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Abstract— Teleoperation provides a way for human operators
to guide robots in situations where full autonomy is challenging
or where direct human intervention is required. It can also be an
important tool to teach robots in order to achieve autonomous
behaviour later on. The increased availability of collaborative
robot arms and Virtual Reality (VR) devices, provides ample
opportunity for development of novel teleoperation methods.
Since robot arms are often kinematically different from human
arms, mapping human motions to a robot in real-time is not
trivial. Additionally, a human operator might steer the robot
arm toward singularities or its workspace limits, which can lead
to undesirable behaviour. This is further accentuated for the
orchestration of multiple robots. In this paper, we present a VR
interface targeted to multi-arm payload manipulation, which
can closely match real-time input motion. Allowing the user to
manipulate the payload rather than mapping their motions to
individual arms we are able to simultaneously guide multiple
collaborative arms. By releasing a single rotational degree of
freedom, and by using a local optimization method, we can
improve each arm’s manipulability index, which in turn lets
us avoid kinematic singularities and workspace limitations. We
apply our approach to predefined trajectories as well as real-
time teleoperation on different robot arms and compare per-
formance in terms of end-effector position error and relevant
joint motion metrics.

I. INTRODUCTION

The field of teleoperation of robots and robot arms has
seen a lot of activity since both collaborative robot arms
and 6 degrees-of-freedom (DOF) input devices have become
more affordable and more widely available [1]. It has been
shown that it is generally more intuitive, faster and less
mentally exhausting for a human operator to operate a robot
arm via head and hand tracking devices rather than via a
touch interface, mouse or joystick [2]. As the kinematic
structure of a robot arm is often different from that of a
human arm, and because mostly only the hand position of
the operator is tracked rather than every joint of the arm,
it is not straightforward to find an end-effector pose that
matches the positioning of the arm and the intent behind
the operator’s movement. Furthermore, naive end-effector
pose matching can lead to singular or close to singular robot
arm configurations which can lead to dangerously fast joint
movements for small changes in the end-effector pose or
can get the robot stuck in singular configurations, unable to
reliably continue to match the operator’s pose.
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Fig. 1: The setup with three UR5 robot arms.

This problem gets accentuated in multi-robot settings,
where not one single arm has to match an end-effector
pose but instead multiple arms need to support and move
a payload in a way that is either given by a predefined
trajectory or by real-time human input. Teleoperation of such
a system can exhibit non-intuitive workspace constraints as
well as additional singular configurations that arise from
the system acting like a closed-loop kinematic chain. In
order for the operator to focus on high-level tasks, it is
important that the multi-robot system can reliably avoid these
configurations and show a graceful degradation of pose-
matching reliability, giving the operator the possibility to
adapt rather than abruptly getting stuck when approaching
singularities and workspace limits.

We first provide a short overview of related work in
multi-robot manipulation and VR teleoperation. We then
introduce an improvement to traditional Inverse Kinematic
(IK) solvers in which we relax one single rotational DOF
and provide the solver with a prior configuration that locally
maximises the manipulability index of each individual robot
arm. This improves the system’s ability to avoid dangerous
discontinuities in the joint configuration which can arise from
near-singular configurations.

Then we introduce the setup and how we are using
our intuitive VR interface for payload manipulation. The
interface lets the operator move freely around the virtual
robots and modify the payload’s pose by simply grasping
and moving it. Hence it provides the operator with the ability
to safely operate a group of robots remotely, or use it as a
simulation tool for training or pre-defining tasks.

Finally, we show the results of applying our method to a
group of 3 UR5 robots and 2 ABB YuMis, respectively, and
provide an outlook on future developments.



II. RELATED WORK

To quantify the performance of a solution to the inverse
kinematic problem, several measures have been proposed,
such as the manipulability index [3], the condition number
[4] and many derivations and adaptions thereof (see e.g.
[5] for an overview). With the appearance of collabora-
tive robots, the interest to operate robots in real-time and
potentially close to humans has increased. In combination
with the availability of accurate and affordable 6DOF input
devices, the field of teleoperation has seen a lot of exciting
developments, drawing inspiration from motion capturing
and animation techniques traditionally used for animated
movies. Although the single-arm case is relatively well
studied, dual- and multi-arm collaborative tasks have seen
less activity, despite their vast potential for applications in
construction, assembly or mobile multi-robot systems. In the
following, we review some of the closely related topics.

A. Manipulability Index and Singularity Avoidance

The capability of a robot arm to avoid singular con-
figurations is especially important in the field of physical
human-robot interaction (HRI), where a human operator, who
cannot easily recognize potentially dangerous configurations,
guides the robot e.g. during kinesthetic teaching. Several
frameworks have been proposed to steer the operator away
from singular configurations using for example asymmetric
damped least squares [6] or admittance control via virtual
forces [7]. These methods often use a manipulability or
conditioning measure to scale the generated forces depending
on the proximity to a singularity and, in the asymmetric
case, the sign of the gradient of the manipulability. Since
the absolute distance to the singular configuration is often
not required, scaling factors and thresholds which are tuned
to work well in HRI applications are introduced. A method
of optimising a measure called parameter of singularity in
order to avoid singularities was used in [8]. To still match
the required end-effector trajectory as closely as possible,
the authors consider the rotational axis of the tool held by
the robot arm to be functionally redundant and thus have
one redundant degree of freedom to optimise over. A similar
idea can be found in [9], where the optimal grasp position
on a wooden block is chosen by parametrizing the gripper
orientation and position on the block in the presence of ob-
stacles, although the gripper position is not changed anymore
once the block has been picked up. A method that introduces
the manipulability index as an optimization objective into a
kinematic task was introduced in [13], where the authors
showed an improved manipulability index for a predefined
trajectory at the cost of reduced trajectory tracking. They
additionally combined this with obstacle avoidance to show
that they are able to maintain a safe distance even with the
additional objective.

B. Teleoperation

With recent advances in Virtual and Augmented Reality
devices, virtual teleoperation of robots in 3D space has be-
come more precise and much easier to implement. One recent

implementation of a VR framework for ROS can be found in
[11]. Headsets such as the Microsoft Hololens 2 and Oculus
Quest 2 are pushing to improve 6DOF head- and hand-
tracking and several other headsets such as the HTC Vive are
providing affordable and easy to use 6DOF controllers. Since
robots and robot arms are often kinematically different from
their human operators, several methods for intuitive mapping
of operator motion and intent onto robotic systems have been
proposed. In [1], Lee et al. introduced a method of unimanual
and bimanual teleoperation of a robot arm, using Oculus Rift
IR LED sensors and touch controllers. They showed that
their method leads to subjective and objective improvements
over traditional kinesthetic teaching methods on moderately
challenging tasks. Rakita et al. [2] introduced a trade-off
between IK and different goals such as obstacle or singularity
avoidance. This allows them to place more importance on
avoiding bad configurations during faster and larger hand
motions, while giving the operator more precise control over
the end-effector pose when approaching or manipulating dif-
ferent objects. They used HTC Vive controllers as the input
device and show improvements over other input methods,
such as a 6DOF stylus on several tasks of varying difficulty.
While we do not consider haptic feedback in this work,
it is a useful tool to improve immersion for teleoperation,
especially in precise manipulation tasks [12].

C. Multi-arm manipulation

While multi-arm coordination generally introduces an
additional level of complexity by adding the need for re-
grasping or limiting the available workspace if the robot arms
are fixed in place, it also provides several benefits such as
modularity, redundancy and increased payload capabilities,
while keeping each robot relatively simple and cost-efficient.
The growing availability of collaborative robot arms such
as Universal Robots’ UR5 and UR10 or the ABB YuMi
promotes an increasing incentive to build teams of multiple,
ready-made robots for tasks that one single robot cannot
solve. In [14], the authors showed a method that enables
the manipulation of large objects by considering two arms
as a closed-chain system and introducing essentially mutu-
ally disconnected components, which allow them to switch
between different configurations via re-grasping operations.
A method of coupling two robot arms via a virtual object
is proposed in [15]. The paper focuses on the choice of a
grasping position and the interaction of the system with a
payload that is handed over by a human collaborator. Another
method that coordinates four robot arms by introducing a
virtual manipulator is shown in [16]. The virtual manipulator
lets the authors tune the impedance of the system, making it
more robust to disturbances such as added payload.

III. METHOD

For many installation and construction tasks the robot
arm’s end-effector does not have to be in a precise location
or orientation, as long as it can still guarantee the correct
positioning and orientation of the payload. Examples of this
are the installation of glass panels using suction cups, or the



positioning and fastening of pipes and tubes to the ceiling
on construction sites. Construction workers can adjust their
grasp around the handles or pipes during installation in order
to optimize leverage and accessibility. We propose a method
that optimises the manipulation index for each robot arm
independently by utilizing one rotational degree of freedom
for the optimisation, while limiting the maximum deviation
from the fully constrained configuration in order to avoid
losing grip or intersecting with the payload. Because the
payload is handled by multiple robots simultaneously, its
pose is always fully defined, even when opening up the
rotational DOF on the robot arm.

The previous methods presented in Section II consider
manipulability as part of a global optimization problem [13]
or only use it to detect proximity to kinematic singularities
[6],[7]. We suggest a straightforward algorithm that improves
manipulability while not sacrificing performance and exhibit-
ing good tracking fidelity.
Optimization based IK. We begin by formulating an opti-
mization based IK problem for each robot arm as follows

min
q

werr‖K(q)− x‖2 + wreg‖q− q0‖2

s.t. qmin < q < qmax,
(1)

where q are the stacked joint angles of the arm, qmin and qmax
are the joints upper and lower limits, K(q) is the forward
kinematics function for the pose of the arm’s end-effector,
x is the target end-effector pose, q0 is the predefined rest
pose, which is used as regularization and werr and wreg are
the weights for the IK and regularization terms, respectively.

We solve this optimization problem using Newton’s
method. The joint limits are handled as soft bound constraints
using a barrier function parametrized by wlim. As an initial
guess, we provide the solver with the previously computed
optimal joint angles, which were based on the previous
end-effector target. In the next section, we discuss a local
optimization procedure that improves the manipulability of
the individual arms.
Local manipulability optimization. Once (1) is solved,
we can still improve the manipulability of the arms. The
manipulability index is defined by

m(q) =
√

det(JJT ). (2)

Our goal is to find a better orientation of the end-effector
w.r.t. a single rotation axis, as defined by the handles grasped

Fig. 2: The setup with two ABB YuMi robots.

by the end-effector. To this end, we could potentially solve
another optimization problem using a gradient-based method.
However, similarly to [7] we consider a small modification
to the joint angles, that leads to a rotation around the handle
axis, but otherwise, to first order, preserves the pose. This is
done via the generalized inverse of the velocity Jacobian,

J+ =
(
JTJ

)−1
JT . (3)

In order to compute the first order angle modification we use

q′± = q0 ± J+M∆t, (4)

where M is a mask matrix (i.e. containing only zeros and
ones) that selects the available DOF, and ∆t is a scaling
factor. In our case, M would select the 4th entry, which
corresponds to rotation around the local x-axis.

In each iteration of our algorithm, we use these new joint
angles q′+ and q′− to compute the new manipulability index
for each one of the arms. If one of them is higher than the
current manipulability we use the configuration as the new
initial guess for the IK solver at the next iteration. If the
increase in manipulability falls below a threshold value θm
we discard the result in order to avoid oscillating around a
locally optimal result and use the current configuration as
the initial guess instead.

IV. EXPERIMENTAL SETUP

A. Robots
As our method does not depend on the specific structure

of the robot arm, it can be applied to a wide variety of
different types and groups with different numbers of robots.
We validate our method on a setup of 3 6DOF UR5 robots
arms and 2 7DOF ABB YuMis, respectively, due to their
wide use in the robotics community and industry and their
difference in DOFs as well as number of end-effectors per
robot. The UR5 setup is shown in Fig. 1, while the YuMi
setup is shown in Fig. 2.

B. Tasks
We test our method on two predefined geometric tasks

as well as real-time teleoperation scenarios. The geometric
tasks consist of square and circular trajectories. The
teleoperation tasks are carried out on a Oculus Quest
VR headset, using the accompanying 6DOF controllers.
To ensure repeatability with different configurations, we
prerecorded a user-generated trajectory which we then
stream to the controller for subsequent experiments.
As proposed in [10] we compare the positional errors,
manipulability index and the joint velocities, accelerations
and jerk over the different trajectories.

We compare all tasks on both the UR5 and the YuMi
setups, using 3 different scenarios:
A) IK with full constraints on position and orientation of

the end-effectors;
B) IK with masked y and z orientations, allowing free

rotation around the x axis;
C) IK with masked y and z orientations, with our algorithm

enabled.



Fig. 3: Comparison of the initial pose of the YuMi arms
before (left) and after (right) improving manipulability via
rotation around the handle x-axis.

C. Payload and Setup

The payload is represented by a sphere of diameter 0.3m,
to which one handle per robot end-effector is attached at the
equator of the sphere. The handles are initially facing their
respective robot arms and are parallel to the floor, and the
handle bar has a distance of 5cm from the payload surface.
The handle position and orientation define the target end-
effector pose x. For all experiments the UR5 robot arms are
placed in a circle of 1.5m diameter, facing the center of the
circle. The YuMis are placed 1.2m apart, facing the center
position. To ensure that the experiments are comparable, the
weights for our energy function are the same for different
trajectories and the different scenarios, namely werr = 1000,
wreg = 0.01 and wlim = 10 000. For our Newton minimizer
we are using a maximum of 10 steps and a residual value
of 10−5. For scenario B, we nullify the penalty for rotations
around the x axis, as described in Section III. For scenario
C, we additionally enable the manipulability optimization,
using a ∆t = 0.007 and a threshold θm = 0.0001 for
the UR5 experiments and a ∆t = 0.005 and θm = 0.001
for the YuMi experiments respectively. These values have
been chosen empirically to avoid oscillations while still
providing a sufficiently fast convergence towards a better
manipulability value. An example of the initial setup for the
two YuMi robots and the payload can be found in Fig. 3.

Fig. 4: User interface inside the Oculus Quest. The payload
pose can be modified via simple grasping with the controller.

Fig. 5: Scenario A: Comparison of manipulability and posi-
tion error for the circle trajectory on the 3 UR5 robot arms.

D. System

All optimizations were run on a Windows 10 machine with
an Intel Core i7-9750H CPU @ 2.60GHz, 32GB RAM and
an Nvidia Geforce RTX 2080 Max-Q GPU.
For the VR teleoperation, we used an Oculus Quest 128GB
headset and the accompanying 6DOF controllers. The VR
interface was built in Unity3D and a simple UDP imple-
mentation was used to wirelessly transmit manipulation data
to the Windows remote host.
A typical view for an operator inside the headset is shown
in Fig. 4. The operator is free to move around the scene
and interact with the virtual payload by grabbing it. A grab
action is executed when the operator holds down the trigger
button of a controller while the controller touches the virtual
payload. The payload is released when the operator releases
the trigger button. While the operator grabs the payload,
the pose of the payload follows the relative motion of the
controller. The user interface also presents the operator with
some buttons to connect to the remote host and reset the
scene if necessary. Once a connection to the remote host is
established, the robot arms in the scene are updated to reflect
the solution to the IK problem presented in Sec. III in real-
time. A demonstration of the user perspective inside the VR
environment is given in the accompanying video material.

V. RESULTS AND DISCUSSION

A. Circle trajectory

The payload is initialized in the middle between all robots.
It then moves in positive x-direction for 0.2m and finally
moves in circles around the origin for a predefined number of
steps. If they don’t get stuck in a local optimum or because
of a singular configuration the arms are theoretically able
to meet the end-effector goal pose for any point on the
trajectory. For each experiment, the position error, velocity,
acceleration and jerk values as well as the manipulability
were measured. The circle and square trajectories were
each repeated 5 times. The average and standard deviation
for the different metrics are summarized in Table I. The
results indicate that in scenarios B and C the manipulability
is improved substantially over scenario A. As shown in
the accompanying video, the fully constrained IK solver is
not able to continuously match the goal pose and exhibits
discontinuities in joint configuration at several points in time.



Fig. 6: Qualitative manipulability comparison for scenarios
B and C of the square trajectory on the 3 UR5 robot arms

This coincides with the manipulability index approaching
a zero value and leads to higher positional error for the
end-effectors, as can be seen in Fig. 5. While the mean
manipulability and position error values, as well as the
standard deviations, are slightly improved when using our
method with the UR5 arms, acceleration and jerk are equal
or even slightly worse, but generally in the same order
of magnitude. Similar results can be seen on the YuMi.
Although here we are able to improve the manipulability
index as well, we have substantially higher positional errors
in general and also when using our method, which might
mostly be attributed to the difficulties of the YuMi to still
reach far away points on the trajectory. In turn, we can see a
more substantial improvement in mean velocity, acceleration
and jerk measurements.

B. Square trajectory

Similar observations as for the circle trajectory can be
made for the square trajectory. The problems of fully con-
straining the end-effector pose are even more obvious here,
as the abrupt changes in direction often lead to very high
tracking errors, especially when they coincide with low
manipulability. While for the UR5 the positional tracking is
slightly improved when using our method, the YuMi benefits
from lower velocity, acceleration and jerk values, although
here improvements are not quite as substantial. This indicates
that the sharp changes in velocity don’t allow our algorithm
to sufficiently quickly improve the manipulability. Therefore,
while we achieve slightly higher values for the manipulability
index, they do not translate as well to improvements in
tracking as for the previous trajectory. Qualitative examples
of the UR5’s manipulability evolution are shown in Fig. 6
and the results are summarized in Table II.

C. Teleoperation trajectory

For the teleoperation trajectory, all parameters were kept
the same as for the square and circular trajectories. The
trajectory was pre-recorded and then played back for the
different scenarios. The results are summarized in Table III.
In this scenario, our method clearly performs best, improving
the position errors for both the UR5 and the YuMi setup and
leading to substantial improvements for the other metrics
on the YuMi, while only exhibiting an outlier on the jerk

Fig. 7: Qualitative manipulability comparison for scenarios
B and C of the teleoperation trajectory on the 3 UR5 robots

values for the UR5. We believe that this is due to the
natural movement of the user, pausing in-between different
interactions with the payload, which gives our algorithm time
to best adjust the manipulability index. We can also find an
explanation for the outliers in Fig. 7: The manipulability of
arm 2 steadily declines in scenario B, whereas our method is
able to make a small adjustment that improves manipulability
around timestep 550 and consequently brings the arm into
a better configuration. Later on, around timestep 1500, the
user guides the payload in a way that makes arm 2 approach
its workspace limit, sending the manipulability towards 0
very quickly. Although our method is not able to completely
avoid the decline, it nevertheless minimizes the amount of
time spent in the unfavorable regime, while the traditional
method stays stuck until the user sufficiently adjusts the
payload position. These constant adjustments are partially
reflected in the mean measurements and also lead to the
substantially higher standard deviations. For these cases,
a simple limitation of the maximum acceleration would
probably suffice to substantially improve the measured values
for our method. Figure 8 shows a similar situation for the
teleoperation trajectory with the 2 YuMis.

D. Computational efficiency

We only need to calculate the generalized inverse of the
Jacobian once per end-effector and optimization step. Addi-
tionally, the calculations for the resulting joint configurations
and the optimized manipulability are not heavy and, there-
fore, we expected little impact on the overall performance.
For the experiments presented we add 0.58ms ±0.23ms to
a computation time of around 3ms per frame, which still
allows the simulation to mostly run at the maximum 144
frames per second.

E. Limitations

One limitations of our current method is that we do
not constrain the distance between the robot end-effectors.
While the operator adjust the payload pose, this distance
can therefore slightly change until all end-effectors have
converged to the target configuration. However, given the
system converges quickly enough this limitation might not
be noticeable in real-world applications. Additionally, we
argue that, by improving the manipulability at every step,
we already improve the conditions for fast convergence.



Pos. [mm] Vel. [rad/s] Acc. [rad/s2] Jerk [10−3rad/s3] m(q)

UR5 Scenario A 0.32± 0.64 0.12± 0.93 0.037± 0.006 0.94± 1.7 0.043± 0.03
UR5 Scenario B 0.025± 0.015 0.072± 0.03 0.02± 0.003 0.53± 0.81 0.071± 0.016
UR5 Scenario C 0.022± 0.013 0.071± 0.02 0.02± 0.003 0.58± 0.89 0.074± 0.012

YuMi Scenario A 26.9± 48 0.178± 0.178 0.004± 0.008 0.72± 1.4 0.022± 0.008
YuMi Scenario B 6.9± 13.4 0.143± 0.065 0.003± 0.004 0.58± 0.89 0.025± 0.007
YuMi Scenario C 8.8± 16.6 0.036± 0.052 0.001± 0.004 0.10± 0.52 0.030± 0.007

TABLE I: Mean results for the circle trajectory

Pos. [mm] Vel. [rad/s] Acc. [rad/s2] Jerk [10−3rad/s3] m(q)

UR5 Scenario A 2.3± 8.3 0.12± 0.13 0.0021± 0.01 0.33± 1.9 0.044± 0.032
UR5 Scenario B 0.026± 0.014 0.077± 0.03 0.0037± 0.002 0.07± 0.42 0.071± 0.016
UR5 Scenario C 0.024± 0.012 0.078± 0.03 0.0055± 0.002 0.13± 0.56 0.074± 0.014

YuMi Scenario A 52.5± 108.7 0.18± 0.48 0.007± 0.062 1.5± 12 0.022± 0.008
YuMi Scenario B 8.0± 16.0 0.16± 0.13 0.0025± 0.008 0.53± 1.5 0.025± 0.009
YuMi Scenario C 9.2± 19.1 0.05± 0.14 0.0019± 0.014 0.27± 1.6 0.028± 0.008

TABLE II: Mean results for the square trajectory

Pos. [mm] Vel. [rad/s] Acc. [rad/s2] Jerk [10−3rad/s3] m(q)

UR5 Scenario A 1.8± 9.9 0.07± 0.12 0.011± 0.017 3.2± 4.8 0.03± 0.017
UR5 Scenario B 0.97± 8.1 0.05± 0.07 0.007± 0.01 1.8± 2.8 0.054± 0.023
UR5 Scenario C 0.3± 3.8 0.08± 0.6 0.012± 0.12 3.1± 30 0.057± 0.021

YuMi Scenario A 27± 46 0.085± 0.155 0.008± 0.015 1.5± 2.5 0.020± 0.010
YuMi Scenario B 5.4± 16 0.059± 0.077 0.007± 0.009 1.5± 2.1 0.027± 0.012
YuMi Scenario C 4.9± 17 0.019± 0.077 0.001± 0.009 0.3± 1.7 0.029± 0.010

TABLE III: Mean results for the teleoperation trajectory

VI. CONCLUSION

We introduced a method and an intuitive VR interface
for teleoperation through payload manipulation in multi-arm
systems. By opening up a rotational degree of freedom
and using first-order angle modifications to rotate around
the free axis, we can improve the manipulability index for
each arm individually. The method was tested in simulation
on different robots and for different trajectories, showing
that, especially in teleoperation scenarios, where users
are not particularly aware of the system limitations, we
are able to better avoid singular configurations and, in
most cases, improve the system behaviour. By adding
further improvements such as limits on the maximum
accelerations when reaching workspace limits we believe
that our method can be further optimized. The method is
computationally efficient and generally does not require a
trade-off against other parameters as is the case in [10] or
[13]. We believe this is a promising step towards future
intuitive VR teleoperation interfaces for multi-arm systems.

A. Future Work

Mobile bases: Although our setup consists of fixed-base
robots, this is not a limitation of our system. Indeed, we
can already show that it works for robots on omnidirectional
mobile bases by adding the DOFs of the base to each arm’s
state vector q. Qualitative results of the experiment can be
found in the accompanying video. In future steps we would
also like to extend this to directional robot bases.
Collision avoidance and re-grasping: To focus on the
method in isolation, many of the details of a complete system

have been neglected, e.g. collision avoidance. Additionally,
sometimes a better configuration for the individual robot arm
might exist but is not reachable without violating the end-
effector constraints. Allowing re-grasping maneuvers might
improve the system even further, but might be a user interface
challenge in the context of teleoperation.
Dynamics and task allocation: One point of interest in
multi-robot systems is that their combined payload capacity
allows them to lift heavier objects, while the potential redun-
dancy of remaining robots allows for dynamic re-grasping or
allocation of robots to multiple tasks or objects. We believe
that this might be especially interesting for larger building
sites or automation in larger factory halls. Challenges include
the task scheduling and path planning, which quickly become
non-trivial for larger groups of robots. Additionally, for large-
scale systems the scale of the operator compared to the scale
of the system might require additional parametrization.

Fig. 8: Qualitative manipulability comparison for scenarios
B and C of the teleoperation trajectory on the 2 YuMi robots
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