryu. New dimensionally homogeneous

Jacobian matrix formulation by three end-effector points for
optimal design of parallel manipulators. IEEE Transactions on
Robotics and Automation, (4), 2003.

Daniel Kuehn, Felix Bernhard, Armin Burchardt, Moritz Schilling,
Tobias Stark, Martin Zenzes, and Frank Kirchner. Distributed
computation in a quadrupedal robotic system. International
Journal of Advanced Robotic Systems, 11(1), 2014. ISSN
17298814. doi: 10.5772/58733.

Chris Leger. Automated Synthesis and Optimization of Robot
Configurations : An Evolutionary Approach. Design
Engineering, pages 1–234, 1999.

Jian Li, Sheldon Andrews, Krisztian G Birkas, and Paul G Kry.
Task-based design of cable-driven articulated mechanisms.
In Proceedings of the 1st Annual ACM Symposium on
Computational Fabrication, page 6. ACM, 2017.

H. Lipson and J.B. Pollack. Towards continuously reconfigurable
self-designing robotics. IEEE International Conference on
Robotics and Automation. Symposia Proceedings, 2(April):
1761–1766, 2000.

Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar
Hilliges, Markus Gross, and Stelian Coros. Interactive Design
of 3D-Printable Robotic Creatures. ACM Transactions on
Graphics, 2015.

Vittorio Megaro, Espen Knoop, Andrew Spielberg, David IW
Levin, Wojciech Matusik, Markus Gross, Bernhard
Thomaszewski, and Moritz Bächer. Designing cable-
driven actuation networks for kinematic chains and trees.
In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, page 15. ACM, 2017.

Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael
Birsak, Michael Wimmer, and Leif Kobbelt. Non-linear
shape optimization using local subspace projections. ACM
Transactions on Graphics (TOG), 35(4):87, 2016.

Dinesh K Pai, Roderick A Barman, and Scott K Ralph.
Platonic beasts: Spherically symmetric multilimbed robots.
Autonomous Robots, 2(3):191–201, 1995.

Christiaan J Paredis and Pradeep K Khosla. An Approach for
Mapping Kinematic Task Specifications into a Manipulator
Design. International Conference on Advanced Robotics, 1,
1991.

Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga
Sorkine-Hornung. Make it stand: balancing shapes for 3d
fabrication. ACM Transactions on Graphics (TOG), 32(4):81,
2013.

PyDART. A Python Binding of Dynamic Animation and Robotics
Toolkit. URL http://pydart2.readthedocs.io.

Xuewen Rong, Yibin Li, Jiuhong Ruan, and Bin Li. Design and
simulation for a hydraulic actuated quadruped robot . Journal
of mechanical science and technology, 2012.

Yousef Saad. Iterative methods for sparse linear systems,
volume 82. siam, 2003.

Claudio Semini, Nikos G Tsagarakis, Emanuele Guglielmino,
Ferdinando Cannella, and Darwin G Caldwell. Design of HyQ
a Hydraulically and Electrically Actuated Quadruped Robot.
Proceedings of the Institution of Mechanical Engineers, Part I:
Journal of Systems and Control Engineering, 2011.

Sangok Seok, Albert Wang, Meng Yee Chuah, Dong Jin Hyun,
Jongwoo Lee, David M. Otten, Jeffrey H. Lang, and

Sangbae Kim. Design Principles for Energy-Efficient Legged
Locomotion and Implementation on the MIT Cheetah Robot.
IEEE/ASME Transactions on Mechatronics, 20(3), 2014.

Karl Sims. Evolving Virtual Creatures. ACM Transactions on
Graphics, (July):15–22, 1994.

Stratasys. Connex Objet260. URL http://www.stratasys.

com.
E.J. Van Henten, D.A. Vant Slot, C.W.J. Hol, and L.G. Van

Willigenburg. Optimal manipulator design for a cucumber
harvesting robot. Computers and Electronics in Agriculture,
65(2):247–257, 2009.

Kevin Wampler and Zoran Popović. Optimal gait and form for
animal locomotion. ACM Transactions on Graphics, 28:1,
2009.

Yuan Yun and Yangmin Li. Optimal design of a 3-PUPU parallel
robot with compliant hinges for micromanipulation in a cubic
workspace. Robotics and Computer-Integrated Manufacturing,
(6), 2011.

Prepared using sagej.cls

http://pydart2.readthedocs.io
http://www.stratasys.com
http://www.stratasys.com

	1 Introduction
	2 Related Work
	3 Background: Implicit Function Theorem
	4 Algorithm
	4.1 Overview
	4.2 Problem Description
	4.2.1 Parameters
	4.2.2 Constraints

	4.3 Formulation of Linear System
	4.4 Optimization
	4.5 Summary
	4.6 Implementation Note
	4.6.1 Computation of Gradients
	4.6.2 Correction of Numerical Errors

	5 Experiments
	5.1 Simulation of Manipulators with Linear Actuators
	5.2 Simulation of Manipulators with Four-bar Linkages
	5.3 Simulation of Large Quadrupeds with Linear Actuators
	5.4 Hardware of Small Quadrupeds with Rotary Actuators
	5.5 Simulation of Spherically-Symmetric Quadruped Robots
	5.6 Hardware of Spherically-Symmetric Quadruped Robots

	6 Discussion and Future Work

