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Abstract— Teleoperating robotic arms is a challenging task
that requires years of training to master. It is mentally demand-
ing, as the operator must internally compute transformations,
or rely on muscle memory, to perform even the simplest tasks.
Alternative methods that rely on embodiment — the immersive,
first person experience of controlling the robot from its point
of view are recently becoming more popular, thanks to the
emergence of mixed reality devices. These methods create
an intuitive experience by tracking the users motions, and
retargetting them to the robot. However, even recent hardware
fails at achieving total immersion, due to inherent discrepancies
such as latency, imperfect tracking, and the differences between
human and robot motor systems. Thus, performing even simple
pick-and-place tasks with these systems, while more intuitive, is
still cumbersome, and far from the level of human performance.

In this paper we propose an immersive system that aims
to bridge this gap. The system tracks the user’s motion and
retargets them to the robot as usual, but it also detects the
user’s intent, that is, the task they wish to perform. Based on
this knowledge, the system can autocorrect the motion when
it is about to fail, in a seamless manner, such that the task
is successfully performed. We evaluate the efficacy of our
autocorrection system in a user study. The results show a
statistically significant performance improvement in terms of
operation accuracy and time.

I. INTRODUCTION

Recent years saw major advancements in autonomous
robotics, that greatly enhanced robot decision making ca-
pabilities. However, though Al-capable robots are no longer
perceived as a science fiction pipe dream, neither are they
an attainable goal in the near future. The transition to full
autonomy will not happen suddenly, but rather gradually,
through a coherent consolidation of human and robot in-
telligence. Recent successful approaches to teach robots to
perform tasks are based on imitation learning, where an
expert demonstrates a task, and a policy to perform this task
is inferred from the demonstration. Gathering demonstration
data can be done by manipulating the robot directly or by
teleoperating, to perform the task, and recording the motion.
This however, can be cumbersome and time consuming,
without a proper interface.

Teleoperation of robotic arms by e.g. jogging is no-
toriously difficult to master, and to a novice, it can be
mentally draining. Fully controlling a robotic hand, and not
simply switching between preconfigured grasps, is virtually
impossible. In recent years, due to the growing availability of
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Fig. 1. An operator with HoloLens 2, teleoperating a robotic arm to place a
ball on the desk. Without autocorrection the ball is placed through the desk,
while with it, it is placed perfectly well. The red dots indicate the trajectory
of user input. The green dots indicate the corrected input trajectory.

mixed reality devices, more and more teleoperation systems
rely on immersive, first person embodiment of the robot. We
argue that with these approaches, generating demonstrations
can be done much more efficiently. These systems attempt
to create an intuitive experience by presenting the operator
with a stereo video feed of robot’s perspective via a Head
Mounted Display (HMD) and by tracking the operator’s
motions, and retargetting them to the robot. Despite the
many advances, a totally immersive experience will not be
possible in the foreseeable future. This is due to issues such
as latency and imperfect tracking, but also due to the inherent
differences between human and robot motor systems. As is
evident from demonstrations, even the highest-end systems,
which include tactile feedback for example, are far from
exhibiting human dexterity. The solution, we argue, lies in
slight, ideally unobservable, modifications of the motions in
a way that makes it easier to perform tasks, a process we
term task autocorrection.

The effect of the autocorrection can be demonstrated in
Fig [T] and the accompanying video; There, using an HMD
with hand tracking capabilities, the user attempts to control
a virtual robot which tracks their hand. They attempt to
pick and place a virtual ball on the table. While without
autocorrection, they fail to properly grasp the ball, and place
it through the table, the autocorrection motion is valid.
Inspired by the work of Dragan and Srinivasa [1f], who
presented the concept of assistive teleoperation, the task
autocorrection framework comprises of two main compo-
nents: a task predictor and a motion planner. The intent
predictor is a neural network trained to predict the intent of
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Teleoperating a virtual robot in MR shown as a sequence of snapshots from left to right and top to bottom. After the participant matched the

input hand with the robot hand, he grabbed the yellow ball and then slide it between the open slots. At last, the ball was placed back on the desk. (Once

the ball is stably grasped, the ball would turn to blue color.)

the operator. The motion planner, based on the predicted task,
computes the optimal robot motion, and blends the user’s
motion with the optimal one, based on the confidence level
of the prediction. This blending is called arbitration in [I].

We present our approach for immersive teleoperation. Our
contribution is threefold:

1) A holographic immersive teleoperation playground us-
ing Microsoft’s HoloLens 2 (Fig [2).

2) An extendable autocorrection system for teleoperation.

3) A user study to evaluate the efficacy of autocorrection.

II. RELATED WORK

Immersive teleoperation is a topic that has been researched
for years, but recently saw a resurgence due to an increasing
reliability and availability of HMDs. Recent approaches
combine of different hardwares as input device. We mention
a few examples: Fritsche et al. [2] proposed a system com-
posed of Microsoft Kinect, Oculus Rift and haptic Sensor-
Glove to teleoperate the robotic arm of iCub. Similarly, 3]
used a Vive VR headsets and hand controllers to teleoperate
PR2 robot, with the same goal of obtaining demonstrations
suitable for imitation learning. Liang et al. [4] used palm
position from a Leap Motion to teleoperate a 6 DoF manip-
ulator, and additionally visualized the 3D model of tracked
hand in an HMD. In [3], an augmented virtuality system
was created to teleoperate UR10 with a mounted Robotig-85
gripper. The recent vision-based system, DexPilot [6], was
used to teleoperate a robotic hand-arm system by observing
human hand via 4 RGB-D cameras. In addition to tracking,
a recent partnership called the Converge Robotics Group
created the commercial Tactile Telerobot, a teleoperated hand
with a tactile feedback glove, providing the user with an
increased level of immersion. The hardware, however, is very
expensive in comparison to the alternatives, and therefore not
suitable for data collection from many users.

Central to the question of intuitive teleoperation is the
question of motion refargetting, that is, how to map human
motions to robots motions. At the most basic level, it
works by solving an IK problem, where the target end-
effector pose matches the user’s hand pose. Rakita et al.
relaxed this mapping by considering additional goals, such

as smooth motion and limited joint velocity. Other factors
such as joint space discontinuities and self-collisions were
addressed in [§]]. Eric et al. [9]] showed that Mixed Reality
feedback outperformed physical feedback when the operator
commands the robot via speech, pointing, and eye gaze to let
it distinguish different objects. Finally, we mention that the
problem has been of great interest to the computer graphics
community, as of the the fundamental problems is how to
transfer motions from one character to another (see e,g, the
seminal work by Gleicher [10]).

Intent Prediction is the process of understanding the action
that a subject is about to perform. It is closely related to
the action recognition problem, which has been the topic
of extensive research in the computer vision community.
While the focus has been centered on third-person human
action recognition (see e.g. for a review), first-person
is becoming more prominent [13]]. To collect data,
developed RoboTurk, a crowd-sourcing platform where users
can manipulate a simulated robot in order to accomplish
specific tasks, which is intended for imitation learning.

Assistive Teleoperation, as described in , is the process
of arbitrating the operators motion and a learned optimal
policy. Teleoperation and full autonomy are both extremely
challenging, and assistive teleoperation seeks to bridge the
gap and lie somewhere in between these two extremes.
One of the first instances of assistive teleoperation was
proposed by [15]], in which a robot could turn cranks based
on imprecise operator inputs. Since then, many different
methods were described, and we sample just a few here
22).

As mentioned, we follow the approach introduced in [T]},
which consists of two main components: prediction of user
intent and its arbitration with the user’s input. In our work,
we constantly predict the user’s intent, and based on that
intent, we compute an optimal trajectory to perform the
action. We do not execute the optimal trajectory, however,
as this would be too intrusive to the user. Instead we blend
the user’s retargetted motion and the optimal one together,
informed by the confidence level of the intent prediction.
Similar to [23]], our system could also change to new context
of correction if a new user intent is predicted.
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Fig. 4. An example of the scene: 6 objects (two balls, two walls and two
desks) (n = 6). Each row of M represents an m dimensional state vector of
object (m = 7). The first three elements indicate the position of the object.
grab denotes whether the object is grabbed, and the last three elements are
one-hot coded vectors representing the type of the object. The scene input
is stacked by such w scene matrices M.

III. METHOD

A system overview is shown in Fig ] The teleoperation
system consists of three parts: A data generating input device,
a retargetter that maps the input data to joint angles, and
the robot itself. Our robotic setup consists of a Universal
Robots URS5 robot arm with 6 DOFs, and a mounted
Allegro Hand from Wonik Robotics with 4 fingers and 4
joints per finger (16 DOFs) [25]. A hologram of this setup
is displayed using a HoloLens 2 HMD. The HoloLens 2
provides a 26-joint articular hand model and a gaze pointer
(origin and direction). The hand model is used as data for
the retargetter, which maps it to joint angles. We use a basic
inverse kinematics model, where the operator’s fingertips are
mapped to the robot’s fingertips. Formally:

¢ =argming ¥ 5|T(4q)~PIP (1)
APy 2
where ¢ is the joint angles, A;, P, being the corresponding
robot and human fingertips) and 7 the forward kinematics
function. We solved this problem using Newton’s method.

A. The Autocorrection System

Our autocorrection system consists of two parts. An intent
predictor that estimates the user’s intent and the task correc-
tor that changes the data based on the predicted intent.

1) Intent Prediction: By working in a virtual environment,
we can easily generate and label data, which is collected to
train a multi-modal multi-task neural network to predict the
user’s intent. The input data of the network is the hand palm
trajectory, the trajectories of the 26 hand joints, the gaze
(origin and direction) trajectory and the stacked scene data
tracked with the same window size as other trajectories. The
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System overview: Mixed Reality teleoperation framework and autocorrection system
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Fig. 5. The architecture of the multi-modal and multi-task action prediction
neural network

scene object transformation M; and scene input are organised
as Fig [ To distinguish between the action (e.g., grabbing)
and the object (e.g., blue ball) we define intent as a tuple
of action and target. Two soft-max outputs are added to the
network to predict action and target respectively.

a) Network Architecture: Given the input and the out-
put structure in Fig [3] the input is transformed into four
equal-size embedded vectors by forward propagating along
two stacked Long Short Term Memory (LSTM) layers and
one followed ReLL.U network in each branch. The first LSTM
layer in the scene branch iterates over the axis representing
the number of objects n instead of the time axis w because
it is designed to handle a varying amount of objects in the
scene. The embedding vectors are fused together by learnable
weighted averaging and then fed into a final ReL.U network
before computing the soft-max output. The output of action
prediction branch is a d dimensional vector, which represents
the probability for each action (d =4, Pick, Place, Slide-
Between-Walls and None). The target prediction output gives
more details for the pick and place action: A value of 1 for
the first entry indicates that the object will be picked up. A
value of 1 for the second entry indicates that the operator
will drop the object. An additional None entry is also added
to indicates all the other cases. Thus, the dimension of the
target prediction output is 2n,,,y + 1, where n,,,, = 8 is the
maximum number of the objects in the scene.

b) Training: The training dataset was generated by
asking participants to accomplish one of two tasks: pick a
ball and place it on a desk randomly or pick a ball and slide
it between two walls. In the context of action prediction, the
annotated labels are shifted forward by different time span,
which represents how far into the future the robot could
anticipate the beginning of the user’s action. We gathered
around 5 hours of training data with this method. The trained
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Fig. 6. Top: slide task with the final arbitration value o evolving over
time based on confidence score. Bottom: abstract view that shows the user
trajectory in red, the relevant points Uy for the line fitting in fat red, the
optimal line I,y in blue and the optimal trajectory T, in fat blue. U; is
the most recent input point and C the corrected input.

model achieves 89.48 % accuracy for action prediction and
85.02 % accuracy for target prediction on our test set.

2) Task Correction: For each action, we define a different
set of physical requirements. For example, when placing a
ball on a desk, it is required that the ball does not penetrate
the desk. Sliding a ball through the thin slot between two
walls, must be in a perfect linear motion. Considering
the varying task difficulty, the aggressiveness of assistance
also varies accordingly. The uncertainty given by the in-
tent predictor complicates things even more, i.e. prediction
confidence. To accommodate different physical requirements
and the varying degree of assistance per task we propose a
modular task correction framework with an arbitration value
that allows to tweak the aggressiveness of the correction. To
integrate the uncertainty into the correction framework we
use the minimum between the two maximum probabilities
from each soft-max layer of the intention prediction network
as a confidence score.

a) Correction Framework: We employ a hierarchical
system to be able to stack or switch out different elements.
As an example, imagine at the top the sliding task stacked
on a ball grasping task. For this specific example, the first
corrector would keep the trajectory and the second one would
correct for the placement of the fingertips. In our case, a
controller selects the suitable correctors this way such that
the system can have arbitrary complexity. Every corrector
takes the user’s input hand U, possibly already processed
by another corrector, the result of the intent prediction,
and the confidence score as input. It estimates the task-
specific optimal trajectory 7, and the arbitration value o
that specifies the aggressiveness of the task correction and
then interpolates 7,, with U based on . The evolution
of the arbitration value, the optimal trajectory and the hand
trajectory can be seen in Fig [f]

b) Implementation of Correctors: We implemented
three correctors: pick, place, and slide. The place corrector
assists in achieving an optimal place action. The optimal
trajectory is a target point P, ie. T,, = {P}, which is
exactly rcm (radius of the ball) above the projection on the
nearest desk. The arbitration value ¢, is a linear combination
between the confidence of intent prediction network p € [0, 1]
and a regularizer o =1 —1/(1 + exp(—k(d — dp)) € [0,1],
which depends on the estimated distance d between the ball
center and the target point. In the experiments conducted the

values were set as k = 50 and dyp = 0.5. A point-wise linear
interpolation method is applied here and the corrected user
input C = (cy,¢y.c;) is computed as:

C=oP+(1-a)U (2)

With increasing «, the system would correct increasingly
aggressive towards the optimal position.

The slide corrector assists the operator to slide the ball in
a straight line between the two walls, i.e. optimal line [,
in Fig [6] Consequently, the optimal trajectory of the slide
corrector consists of a series of optimal positions over the
next a few timesteps, T,, = {Pi,Ps,...,P,}, where n =20
is the number of future timesteps (around 30fps). The first
position P; is the projection point on /,,, of the current user
input hand position at time 7. The followed points {P>, ..., P, }
are equally spaced on [,,;,, where the spaced distance and
direction are determined by the previous observations of
user input Upey = {Ui—p,Ui—p+1,...,Ur }. The value p =10
determines the window size. The interpolation process is
more complex for the slide corrector. It is designed by fitting
a line [, via weighted PCA on the point set U UT,p. The
weight wpu assigned to Uy, is 1, while the weight w,,; for
T, depends on arbitration value &, where w,, = y(1+ ).
The y € [1,00] is a parameter to tune the weights between
them. If the weight w,, is larger than w,, the correction
is biased towards the optimal line /. Finally, the corrected
user input C can be determined by projecting U; on [g;.

Lastly, the ball grasp corrector assists the operator with
performing a valid grasp of a ball. In our case, this is a
grasp that accurately touches the ball, without penetrating it.
The optimal trajectory 7T, is an hand pose H,), that will
grip the sphere entirely. They are computed by finding the
nearest contact points on the sphere’s surface corresponding
to the input tip position of the users hand. The interpolation
is to move the user input tip position to this optimal position
H,p once the ball is detected to be grasped. From the
corrector-framework perspective, it is as a point-wise linear
interpolation with arbitration value o = 1.

IV. EVALUATION

To evaluate the autocorrection approach, we designed a
user study where participants were invited to teleoperate
a life sized robot hologram in MR with or without the
assistance of autocorrection (Fig. [7). The autocorrection
system is equipped with aforementioned place corrector,
slide corrector and ball grasp corrector. The simulation is
done on a laptop with a Nvidia GTX 1060 graphic card, an
Intel i7-8750H CPU and 16 GB of memory.

A. Tasks

Two tasks were targeted in the user study, namely, Pick-
And-Place and Slide. The scene contained the robot, which
was placed on a virtual desk at 1m high, two balls colored
grey and yellow, both with a diameter of 16 cm, an additional
“shelf” was place slightly above the table to provide an
alternative surface. Additionally, two “walls”, 8 cm of height
and 16cm apart were placed on the desk, to form a tight



Fig. 7.

The experimental scene as viewed in the HoloLens 2

slot for the balls. And they are upright and aligned with x
direction as Fig

In Pick-And-Place task, the participants were required to
grab the grey ball first, and place on a spot marked by an
indicator (shown as a small sphere) and then grab the yellow
ball and place it next to another indicator. The participants
were told to try to place the ball properly, that is, it should not
placed in the air or through the surface of the desk. In Slide
task, the requirement was to pick the grey ball first and drag
along the slot from the right to the left, in the perspective
of the robot, and then drag it back. This was repeated twice.
The participants were told to keep the ball as low as possible
without colliding with the desk or the walls.

B. Experimental Setup

1) Participants: We invited 11 participants to take part
in the user study (two females, M = 24.73 years old, SD =
2.15). Five of them wore glasses and two of them had the
experience of teleoperation in MR before. Each participated
in 8 trials and all recorded data was used for evaluation.

2) Experimental Procedure: Each participant was asked
to wear the HoloLens 2, perform the eye calibration routine
and follow a short operation introduction. The instructions
and goal for the study were then explained. Before starting
the experiment itself, a warm-up trial was conducted to let the
participants become familiar with basic operations. For each
trial, the participants were asked to perform either a Pick-
And-Place task or a Slide task once with or without enabling
autocorrection. And the participant did not know whether
autocorrection system was enabled or not. In total, there
were four trials with autocorrection and four trials without
autocorrection for each participant. The two tasks were also
equally distributed among 8 trials, and the order of trials
was random. In each trial, a separate program was running
at the same time to evaluate and record the experiment. After
each trial, the participant would have a break and complete
a questionnaire survey.

C. Performance Evaluation

1) Quantitative Measure: The recorded experiments were
evaluated using two quantitative metrics during simulation:
Violation Distance (VD) and Operation time.

The violation distance is defined as the overlapped dis-
tance between two objects along specific direction. For each
place action in Pick-And-Place task, it is computed as the
vertical distance (y direction as Fig[7) between the ball center
with its optimal position, which is 8 cm (radius) higher above
the nearest desk surface. The score for one trial is the average
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Fig. 8. Evaluation results: the height of each bar represents the mean value
and standard deviation is indicated by the error bar on it. The mean and
standard deviation are computed across trials for each type of task.

value among all place actions over time. For the Slide task,
the violation distance is evaluated as the sum of overlapped
distance between the ball and the wall and between the ball
and the surface (z and y direction respectively). The score
for one trial is the average value integrated over the entire
slide motion.

The operation time is defined as the amount of time
required to accomplish each task. For the Pick-And-Place
task, the timing began as soon as the robot picked the grey
ball up and ended when the yellow ball was released. For
the Slide task, timing started when the ball entered the slot
and ended when it left the slot after the repeated motion.

2) Questionnaire Survey: In addition to the quantitative
evaluation during each trial, after the end of it, the participant
was asked to answer two questions to evaluate the task load
and the degree of naturalness during control for each trial,
both of spanning score values of 1-5 in 1 point increments.

Question 1: Which level of the difficulty do you feel when
you execute each teleoperation task?

A Task Load Index (TLX) was rated by participants for
this question referring to the Effort rating of the NASA Task
Load Index (NASA-TLX) [26], where we rescaled it from
1, meaning “Very easy”, to 5 meaning “Very hard”.

Question 2: Which level of the naturalness do you feel
when you teleoperate the robot irrespective of the result of
task?

Participants also need to answer this question by rating
with naturalness score. It aims to subjectively measure the
level of autonomy discrepancies , which indicates the
user’s sense of the intervention arising from the autocorrec-
tion system. It was scaled from 1 being “very unnatural”, to
5 being “very natural”.

D. Result

We considered hypotheses that, the autocorrected motion
will outperform the non-autocorrected on Pick-And-Place
task, Slide task or both tasks in terms of three metrics:
lower violation distance, shorter operation time and lower
TLX, but with a lower naturalness score. The mean and



TABLE I
MEAN AND STANDARD DEVIATION ACROSS TRIALS FOR RESULT WITH
AND WITHOUT AUTOCORRECTION.

Task VD (cm) Time (s) TLX Naturalness
Pick&Place w/o 1.85+0.95 13.66+2.06 2.59+0.88 4.32+0.55
Pick&Place with  0.424+0.54 13.65+3.55 2.09+0.95 3.64+0.71
Slide w/o 2.61+0.75 13.05+4.88 3.14+1.06 4.09£0.95
Slide with 0.37+0.36 10.254+3.19 2.23+1.44 3.23£0.79
Both w/o 2.23+0.94 13.36£3.76 2.86+1.01 4.20+0.79
Both with 0.39+0.46 11.9543.78 2.16+1.22 3.43+0.78

standard deviation of respective metric by task are summa-
rized in Fig [§] and Table [I] by comparing in settings with
or without autocorrection. To determine how the dependent
variables, i.e.four metrics differ for the independent vari-
able (with/without autocorrection) separately, four univariate
ANOVA analysis are conducted for each task.

1) Pick-And-Place task: Firstly, for Pick-And-Place task
the results revealed that, compared to the no autocorrection
system, the system with autocorrection has statistically lower
violation distance, F(1,42) = 35.586, p < .0005, partial
n? = 459, whose mean value is decreased by 77.3%.
However, they did not show statistically significant differ-
ence on operation time, F(1,42) =.000, p = .989, partial
n? = .000. Moreover, regarding the results of questionnaire
survey, the ANOVA analysis showed that the autocorrection
system could decrease TLX rating with statistical support,
F(1,42) = 3.110, p = .085 < .1, partial n? = .069, which
dropped down by 19.3% in average. But it could also lead to
lower naturalness score, F(1,42) =12.023, p=.001 < .005,
partial 2 = .223 (decreased by 15.7% in average).

2) Slide task: Likewise, same ANOVA tests are applied
for Slide task. The results indicated that the autocorrection
system improved the quantitative measures significantly, i.e.
lower violation distance (F(1,42) = 153.508, p < .0005,
partial 2 = .785) and shorter operation time (F(1,42) =
4.873, p = .033 < .05, partial N> = .104), which were
decreased by 85.8% and 21.5% (2.8 s) respectively regarding
the mean value. Moreover, for questionnaire survey, the
ANOVA test revealed that participants rated the trials with
the assistive autocorrection system with lower TLX rating
(F(1,42) = 5.419, p = .025 < 0.05, partial n*> = .114) and
lower naturalness score (F(1,42) =10.231, p =.003 < .005,
partial N2 = .196), which dropped down by 28.7% and 21.0%
for each metric in average.

3) Both tasks: If we do not distinguish two tasks, the
results would give more support on our hypotheses with
larger sample size. Firstly, across all trials for both tasks, the
results revealed that autocorrected motion has statistically
lower violation distance, F(1,86) = 132.813, p < .0005,
partial 12 = .607. Its average value is decreased by 82.5%.
They also showed statistically significant difference on oper-
ation time with shorter mean time by 10.6% (F(1,86) =
3.011, p = .086 < 0.1, partial 772 = .034). Furthermore,
the autocorrected motion was rated with lower TLX with
statistical support, F(1,86) = 8.456, p = .005 < .01, partial
n% = .090, which decreased by 24.5% in average. The
overall naturalness score was also lower with autocorrection,

F(1,86) =20.939, p < .0001, partial n% = .196 (decreased
by 18.3% in average).

V. DISCUSSION

The quantitative measures and questionnaire survey veri-
fied the feasibility and usability of our autocorrection system.
Based on the performance across all trials of user study
irrespective of the task type, it can be concluded that the
autocorrection system is able to improve operational ac-
curacy and save operation time with statistical support. In
particular, the system can decrease the violation distance
significantly (over 75% for either Pick-And-Place or Slide
task). In term of user experience, the autocorrection can
reduce the user’s sense of challenge, but it does increase the
sense of intervention. Naturally, the operator would be aware
of stronger intervention from the autocorrection system if the
user input is corrected more aggressively.

For a specific task the results show a similar trend
regarding lower violation distance, lower subjective task
difficulty and the sense of naturalness. They also show that
autocorrection system is capable of decreasing the operation
time for Slide task. However, it did not show a significant
difference for Pick-And-Place. This may stem from the fact
that only place corrector is helpful for Pick-And-Place task
and the place action usually happens instantaneously, where
the correction can not contribute a lot in term of time
efficiency. Additionally, it can be noticed that there is a high
standard deviation in Fig[8|for each task, which may partially
result from the wrong prediction of the intent.

While our work shows promise for teleoperating a hu-
manoid robot arm, there are many directions for future
work. We intend to evaluate the performance of our system
in the real world which would show the strengths of an
autocorrection system even more. Next, the current intent
predictor has the perfect location of all objects in the scene
and it would be interesting to integrate additional methods to
extract the scene matrix from the cameras that are observing
surrounding. Furthermore, only several examples of domain-
specific corrector are explored in this work and especially
only two levels. We will add more levels to our hierarchy
to start integrating more properties, e.g., the material of
the objects we interact with. The strategy of arbitration
needs to be studied in-depth to trade off better operation
performance against more human autonomy. The optimal
trajectory calculated in the correctors did not consider ob-
stacles. Therefore, we plan to add an obstacle considering
path planning algorithm.
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