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Figure 1: Our pipeline for designing active kinesthetic garments. Given a set of motions (a) and a compliant garment with
electrostatic clutches (light green) (b), our method automatically generates efficient connecting structures (c), that offer strong
resistance to input motions when clutches are active while minimizing interference otherwise. Once fabricated, our designs
can provide force-feedback on-demand in various applications such as a VR training scenarios (d).

ABSTRACT
Garments with the ability to provide kinesthetic force-feedback
on-demand can augment human capabilities in a non-obtrusive
way, enabling numerous applications in VR haptics, motion assis-
tance, and robotic control. However, designing such garments is
a complex, and often manual task, particularly when the goal is
to resist multiple motions with a single design. In this work, we
propose a computational pipeline for designing connecting struc-
tures between active components—one of the central challenges
in this context. We focus on electrostatic (ES) clutches that are
compliant in their passive state while strongly resisting elongation
when activated. Our method automatically computes optimized
connecting structures that efficiently resist a range of pre-defined
body motions on demand. We propose a novel dual-objective op-
timization approach to simultaneously maximize the resistance
to motion when clutches are active, while minimizing resistance
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when inactive. We demonstrate our method on a set of problems
involving different body sites and a range of motions. We further
fabricate and evaluate a subset of our automatically created designs
against manually created baselines using mechanical testing and in
a VR pointing study.

CCS CONCEPTS
• Human-centered computing→ Haptic devices.

KEYWORDS
computational design, topology optimization, kinesthetic feedback
ACM Reference Format:
Velko Vechev, Ronan Hinchet, Stelian Coros, Bernhard Thomaszewski,
and Otmar Hilliges. 2022. Computational Design of Active Kinesthetic Gar-
ments. In The 35th Annual ACM Symposium on User Interface Software and
Technology (UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3526113.3545674

1 INTRODUCTION
Kinesthetic garments are an efficient and non-obtrusive way of
providing force feedback for human body motion. By augmenting
stretchable fabric with strategically designed reinforcements, they
offer targeted resistance to motions along specific directions [41].
They are part of an emerging trend of soft robotic garments [36] that
have the potential to assist human wearers in various ways such
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as during locomotion [20, 21], rehabilitation [2], and increasing
immersion in mixed reality [3, 15, 35]. However, relying only on
passivemechanical structure for feedback prevents their use in such
applications because they require active feedback.

In this work, we propose a computational approach for designing
active kinesthetic garments that can resist user-defined motions on
demand. To implement such adaptive resistance, we rely on elec-
trostatic clutches [16], i.e., pre-fabricated components that provide
extremely high stiffness contrast between their active and inac-
tive states. Designing active kinesthetic garments then amounts to
determining clutch placements, typically placed over high-strain
areas, and finding a passive structure that connects and anchors
the active components. Crucially, this layout should result in the
garment providing maximal resistance when clutches are active,
but minimally interfere with motion otherwise. Designing effective
connecting structures requires the understanding of the interac-
tion between stretchable garments in multiple states sliding over a
deforming body in multiple poses, a very difficult and unintuitive
task.

To address this challenge, we formalize the design of active
kinesthetic garments as an on-body topology optimization problem
whose objective function explicitly balances the opposing goals for
active and inactive states. By maximizing the difference in elastic
energy between active and inactive states, our formulation encour-
ages layouts in which clutches link disconnected parts of the passive
structure. In this way, clutches leverage the passive structure to es-
tablish strong, load-carrying paths when active while maintaining
freedom of movement otherwise.

We implement our formulation within a standard evolutionary
optimization algorithm, and produce a set of active kinesthetic gar-
ment designs that each target multiple motions spanning different
body sites. Our results indicate that designs produced with our
approach are highly effective and outperform manually-designed
alternatives by significant margins. To further substantiate this
analysis, we manufacture a subset of our designs for experimental
evaluation. Both mechanical testing and a VR pointing task indi-
cate clear advantages for the designs created with our method. To
summarize, we make the following contributions:

• A computational design pipeline for the automatic creation
of active kinesthetic garments that includes a novel objec-
tive function that considers active components and multiple
motions.

• A set of fabricated active kinesthetic garments built on compli-
ant material integrating ES clutches as kinesthetic feedback
components.

• A comprehensive evaluation showing the effectiveness of our
method in simulation, in a physical validation, and in a VR
user study against manually-designed and visual baselines.

2 RELATEDWORK
We summarize works in the areas of computational methods in
garment modeling and augmentation, intersecting with hardware
and devices capable of providing body-scale kinesthetic feedback.

Body-scale Kinesthetic Haptic Feedback Systems. Early work to
provide kinesthetic feedback to the body used motors and hydraulic
pistons to actuate heavy bulky haptic platforms. More recently,

several wearable body kinesthetic feedback systems have been de-
veloped, mostly based on electromagnetic motors [9, 39] with rods
[5, 37] or cables [4, 13] transmission, and based on pneumatic actu-
ators [11, 15] which are soft and more comfortable at the detriment
of a bulkier equipment (pumps, compressors, valves). An alterna-
tive way to provide body kinesthetic feedback are passive blocking
mechanisms like vacuum jamming [10] (still requiring pumps) and
ES clutches [12, 17, 33, 34]. In particular, ES clutches offer the ad-
vantages of being ultra-thin, light, and soft enabling the design of
compliant kinesthetic garment designs. Such kinesthetic systems
are typically manually designed to specifically fit a limb/joint and
block a certain motion. In contrast, we leverage an automatic de-
sign method that models and simulates clutches, allowing us to
accommodate any set of motions and body areas.

Topology Optimization. Topology optimization is a powerful
method used in engineering disciplines to most efficiently distribute
a finite amount of material, typically to minimize compliance [6, 42].
The graphics community has also combined compliance minimiza-
tion with user guided input [26, 38]. It has also been demonstrated
on elastic materials [40] as well as structures undergoing large
displacements [8]. Closer to our work, topology optimization has
moved into the on-body domain where it has been used for per-
sonalized cast design [44] and casts designed for thermal comfort
[43]. Most recently, Vechev et al. demonstrated the design of kines-
thetic garments, which are passively reinforced garments designed
to resist a single motion [41]. However, this work only formulates
a single compliance minimization objective, and thus cannot be
used in a setting that leverages active components. We extend this
approach in two important ways, first by the addition of a dual
objective that considers the active and inactive states of our com-
ponents. A second important contribution is a formulation that
enables optimization for multiple motions.

Intelligent Garment Augmentation. The intelligent design of gar-
ments is an emerging discipline with important applications for the
general population. Computational design approaches to garment
design have recently started to consider motion as a fundamen-
tal design quantity in so-called 4D garments [23] that minimize
friction and pressure via integrated knitting maps. In addition to
minimizing friction during motion, Montes et al. also optimize for
pressure distributions and body fit by employing a physically based
model of skin-tight garments on the body [27]. Vechev et al. aug-
ment existing skin-tight clothing with passive reinforced materials
to resist a single given motion, employing a more flexible model
of the garment that allows cloth to slide and lift-off from the body
[41]. Optimization of component placement has also been used
in soft-robotic garments, in combining elastic cords, clutches, and
dampers to reduce the force and power required by a person to
generate lower body motion [29]. Evolutionary optimization tech-
niques were employed by Gholami et al. for designing garments
with optimally placed fabric sensors [14]. Muthukumarana et al.
integrated combinations of active shape-memory based compo-
nents into garments allowing for actuation on clothing [28]. In our
work, we augment garments with active components that generate
kinesthetic feedback and design supporting optimization objectives
to create efficient structures connecting them.
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Figure 2: Pipeline overview, from left to right (a) Input: Designers specify N motions with a single rest pose, and a garment
(shirt). The simulated behaviour of the garment is shown, with light blue indicating high strain. Clutches are then placed on
the garment over high strain areas. (b) Automatic Design: We simulate the garment under each motion with all clutches ON
(top), or OFF (bottom), noting that the energy difference between these states increases until the target coverage is reached.
Designs can be sampled at any point in the evolutionary progress. (c) Fabricate: We assemble the ES clutches made of flexible
strips sliding in a stretchable textile guide and fabricate the connecting structures attaching everything together to make the
final active kinesthetic garment (right).

3 COMPUTATIONAL DESIGN PIPELINE
Our method supports designers in the task of creating active kines-
thetic garments that can resist any motion from a predefined set of
movements. The design goals of our pipeline are to enable kines-
thetic garments that maximize the feedback felt by users when
ES Clutches are active, while minimizing interference with their
motion when inactive. Our pipeline consists of three main phases:
1) input — where designers specify motions, garment designs, and
clutch placements; 2) automatic design — where our method au-
tomatically links clutches with stiff material to satisfy the above
design goals; and 3) a fabrication phase. The full computational
pipeline is illustrated in Fig 2.

3.1 Input
Our pipeline requires three components as input: a set of body
motion, a base garment, and a predefined number of ES clutches.

Motions. are specified using the STAR/SMPL parametric human
body model [24, 30] which produces a surface mesh 𝑣 with N =
6890 vertices ∈ R3𝑛 based on a 72 pose 𝜃 parameters. To create
target poses, we sample from the AMASS dataset [25] and make
individual adjustments to the 𝜃 as needed. We define a motion as
a single rest pose v̄ and an accompanying deformed pose v. A set
of motions is defined with v = (v1, . . . , v𝑖 ) deformed poses, and a
common rest pose v̄.

Garments and Connecting Structures. are modeled as 2D mesh
surfaces embedded on the body, initialized with the same rest and
deformed nodal positions as the underlying body mesh. A garment
in its rest state is defined through nodal positions x̄ = (x̄1, . . . , x̄𝑛) ∈
R3 and x = (x1, . . . , x𝑛) ∈ R3𝑛 when deformed. The connecting
structure of the garment is modeled using a bi-material distribution
where each triangle element 𝑒 of the garment mesh is assigned a
specific material property. This property is set through the design
variable 𝑑𝑒 ∈ [0, 1] for each element 𝑒 , where 0 and 1 correspond
to cloth and reinforced cloth respectively.

Active Components. In our formulation, ES clutches are modeled
as rectangular surface meshes that are attached to the garment
at a predefined set of vertices. A key requirement for optimal ES
clutch operation is that they are initialized in a taut state, that is,
all slack must be removed from the system before forces are felt at
the endpoints. We create a low-dimensional parametrization of ES
clutches that is defined by the following variables: a starting point, a
surface direction, and a length and width. From this, we procedurally
generate a spline, and extrude a mesh (see Appendix A) with rest
vertices q = (q1, . . . , q𝑚) ∈ R3𝑛 and q̄ = (q̄1, . . . , q̄𝑚) ∈ R3𝑛 when
deformed. The endpoints 𝑞𝑐 of the clutch mesh (three at each end)
are connected to the garment mesh using simple quadratic penalty
functions, which allows for firm attachment.

3.2 Automatic Design
Finding a passive mechanical structure that optimally connects
electrostatic clutches placed by the user is a key challenge in the
design of active kinesthetic garments. Recent work by Vechev et
al. [41] demonstrated a method for on-body topology optimization
using a single compliance-minimization objective (summarized in
Appendix C). Such an objective cannot be applied in our setting,
as it has no notion of component states, and the single objective
does not sufficiently capture the high-level goal of minimizing mo-
tion interference when components are inactive. Therefore, we
propose to extend this formulation from passive reinforcements to
our setting of active kinesthetic garments by (1) distinguishing be-
tween active and inactive clutch states by extending the simulation
model with stateful components, (2) reconciling the different design
goals for active and inactive states through a new state-dependant
dual-objective, and (3) accounting for multiple motions.

Active Component Model and Simulation. ES Clutch stiffness
varies according to their state, thus, we model their behaviour
using a bi-modal material. We implement this as a neo-Hookean
material that resists compression and changes modes depending
on the activation vector 𝛾 = [𝛾0, 𝛾1, ..., 𝛾𝑛], 𝛾𝑛 ∈ [0, 1]. Each 𝛾𝑖
determines the state of clutch 𝑖 , with 0 and 1 corresponding to
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inactive and active states, respectively. The Young’s modulus of
the clutch material is then set to 𝑌 𝑖

clutch = 𝛾𝑖𝑌stiff + (1 − 𝛾𝑖 )𝑌cloth.
The elastic energy stored in the clutches during deformation is
defined as 𝐸clutches (𝑞,𝛾). We define penalty terms 𝐸body (𝑣, q) pre-
venting clutches from entering the body, and an additional term
𝐸attach = 1

2𝑘 (𝑞
𝑐 − 𝑥𝑥𝑐 )𝑇 (𝑞𝑐 − 𝑥𝑥𝑐 ) that attaches the six endpoint

vertices to their respective locations 𝑥𝑐 on the garment. Through-
out all examples, we set constant values for Young’s Modulus to
𝑌cloth = 0.5MPa, 𝑌reinforced_cloth = 0.5GPa, and 𝑌stiff = 3.0GPa. We
use a Poisson’s ratio of 0.33 for all materials.

We combine our active component model, with the garment-on-
body model described in [41]. The terms 𝐸garment (x, 𝑑), 𝐸body (𝑣, x),
and 𝐸attach are summarized in Appendix B. With the model and
energies defined above, we perform a quasi-static simulation by
solving an unconstrained optimization problem,

x∗, q∗ = arg min
x,q

𝐸garment (x, 𝑑) + 𝐸body (𝑣, x) + 𝐸attach (x) +

𝐸clutches (q, 𝛾) + 𝐸body (𝑣, q) + 𝐸attach (q) ,
(1)

using the GPU-based L-BFGS [22] optimizer provided by PyTorch
[32]. We take advantage of GPU parallelism by simulating all states
(poses) simultaneously. We consider simulations converged once
the gradient norm of (1) reaches 1e-7.

State-Dependant Dual-Objective. A central goal for the structural
optimization step is to find a material layout such that the garment
resists the specified motions as strongly as possible when clutches
are active, while showing minimal resistance otherwise. Assuming
all-elastic materials, we translate this goal into the requirement
that the stored energy of the garment should be maximized when
clutches are active, and minimized when they are inactive. Our key
insight is to introduce an energy differential objective that combines
these opposing goals as

d∗ = arg max
d

𝐸garment (𝑥∗𝑂𝑁 (d, q, 𝛾), d)

−𝐸garment (𝑥∗𝑂𝐹𝐹 (d, q, 𝛾), d)

s.t.
∑︁
𝑒

𝐴𝑒𝑑𝑒 = 𝐴∗ , f (𝑥∗𝑂𝑁 ) = 0, f (𝑥∗𝑂𝐹𝐹 ) = 0
, (2)

where q holds the variables of all clutches, and 𝑥∗
𝑂𝑁

, 𝑥∗
𝑂𝐹𝐹

are
distinct equilibrium states corresponding to all clutches being active
(𝛾𝑖 = 1∀𝑖) and inactive (𝛾𝑖 = 0∀𝑖), respectively.

To solve this optimization problem with the BESO algorithm, we
must compute the per-element sensitivities, i.e., the partial deriva-
tives of the objective function with respect to per-element material
assignment variables 𝑑𝑒 . Following (2), we simply have to sum the
sensitivity values for the active and inactive states to obtain a sin-
gle value that is used in the BESO ranking procedure. Everything
else follows the procedure described in [41] and is summarized in
Appendix C.

Multiple Motions. Whereas the method described in [41] com-
putes static reinforcements for a single target motion, we ultimately
want to move towards programmable garments that can resist many
motions by use of their active components. To this end, we extend
(2) to the multi-motion setting by summing contributions for all

poses as

d∗ = arg max
d

∑︁
𝑘

𝐸𝑘garment (𝑥∗𝑘,𝑂𝑁
(d, q, 𝛾), d)

−
∑︁
𝑘

𝐸𝑘garment (𝑥∗𝑘,𝑂𝐹𝐹
(d, q, 𝛾), d)

s.t.
∑︁
𝑒

𝐴𝑒𝑑𝑒 = 𝐴∗ , f (𝑥∗
𝑘,𝑂𝑁

) = 0, f (𝑥∗
𝑘,𝑂𝐹𝐹

) = 0 ∀𝑘 ,

(3)

where 𝑘 runs over all input poses. A problem with this simple
approach is that the optimization may receive larger rewards for
increasing an already good performance for a given pose instead
of improving the worst-performing case. We address this problem
by normalizing the strain energy density for each pose in a pre-
processing step

𝐸𝑘garment =
∑︁
𝑒

𝑡𝑒𝐴𝑒�̂�
𝑘,𝑒
garment (𝑥

∗, 𝑑𝑒 ), �̂� 𝑘,𝑒 =
𝑊 𝑘,𝑒

max𝑒 (𝑊 𝑘,𝑒 )
. (4)

In this way, each pose is given the same importance, irrespective
of its initial strain energy, thus encouraging material layouts that
more evenly distribute the garment’s performance across all input
motions.

3.3 Hardware Details and Fabrication
In the last step of the pipeline, designs are fabricated.

ES Clutches. provide resistance to elongation when active [1],
while remaining stretchable with low resistance when inactive.
They are thin, light and flexible which make them highly compliant
and consume very low power when engaged (e.g. one 14cm by 1cm
clutch consumes 12 mW at 350V). The ES clutches from [1] were
modified for better integration by making them stiffer to reduce
bending, packaging them in elastic guides to keep them fully self-
retractable and safer for on-body use. Each ES clutch is composed
of 3 parts: an electrode strip, an insulating strip, and a stretchable
textile guide. Strips are made of 125 𝜇m metalized polyester films
from McMaster-Carr. Films are laser cut into long 1cm wide strips
of various lengths. Additionally, insulating strips are covered with
a 25𝜇m thick layer of poly (vinylidene fluoride-trifluoroethylene-
chlorotrifluoroethylene) from Piezotech-Arkema [1].

Garments and Attachments. All designs are exported as meshes
and manually processed in Blender. We simplify geometry, and
unroll the designs onto flat surfaces using the Paper model plugin
(without changing area). As our connecting material, we attached
a layer of polyurethane (Siser EasyWeed Stretch) onto 100% cotton
fabric. This material combination enables much higher forces than
in [41]. As base garments we used stretchable GripGrab UV sleeves
and Nike Dri-Fit Pro Compression shirts. The different parts of
the connecting structure were cut with a Trotec 300 laser cutter
and glued onto base garments following marks taken on an exper-
imenter wearing the garment. Next, pressure buttons are riveted
at locations where ES clutches connect. Finally, ES clutches are
fixed onto the garments using pressure buttons and connected with
thin wires to a custom voltage power supply powered by a USB
power bank and controlled by Bluetooth (see Fig. 2b). The overall
modular system can accommodate different sizes of clutches and
slight variations in body sizes.
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4 EVALUATION
We conduct a multi-faceted evaluation of our method showing
results for different types of motions and garments in simulation, a
mechanical force study, and a VR pointing task.

4.1 Automatic Designs
We show a range of designs produced by our method for a variety of
motions and garment types. For all experiments, we use a common
rest pose with the body in an A-pose, and sample from a set of
motions that include Arms Forward, Arms Raise, Arm Flexion, Arm
Extension, Bend Forwards (see Fig.3). Three garments are designed
using our tool to cover a variety of body sites: a short-sleeve shirt,
an arm-sleeve, and a long-sleeve shirt. All clutches are placed man-
ually on the garments, typically over high strain energy areas of
the garments (see Fig. 2a). We set the following standard BESO
parameters for all experiments: evolutionary rate 𝐸𝑅 = 1.5%, maxi-
mummaterial added per iteration𝐴𝑅 = 1.5%, material interpolation
𝑝 = 1.6. Similarly, we set the material budget to 𝐴∗ = 15% for all
examples except for arm flexion and extension, where we use 𝐴∗ =
20%. As our primary metric, we use the relative energy density

𝜌 (𝛾, d) =
𝐸garment (𝑥∗ (𝛾, d), d) · 𝐴dense
𝐸garment (𝑥∗ (𝛾, 1), 1) · 𝐴opt

, (5)

i.e., the ratio between energy density for the optimized and fully
dense designs. As the optimization progresses, we expect to see
a widening gap in this metric between active and inactive clutch
states (see Fig. 6 for a visualization).

Single-Motion Designs. We begin by showing results for the sin-
gle motion cases of our method. We target Arm Flexion with a
single (8cm) clutch on the elbow, and Arm Extension also with
a single (8cm) clutch on the inside of the forearm. We show two
separate results in Fig. 3 a, and b. Relative to the fully dense design,
we see that energy density increases to 1.14 for flexion, and 1.74
for extension when clutches are active. When clutches are inactive,
relative energy density decreases to 0.34 and 0.54, respectively.

Next, we target single motions on the upper body using three
clutches of 15cm length. Fig. 3 shows results for Arms Forward,
Arms Raise, and Bend Forwards, with increases in relative energy
density of 2.13, 1.51, and 2.47 respectively. For deactivated clutches,
we observe that relative energy density decreases to 0.48, 0.66, and
0.73 for each design.

Figure 3: Single-Motion designs for (a) Arm Flexion, (b) Arm
Extension, (c) Arms Forwards, (d) Arms Raise, and (e) Bend
Forwards. Color coding indicates energy density.

Multi-Motion Designs. The ability to resist multiple motions with
a single design is an important step towards programmable active
kinesthetic garments. We used our method to create three such
designs, starting with an arm sleeve design (Fig. 4) that combines
Flexion and Extension. It uses the same 20%material budget as in the
single motion designs, but now this material must be distributed to
balance performance for two distinct motions. The optimized design
achieves relative energy densities of 0.88 and 1.27 for Flexion and
Extension, respectively, which is 77% and 73% of the corresponding
single-motion designs. For perspective, when evaluating the single-
motion designs for Flexion/Extension on the Extension/Flexion
motion, the relative efficiency is only 2%/5%. These results are not
unexpected as Flexion and Extension are orthogonal motions such
that designs optimized for only one of them are ineffective for the
other one.

Figure 4: Multi-motion design for simultaneously optimized
for (a) Arm Flexion and (b) Arm Extension. This design ef-
fectively integrates the single motion designs of Fig. 3 into
an intertwined structure (c).

Our second design is a shirt that combines three upper body
motions as shown in Fig. 5. Many of the features observed in the
single-motion versions can be seen here, with clutches linking dis-
connected reinforcements. It is worth noting that each of these
motions leads to a distinct load path (light green/yellow) running
through at least one of the clutches. We also compare the perfor-
mance of the multi-motion design to the single-motion versions. As
can be seen in Table. 1, the multi-motion design is within 83%, 72%,
and 65% as efficient as the single-motion designs, and yet using
the same material budget. The performance of the single-motion
designs on motions for which they were not optimized is, again,
significantly lower.

Additionally, for each motion we show the progress plots of
the evolutionary optimization in Fig. 6. As our automatic design
method removes material, we see a clear separation in relative
energy density for active and inactive states for all three motions.
In the inactivemode, the relative energy densities of the garment for
each motion are decreased by 0.62, 0.72, and 0.5, showing that our
method is able to consistently achieve its minimization objective.

Our final example investigates the scalability of our method to
more complex scenarios involving five clutches and five motions.
The performance of this design exhibits relative energy density
increases of 1.41, 0.85, 1.62, 0.64, and 1.16 for the motions Arms
Forwards, Arms Raise, Bend Forwards, Arm Flexion, and Arm Ex-
tension, respectively. These numbers are comparable to the results
obtained for our other multi-motion garments, especially as the
allotted per-motion coverage has decreased overall. In general, the
more motions a given design supports with the samematerial cover-
age target (i.e. 15%), the material available per motion will decrease
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Figure 5: Active kinesthetic shirt designed for the three mo-
tions: (a) Arms Forwards, (b) Arms Raise, and (c) Bend For-
wards. Strain energy density is shown in color-coding with
increasing intensity from dark blue to red.

Figure 6: Progress of the evolutionary optimization algo-
rithm for the Shirt Design for (a) Arms Forwards, (b) Arms
Raise, and (c) Bend Forwards.

Evaluated On Optimized For
Forwards Raise Bend All

Arms Forwards 2.13 0.46 0.34 1.77
Arms Raise 0.62 1.51 0.14 1.08
Bend Forwards 0.35 0.81 2.47 1.60

Table 1: Comparison of garments optimized for a single mo-
tion against a garment optimized for all three motions. A
higher number corresponds to an increase in relative energy
density when clutches are active.

and thus be less energy-dense in the ON state. In this case, the ma-
terial coverage target can be increased, or the designer can sample
from an earlier progression step with higher coverage.

Figure 7: Active kinesthetic long-sleeve shirt with five
clutches designed for five motions as indicated.

4.2 Comparison to Manual Designs
We conducted a pilot study to provide a manual baseline for our
automatically generated designs. A central question in this context
is whether users converge towards particular designs and if those
designs exhibit features found in automatically generated ones. We
recruited six participants (5M, 1F), two of whom were experts in
structural optimization techniques (P2, P3). Using our interactive
tool, we asked users to ’draw’ stiff material on garment meshes,
connecting a set of already placed clutches. Participants were asked
to distribute material in such a way as to maximally resist the set
of specified motions when clutches are activated. Each participant
created two designs, a 2-clutch, 2-motion arm sleeve, covering no
more than 20% of the available area, and a 3-clutch 3-motion shirt
with a coverage budget of 15%. Each of these designs corresponds
to an automatically generated designs shown in the previous sec-
tion. The secondary goal of minimizing energy when the clutch is
inactive was not assigned.

Figure 8: Manually-designed garments for 2-motion arm
sleeve (top), and 3-motion shirt (bottom) for participants
P1 (left) to P6 (right) with clutches shown in green. Note the
large variance among the designs, particularly in the shirt
case. The sleeve from P1 and the shirt from P2 were chosen
for fabrication. * Denotes expert designed garments.

The manually-created results shown in Fig. 8 exhibit large va-
riety in their designs. While most examples can be expected to
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perform reasonably, none of them resembled the automatically
generated designs. Compared to the fully dense version, manually-
created designs were only 0.48x and 0.27x as energy-dense for the
arm sleeve and shirt, respectively. Automatic designs, on the other
hand, showed a 1.1x and 1.48x higher energy density. We can see
that in the case of designing for a larger number of motions, the
effectiveness of user designs drops drastically, while automatically
generated designs can maintain a relatively high energy density.
Looking at only designs from expert users, we see relative average
energy densities of 0.54 for the sleeve, and 0.34 for the shirt, still
much lower than our automatic designs. Non-expert designs on
the other hand had average relative energy densities of 0.44 for
the sleeve and 0.23 for the shirt, showing a much larger drop in
performance for the more complex shirt design. Thus, automatic
design methods can be especially useful for such users. Table 2
summarizes these findings.

Garment /
Motion Auto P1 P2∗ P3∗ P4 P5 P6

Sleeve / Flex 0.88 0.50 0.53 0.54 0.67 0.26 0.58
Sleeve / Ext 1.28 0.37 0.66 0.44 .55 0.21 0.45
Shirt / Forward 1.77 0.11 0.45 0.14 .19 0.08 0.14
Shirt / Raise 1.08 0.10 0.37 0.07 .14 0.02 0.19
Shirt / Bend 1.60 0.38 0.75 0.27 .64 0.32 0.47

Table 2: Performance summary of manually-created designs.
We report the energy density of the garment relative to the
fully dense design. Note that the automatic design has the
highest energy densities across allmotions. * Denotes designs
by expert users.

4.3 Physical Validation
We seek to quantify the resistive force of our automatically de-
signed garments under the motions for which they were optimized,
and compare them against Manual-Design counterparts. We se-
lected two designs for fabrication - the multi-motion arm sleeve
and multi-motion short-sleeve shirt. We fabricated both, the de-
signs produced by our automatic method and the corresponding
manually-designed garments. For the shirt, we selected the clearly
highest performing garment, which was from P2, while for the
sleeve, we selected the design from P1. This sleeve design repre-
sents a common (line) design seen in literature [12, 33, 34], while
having similar performance as other designs.

In order to best isolate the impact of the connecting structure,
we replace clutches with flexible plastic strips that connect to a
force sensor as shown in Fig. 9. For the Arms Forward motion,
we mount the force sensor in the upper back, while for the Arms
Raise and Bend Forward motions, we mount it on the bottom left
clutch location. The target motion is then slowly performed by
the experimenter wearing the garment (three trials per motion),
while the force is measured using a 10kg DYLY-108 force sensor
with an HX711 load cell amplifier (see the Video Figure for visual
demonstration). The results shown in Fig. 9 indicate that, relative to
the manual design, the designs generated by our method were on
average two times and up to four times more efficient in terms of

force output. These measurements confirm our observations made
on simulation results in which, as for the experimental case, the
largest difference in relative energy density was observed for the
Arms Raise motion.

Figure 9: Physical force measurements. Left: experimental
setup with force with clutch replaced by a stand-in equipped
with a force sensor. Right: maximum force (N) readings when
blocking different movements as labeled for the manually-
designed (blue) and automatically generated (green) shirt
and sleeve garments.

4.4 User Evaluation
To quantitatively evaluate the ability of our active kinesthetic gar-
ments to efficiently block motion, we conduct a user study based on
a VR pointing task in which participants were asked to reach targets
from a predefined set of locations within their reach. The hypothe-
sis that we seek to test is that, when wearing our optimized designs,
users generally need more time to reach targets when clutches are
active compared to when they are inactive. A secondary hypothesis
is that our automatically generated designs lead to higher blocking
efficiency than a user-generated baseline.

Procedure and Setup. Six healthy adult subjects (𝑀=28.1;
𝑆𝐷=4.14;) were recruited. Since we only fabricated one size of our
designs, participants were all male and similar in size to the template
STARmesh. All participants wore noise cancelling headphones. The
procedure and tasks were described and an introduction to the gar-
ments and the active components was given. After donning the
garments (shirt and sleeve), clutches were attached and adjusted
according to participant size to achieve sufficient pre-tension. The
left hand of participants was rested on a tripod such for stability.
Participants were then introduced to the VR setting and asked to
practice touching the spherical targets with and without clutch
activation until they felt comfortable proceeding. The study was
implemented in Unity 2021 using a Meta Quest 2 relying on the
built-in hand-tracking functionality.

Study Design. We use a within-subject design with two inde-
pendent variables: Feedback Type {via Auto-Designed, via Manual-
Designed, Visual Only} and Target Placement: {Forward, Raise, Bend,
Flex, Ext}. Each target is placed to elicit a specific motion from
the user, and is color-coded to 4 to participants which target they
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Figure 10: User study setup. Participant wearing Auto-
Designed garment and reaching for target (left), and their
corresponding motion in the virtual environment (right).

should touch (see Fig.10). As a dependent variable, wemeasure Time,
which starts automatically when the participant’s hand leaves the
starting position (white sphere), and ends as soon as they touch it
again. The main task was to touch a given target in one continuous
ballistic back-and-forth motion at a natural speed. For each target
placement, three trials were collected for a total of 30 trials, one
half with clutches active, the other half with clutches deactivated
(Visual). The order of clutch activation was randomized and par-
ticipants were not told if the clutch was on or off. The order of
the feedback type was also randomized. At the end of the study,
participants were free to comment on their experience using each
garment design.

Results. The mean time to reach targets were 1.68s (𝜎 = 0.77) for
the Auto-Designed condition, 1.32s (𝜎 = 0.43) for Manual-Designed,
and 1.33s (𝜎 = 0.43) for Visual. A longer reach time indicates more
impact on the participant’s ability to reach the target. The full re-
sults are visualized in Figure 11. A two-way repeated-measures
ANOVA resulted in a significant effect on feedback type (𝐹 (2, 5) =
29.82, 𝑝 < .001), target placement (𝐹 (4, 5) = 34.45, 𝑝 < .001)
and interaction (𝐹 (8, 5) = 5.72, 𝑝 = .004). We conducted a Holm-
corrected post-hoc test and found significant differences for feed-
back type. Our Automatic Design method significantly impacted
participant movement time compared to both Manual Design feed-
back (𝑝 < .001) and Visual feedback (𝑝 < .001). We found no
significant difference between Manual Design feedback and Visual
feedback. When looking at times across target placements, our
Automatic Design method significantly impacted participant move-
ment time for the Bend and Raise motions when comparing to both
Visual and Manual Design baselines (both 𝑝 < .001).

From these results, we see a trend that the automatically de-
signed garments performed better in terms of limiting user motion,
particularly when the motions involved larger movements in the
upper body.

We observe that our Auto-Designed garments performed sub-
stantially better in larger motions than the Manual-Design coun-
terparts, results which are in-line with both simulated and force-
characterization data.

The exception is the Forward motion, where we observed a less
substantial impact, possibly due to the fact that participants could
twist their body to reach that target. The low performance of the
Flex and Ext methods could be due to the fact that we use smaller ES
clutches for these motions, and the force was too small compared to
the force produced by larger motions (see Fig. 9), and thus, below a
critical threshold that would have an impact on user motion. Thus,
our first hypothesis was confirmed for two of the three larger upper
body motions.

What is surprising is that the performance of the Manual-Design
baseline was nearly indistinguishable from the Visual baseline, even
for larger motions. In relation to this, two participants commented
that they had trouble perceiving any resisting effects of the Manual-
Design.This shows that, even with the same active components, our
optimization-based approach for designing connecting structures
can indeed make the difference between a system having clear or
negligible impact on user motion.

Figure 11: User study results showing the average trial time
for each feedback type and target location.

5 EXAMPLE APPLICATIONS
We show four applications enabled by the ability of active kines-
thetic garments to selectively and dynamically engage clutches
with a single design.

Figure 12: Applications in (a)Workplace Training, (b) Posture
Correction, (c) Resistance Training, and (d) VR Gaming.
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Workplace Training. When picking up a virtual box, we activate
all ES clutches on the shirt to provide stability to the upper-body,
preventing the arms from going through the box, and preventing the
user from overly bending their back. More complex motion control
could also provide further training and guidance in combination
with a complex control loop (i.e. using body pose as an input).

Posture Correction. Bad posture is a very common problem when
sitting at a desk, and many posture correcting shirts already exist
to help this issue. However, only active kinesthetic garments can
periodically allow the user to go into a slouching posture on demand,
in addition to keeping other limbs completely unrestricted (i.e.
elbow).

Resistance Training. Multiple clutches can be selectively acti-
vated to resist a target motion, the upper clutch in the case of arm
extension, and the lower clutch in the case of arm flexion. The
opposing clutch is meanwhile disabled, to prevent full arm-locking.
This shows how a single garment can be re-configured at run-time
for resisting multiple motions, potentially encompassing a user’s
entire workout.

VR Gaming. VR immersion can be increased significantly by
providing physical forces when users make contact with the world.
In this game, a user practices hitting tennis balls out of the air,
and only the upper back clutch is activated on contact, noting that
the elbow clutch remains off and does not prevent natural elbow
bending during such sports movements.

6 DISCUSSION AND FUTUREWORK
Our user study results indicate that automatically-designed active
kinesthetic garments were able to have a significant impact on user
motion, whereas the manually designed counterparts could not
meet this threshold, indicating the need for automated methods to
assist designers in such tasks.

Emergent Structural Properties. We found in our evaluation three
emergent structural properties: 1) no connecting material is isolated
from the main structure (no disparate island) 2) all active compo-
nents are at junctures of connecting material, and 3) overlapping,
yet distinct load paths are created for each specific motion. When
comparing designs using our dual-objective directly to the single
compliance minimization objective in [41] (b), we find that these
same properties do not emerge (See Fig. 13). Each property plays an
important role — for example, if clutches are not at junctures, then
their activationwill have no effect on the user. Similarly, unbalanced
load paths and islands of disconnected material may degrade per-
formance for particular motions and comfort respectively. Users on
the other hand performed well in terms of connecting clutches, but
struggled to balance load paths, leading to very poor performance
in particular motions.

Limitations. The main work of the designer in our tool is in the
manual placement of ES clutches. As the number of active com-
ponents and motions grows, the requirement for manual clutch
placement may become more and more challenging. Our method
can be extended to optimize for ES clutch placement, thereby free-
ing designers from this task, potentially increasing the relative
efficiency of the design. Our method is also limited to a simple

Figure 13: Emergent structural properties for the multi-
motion shirt designed with dual-objective minimization (a)
vs single compliance minimization from [41] (b).

mode of activation, where clutches are either all active or inactive.
However, clutch activations can be controlled individually and con-
tinuously through voltage input that affect the degree of resistance.
Accounting for these degrees of freedom during design could fur-
ther improve efficiency and allow for more targeted resistance to
selected motions.

While our active kinesthetic garments are fully wearable and
mobile, they do not have any sensing capabilities. Integrating sens-
ing could be done via capacitive sensors, which could be optimized
based on the same strain-maximization principle used for connect-
ing clutches.

Our study was limited to only six male participants and the type
of feedback collected was mainly quantitative. Our method could
be used to create garments for female users and even personalized
garments by simply changing the 𝛽 and gender parameters in the
SMPL/STAR models. Richer VR interaction opportunities can be
explored in the future by moving beyond simple button presses and
object intersections, for example, by integrating body-pose sensing
into the control loop.

7 CONCLUSION
We presented a computational approach for automatic design of ac-
tive kinesthetic garments that block user-specified body motion on
demand. As our core technical contribution, we cast the design of
reinforcing structures that connect and anchor individual clutches
as an on-body topology optimization problem and introduced a
novel objective term that encourages maximum resistance of the
garment when clutches are active while minimizing interference
with body motion when they are inactive. Our experiments in-
dicate that our designs are highly effective and consistently and
significantly outperform user-created designs.

The structure optimization techniques developed here have the
potential to be useful in the routing and placement of other types
of active components such as actuators and sensors. By laying out a
theoretical and algorithmic basis for this central problem, we hope
that our work will serve as a step toward computational design of
highly integrated multi-modal wearable interfaces in the future.
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A PROCEDURAL CLUTCH GENERATION
ES clutches are defined by the following variables: a starting point,
a surface direction, and a length and width. The starting point is de-
fined using barycentric coordinates (𝑢𝑒 , 𝑣𝑒 ) on a particular element
𝑒 of the garment mesh. The surface direction is a vector in barycen-
tric space (−→𝑢𝑒 ,−→𝑣𝑒 ) from the starting point to another barycentric
coordinate on the same element 𝑒 .

We start by tracing out a piece-wise linear path of the desired
length in the direction of (−→𝑢𝑒 ,−→𝑣𝑒 ) until an edge is encountered,
whereby the vector is converted to Euclidean space ∈ R3𝑛 and
rotated to lie on the surface of the next triangle 𝑒𝑖 . This is repeated
until the length of the vector is exhausted. Two endpoints are
produced, one at the starting point, and one at the last barycentric
coordinate of where the path finishes.

From this path, a mesh is triangulated by creating center vertices
at edge intersections and projecting side vertices to the left and
right of the path based on −→𝑒𝑛 × −−−→

𝑝𝑥𝑦𝑧 , the cross product of the
element normal and the path direction in world space respectively.
This is scaled by the𝑤𝑖𝑑𝑡ℎ parameter. The resulting mesh has rest
vertices q = (q1, . . . , q𝑚) ∈ R3𝑛 and q̄ = (q̄1, . . . , q̄𝑚) ∈ R3𝑛 when
deformed. We give special treatment to the side vertices of the two
endpoints by walking them in an orthogonal direction to the main
path using the same walking algorithm outlined above.

The endpoints 𝑞𝑐 of the clutch mesh (3 at each end) are con-
nected to the garment mesh using simple quadratic penalty func-
tions, which allows for firm attachment. The full path walking and
meshing algorithm is fast enough to work in real-time, allowing
for rapid user placement and re-positioning of ES clutches.

B GARMENT-ON-BODY MODEL
As our garment model, we use a compressible neo-Hookean ma-
terial model [7] adapted with a relaxed energy under wrinkling
as in [41]. This allows the garment to wrinkle under compression
without producing geometric artifacts. This results in the garment
energy 𝐸garment (x, 𝑑), which is a function of the garment design
𝑑 , and the deformed nodal positions x. We similarly convert the
discrete body mesh to a continuous implicit signed distance field
[31], resulting in the energy 𝐸body (𝑣, x), which pushes back on the
garment vertices x away from the body. This allows the garment
to smoothly slide on top of the body and to lift-off from its surface.
To attach the garment to the body in specific areas, we introduce a
simple coupling potential, 𝐸attach = 1

2𝑘 (𝑥
𝑐 −𝑥𝑣𝑐 )𝑇 (𝑥𝑐 −𝑥𝑣𝑐 ), attract-

ing elements of the garment mesh 𝑥𝑐 to corresponding elements
𝑣𝑐 on the body mesh. As the garment mesh is initialized from the
SMPL mesh, for more accurate simulation, we subdivide the gar-
ment mesh until it has 16x the resolution of the base SMPL template
mesh.

C ON-BODY TOPOLOGY OPTIMIZATION
To design passive reinforcement structures, Vechev et al. use a bi-
directional evolutionary structural optimization (BESO) algorithm
[18, 19] to solve the constrained optimization problem with a single
objective,

d∗ = arg max
d

𝐸garment (𝑥∗, d)

s.t.
∑︁
𝑒

𝐴𝑒𝑑𝑒 = 𝐴∗ , f (𝑥∗) = 0.
(6)

The goal of this formulation is to find an optimal per-element
material assignment d∗ that maximizes the energy of the garment
in its equilibrium state x∗ while satisfying constraints on force
equilibrium, f (𝑥∗) = 0, and material budget,

∑
𝑒 𝐴𝑒𝑑𝑒 = 𝐴∗. The

strain energy of the garment is defined per element as

𝐸garment =
∑︁
𝑒

𝑡𝑒𝐴𝑒𝑊 𝑒
garment (𝑥∗, 𝑑𝑒 ) , (7)

where𝑊 𝑒
garment is the elemental strain energy density, and 𝑡𝑒 , 𝐴𝑒

are the thickness and area of the element respectively.


	Abstract
	1 Introduction
	2 Related Work
	3 Computational Design Pipeline
	3.1 Input
	3.2 Automatic Design
	3.3 Hardware Details and Fabrication

	4 Evaluation
	4.1 Automatic Designs
	4.2 Comparison to Manual Designs
	4.3 Physical Validation
	4.4 User Evaluation

	5 Example Applications
	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References
	A Procedural Clutch Generation
	B Garment-on-Body Model
	C On-Body Topology Optimization

