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Figure 1: Overview of the semantic motion design framework– It consists of four main building blocks: (a) a dataset of param-
eterized expressive robot motions, (b) a crowd-powered framework for estimating the emotional perception of motions in the 
dataset, (c) regression analysis for establishing relationships between motion parameters and the emotional perception of the 
resultant motion, and (d) an intuitive design tool backed by these data-driven parameter-emotion relationships. 

ABSTRACT 

Expressive robots are useful in many contexts, from indus-
trial to entertainment applications. However, designing ex-
pressive robot behaviors requires editing a large number 
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of unintuitive control parameters. We present an interac-
tive, data-driven system that allows editing of these complex 
parameters in a semantic space. Our system combines a 
physics-based simulation that captures the robot’s motion 
capabilities, and a crowd-powered framework that extracts 
relationships between the robot’s motion parameters and 
the desired semantic behavior. These relationships enable 
mixed-initiative exploration of possible robot motions. We 
specifcally demonstrate our system in the context of design-
ing emotionally expressive behaviors. A user-study fnds the 
system to be useful for more quickly developing desirable 
robot behaviors, compared to manual parameter editing. 
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CCS CONCEPTS 

• Computer systems organization → Robotics; • Human-
centered computing → User interface design; • Comput-
ing methodologies → Interactive simulation; Computer 
graphics. 
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1 INTRODUCTION 

As robots become more prevalent in human environments, 
from factory foors to personal homes, enabling robots to 
express themselves can enhance and enrich our experiences 
and interactions with them. The paradigm of enabling robots 
to express intent and emotions via movements is particularly 
powerful [19, 34, 38, 46]. Instead of relying on anthropomor-
phic features or morphology, this paradigm leverages the 
human ability to identify emotion and intent from behav-
ior to establish meaningful communication during interac-
tions [1, 22, 60]. For instance, a robotic arm that collaborates 
with human workers on a factory foor could communicate 
its confusion about a task, or alert human workers if needed, 
by moving in a specifc manner. 
However, creating such expressive behaviors for robots 

is highly challenging [8]. Similar to digital character ani-
mation, creating behaviors for robotic characters requires 
tremendous skill and efort [15]. Apart from the inherent task 
complexity and domain knowledge requirements, robot be-
havior design also sufers from a lack of suitable design tools. 
Existing animation tools such as Blender [7] and Maya [3] 
enable design with absolute human control but ofer lim-
ited options for integration with physical hardware. On the 
other hand, conventional robot control tools (e.g., ROS [42]) 
have extensive support for a robot’s physical simulation and 
control, but do not allow for expressive behavior design. In 
comparison, our goal is to facilitate easy and intuitive design 
of expressive movements for robotic systems over a wide 
variety of applications ranging from art to social interactions. 

Guided by feedback from a systematic survey of experts 
from animation, art, and robotics, we aim to fll this gap in 
existing robot behavior design tools. We present Geppetto, 
a simulation-driven robot motion design system that en-
ables the design of expressive behaviors using high-level and 
semantic descriptions of behavior properties. Geppetto ex-
plores the creation of behaviors that convey emotions,which 

is an important and challenging problem within Human-
Robot Interaction (HRI) [26, 52]. While in this paper the 
framework is used to explore emotional expression, it could 
easily be extended to support other semantic descriptions re-
lated to how a robot behaves, or what its movements should 
look like. Apart from physics-based motion simulation, Gep-
petto builds upon two recent advances in HCI and graphics 
research: Crowd-powered Parameter Analysis [30] and Se-
mantic Editing [63]. These techniques are synthesized into a 
novel data-driven framework for the domain of robot behav-
ior design. 

Inspired by the work of Koyama et al. [30], crowdsourcing 
is used to obtain subjective scores pertaining to the percep-
tual quality of emotional expression for a generated dataset 
of parameterized robot motions. Using regression, functional 
relationships are inferred between robot motion parameters 
and the corresponding emotional expressions. Using these 
relationships, a semantic interface is developed to enable 
guided intuitive editing and visual exploration of the space 
of possible robot motions (Figure 1)1. A mixed-initiative ap-
proach is used for handling the unique properties of our 
data, e.g., the noise from crowdsourcing, and the inherent 
subjectivity of emotional behaviors. 

This is the frst system that enables casual users, without 
any domain knowledge of animation or robotics, to design 
semantically meaningful robotic behaviors. The system’s 
utility is shown with a user-study, which indicates that users 
are able to create high-quality expressive robot motions. The 
generalizability of the framework is demonstrated by using it 
for two distinct robotic systems: walking robots and robotic 
arms. 

2 RELATED WORK 

This work builds upon prior work on semantic editing, crowd-
powered editing, and robot motion design. 

Semantic Editing and Design Space Exploration 

Editing using semantic or context-specifc attributes has been 
explored for many complex design domains such as 3D mod-
els [9, 63], images [28, 32, 44], and fonts [41]. Each of these 
approaches extract relevant and human-understandable at-
tributes for their design domain, and learn a mapping be-
tween the design parameters and these attributes. With this 
mapping, they enable intuitive, attribute-based editing at 
design time. We wish to extend this methodology to the 
domain of robotics. Unlike the domain of 3D models and 
images, there is no existing large dataset of expressive robot 

1Figures 1 and 6 of this paper have been added as looping fash animations, 
viewable in Adobe Acrobat. If you experience any difculties, please see 
our static version of the paper, in the supplementary material. 
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motions. We therefore parameterize and synthesize a wide 
variety of such motions using a physics-based simulation. 

Along with semantic editing, visual design space explo-
ration is another useful approach. Researchers have proposed 
intuitive low-dimensional control spaces for predictable edit-
ing and design space exploration of complex design prob-
lems such as editing material appearance [49] or 3D mod-
els [35, 63]. Instead of fnding a low-dimensional control 
space, we expose the current parameter space in a more 
visual and meaningful manner. 

This work builds on Koyama et al.’s crowd-powered frame-
work, which enabled intuitive and visual editing of con-
tinuous parameters corresponding to freely available dig-
ital content such as images [30]. Specifcally, Geppetto deals 
with design spaces that consist of both continuous and dis-
crete parameters and is particularly suited to design spaces 
represented by low fdelity or noisy data. Geppetto also al-
lows users to combine their individual preferences with the 
crowd’s preferences at design time. 

Designing Expressive Robotic Motion 

Many data-driven or model-based approaches have been ex-
plored for motion synthesis. In particular, motion capture 
and video data have been extensively used for increasing 
the style and expressiveness of anthropomorphic charac-
ters [2, 43, 50]. But it is unclear how to obtain or use such 
data for more generic and non-anthropomorphic robots such 
as robotic arms. A complementary user-driven approach 
is to animate toy robots or virtual characters using pup-
peteering [4, 11, 24, 51]. However, it is hard to pose highly 
articulated robots or characters to create natural looking 
and feasible motions using puppets. Therefore, most pup-
peteering based approaches are either limited to very sim-
ple characters or robots [4, 51], or they fail to account for 
physical feasibility [11, 24]. Similar to puppeteering are Pro-
gramming by Demonstration (PbD) based approaches that 
enable novices to design robot motions by simple demon-
strations [6]. While PbD enables easy creation of natural 
motions, designing semantically meaningful and expressive 
motions remain challenging with PbD. Finally, models that 
encode animation principles [58, 61] have been leveraged 
to improve expressiveness of robotic systems for enhanced 
human-robot interaction [46, 55, 56]. Unfortunately, many 
of these principles are abstract and generic, providing lit-
tle guidance toward creating specifc emotive motions from 
scratch. They are therefore typically used either as add-on 
primitives for pre-existing motions [55], or as high-level 
guides for manual design, similar to how animators would 
use them [46]. Instead, Geppetto enables users to design emo-
tive behaviors by editing parameterized robot motions in 
simulation. 

Researchers have shown a strong relation between mo-
tion parameters and attribution of afect for robots with 
diferent embodiments [25, 47]. In particular, speed and ro-
bot pose [25, 27, 57], acceleration and motion path curva-
ture [5, 27, 47], and motion timing [27, 64] have been found to 
afect perceptions of motions. We therefore parameterize the 
walking robot’s motion using features such as pose, speed, 
and motion timing. The robot arm’s motion is parameterized 
in the task space instead of the joint space, inspired by how 
abstract trajectories could convey diferent emotions [5]. The 
system’s semantically-guided parameter editing approach 
complements recent research on optimization-guided and 
keyframe-based motion editing for animated characters [29]. 

Crowdsourcing in Robotics and Design 

Geppetto uses crowdsourcing to understand the coupled ef-
fect of various motion parameters on the overall emotional 
perception. Crowdsourcing enables the use of human exper-
tise for tasks that are complex for computers, and has been 
widely used for a variety of tasks ranging from labeling to 
gathering common-sense knowledge [62]. In robotics, crowd-
sourcing has been used to enable robots to recognize objects 
or actions [21, 54], as well as for robot control [10]. Our 
work is most closely related to the research on understand-
ing visual perception, and enabling better design through 
crowdsourcing [18, 30, 39, 63]. Our crowdsourcing pipeline is 
customized to deal with the greater difculty and cost associ-
ated with evaluating motion designs, which results from the 
length of the motion needing to be judged, and uncertainty 
due to the high subjectivity of the task. Notably, we use a 
modifed Swiss-system tournament [12] approach with an 
added elimination step, and use TrueSkill [37] to efciently 
compute the perceptual quality scores for the synthesized 
motions. 

3 CURRENT DESIGN APPROACHES 

To understand the current challenges of robotic motion de-
sign, a survey of experts who design expressive behaviors 
for a variety of applications was conducted online. 

Survey Instrument 
In addition to background questions about the participants, 
the survey consisted of 5-pt Likert-scale and free-form ques-
tions. The questions elicited information about the types of 
behaviors they designed, how and why they designed them, 
and the time taken for the design. We also asked experts 
about ease of use, learnability, and suitability of the tools 
they used for robot behavior design tasks. 
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Responses 
The authors reached out to a set of HRI researchers and 
artists/animators online to participate in the survey. The ex-
perts were selected based on their publicly available work ex-
perience information. A total of 8 experts (4 HRI researchers, 
4 artists) with design experience ranging from 0.5 years -
27 years (average 11.3 years) responded to the survey. The 
experience of these experts covered a diverse range of con-
texts such as 2D/3D character behavior design, industrial 
and social robot design, and kinetic art sculpture. 
Despite the diversity in applications, a common motiva-

tion behind designing expressive behaviors was to improve 
the communication, involvement, trust, and interaction of 
the technology they were developing (e.g., P3: “I want my 
robots to be more human-readable.", P4: “[I want] to turn view-
ers into involved, emotionally invested participants"). In re-
sponse to why would they design expressive robot behaviors, 
experts provided further insights (P3: “Being expressive is part 
of being communicative, which is critical for functional and 
fuent HRI. Emotion can be useful for communicating a ro-
bot’s goal.", P7: “I see a robot’s bodily motion as a lower-level 
means of broadcasting complex information to surrounding 
people."), to tell a story and develop relationships with users 
(P6: “Many engineering ‘stories’ do not show realistic motion 
which allows the viewer to dismiss the concepts.", P2: “To de-
velop relationships with users through tangible actions."). 
A common theme highlighting the efort required to de-

sign behaviors also emerged. Experts who designed short-
length behaviors of less than a minute (50% of our partici-
pants) reported a design time of greater than one hour. Like-
wise, experts who designed longer behaviors (lasting mul-
tiple minutes or hours) spent several days and sometimes 
several weeks on their design. 

Another common theme was the lack of tools for design-
ing robotic behaviors. Researchers and artists emphasized 
that the existing tools were not well suited for robot behavior 
design (5-pt Likert score with anchor 5 = not at all suited: 
M = 4.0, SD = 0.92). Experts typically relied on animation 
tools or ended up developing their own software. Several ex-
perts reported on the difculty of obtaining robot simulation 
models (P3: “Putting kinematic robot models into simulation 
takes a long time."), pre-visualization of robot capabilities (P4: 
“Pre-visualization can be quite difcult. One needs to have the 
actual robot working in a realistic setting in order to test it."), 
and manual behavior editing (P2: “Manually creating gestures 
through motor positions is tedious, unintuitive", P5: “My chief 
problem is the lack of software tools for authoring dynamic 
performances with shared autonomy; I end up having to write 
too much software."). Experts further reported that the tools 
they used were hard to learn and use (5-pt Likert score with 
anchor 5 = not at all easy: M = 4.12, SD = 0.64). They also 

emphasized the consequential challenges faced by novices 
in such design applications (e.g., P1: “Having to learn lots 
of diferent, changing software and then fguring out how to 
connect them is difcult for beginners.", P3: “The toolchain is 
complicated, tedious."). 
Overall, the survey validated the need for improved sys-

tems for the design of expressive robot behaviors. It revealed 
interesting use cases and current challenges, pointing to a 
need for new, more intuitive, and efcient tools. 

4 GEPPETTO: SEMANTIC EDITING FOR 
ROBOTICS 

Inspired by the challenges and desires found through the 
survey and in the literature, Geppetto enables robot motion 
design with the help of a physics-based simulation. Param-
eters afecting the robot motion are presented to the user, 
and the system aims to reduce the domain knowledge re-
quired when modifying these parameters to create desirable 
motions. In particular, the system supports editing based on 
semantic user intent, such as designing a “happy-looking" 
robot. The system currently supports semantic design for 
six basic emotion categories – happy, sad, angry, scared, sur-
prised, and disgusted, though it could be applied to other 
semantic aspects beyond emotions (e.g., expressing that a 
robot is busy, awaiting instruction, or friendly). The emotion 
categories are derived from Ekman’s model of emotions [20], 
though we anticipate this approach can extend to other emo-
tion models. 

Figure 2: Geppetto’s user interface. 

Design Process Overview 

The design process for creating an emotive robot behavior 
using Geppetto begins with users selecting a desired emo-
tional expression (happy, sad, etc.) for the behavior from the 
editing pane. They can either start with a neutral default 
motion, or they can take advantage of the example motions 
in the gallery by browsing through the samples to get a 
sense of diferent motion alternatives, and then load a pre-
ferred example for further editing. Such an approach of using 
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example-based inspiration has been found to support creativ-
ity in designers [33]. Gallery-based initialization is especially 
useful for novices who may not know what an expressive 
robot motion looks like. Once either a neutral or example 
motion is initialized, users can edit its expressiveness using 
two guided editing modes, manual and automatic. The auto-
matic mode enables users to quickly customize the robot’s 
motion without worrying about low-level parameter editing. 
Alternatively, the manual mode exposes users to parameter 
level editing such that they develop an understanding of 
which parameters create the necessary expressiveness, as 
well as how to edit them. With every user edit, the simula-
tion updates the robot’s motion in the preview to refect the 
corresponding change. 

Interface Design 

The UI (Figure 2) consists of three main elements – a 3D pre-
view window, motion gallery, and guided-editing pane. The 
3D preview window renders the main robot and animates its 
simulated motion in real-time. The sliders in the editing pane 
allow users to specify the robot’s motion parameters. The 
motion gallery displays various expressive motions of difer-
ent styles for a user-specifed emotion category. This gallery 
is populated using the emotion-specifc top-ranking motions 
from our dataset, obtained using sampling and crowdsourc-
ing analysis. 

To design an angry robot, the user starts with the default 
motion, and proceeds to manually edit it using parameter 
sliders (Figure 3). To understand which parameters to change 
and how to change them, the user takes advantage of the 
parameter-emotion perception relationship curves visualized 
on each slider (Figure 4b). Based on these curves, the user 
increases the speed and tilts the robot’s torso downwards 
to make it look angrier (Figure 3a). The user then leverages 
the example motions in the gallery for further editing. The 
user hovers over the preferred gallery motion to understand 
which parameters created it, with the help of parameter 
comparison cursors (Figure 4c). Inspired by the feet stomping 
of second gallery example, the user edits the current motion’s 
foot height to achieve the same (Figure 3b). Finally, the user 
can also explore angrier motions automatically by dragging 
the automatic editing slider. In response, the system changes 
multiple parameters simultaneously to increase the motion’s 
expressiveness. To further explore preferred motions, e.g., 
angrier motions with similar speed, feet stomping, and torso 
tilt, the user activates locking of these parameters, before 
dragging the automatic editing slider (Figure 3c). The system 
now auto-updates multiple parameters except the locked 
ones, to change the motion’s expressiveness. 

Figure 3: An example workfow designing an angry robot. 

Interface Editing Features 
As highlighted by the workfow, manual editing is enabled 
by parameter-emotion perception relationship curves and 
parameter comparison cursors. On the other hand, the auto-
matic slider and parameter locking feature power automatic 
editing. 

Parameter - emotion perception relationship curves. These 
curves accompany each slider, and show the efect of chang-
ing the slider’s parameter on the robot’s resultant emotional 
expression. Since these relationships are extracted from sub-
jective crowd-sourced data, the UI also shows the system’s 
confdence in these relationships visualized as non-linear 
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Figure 4: UI elements. (a) Parameter information is dis-
played as tooltips, and highlighted directly on the robot. 
(b) Parameter-emotion perception curve (in red) is visual-
ized with an uncertainty band (shaded red) on each slider. 
The dotted line represents current motion’s estimated emo-
tional perception. (c) When a user hovers over a gallery mo-
tion, the gallery motion’s parameter values are highlighted 
on the sliders (in light gray) alongside the current motion’s 
parameters (blue). 

error bands around the predicted score (see Figure 4b). This 
helps users determine the extent to which they may want to 
follow the curves during parameter editing. The inclusion of 
these error bands brings transparency to the mixed-initiative 
editing process, allowing the user to better collaborate with 
the system to achieve their goals. 

Automatic editing slider. By dragging the automatic slider, 
users can update multiple parameters simultaneously, rather 
than adjusting them individually. When the position of the 
slider is changed, the system automatically modifes multi-
ple parameters to achieve the corresponding change in the 
robot’s emotional expression. This feature can be used in 
combination with parameter locking to achieve the desired 
behavior. 

Parameter locking. As the automatic slider updates multiple 
parameters at a time, changing the automatic slider may 
wash out nuanced features achieved by earlier user edits. 
To preserve the desirable features of their current motion 
during automatic editing, users can lock parameters. For 
instance, in the example scenario of angry motion design, 
the user may want to maintain the speed, torso tilt, and feet 
stomping achieved through manual editing, while exploring 
better limb poses. To achieve this, the user can lock all but 
the pose parameters through the editing panel, and then use 
the automatic slider to obtain an angrier robot motion with 
similar speed, feet stomping, and torso tilt (Figure 4c). Note 
that this is much quicker than the alternative of manually 
editing 6 pose parameters. Parameter locking allows users 
to combine their design preferences with crowd-powered 
guidance during automatic editing. The gallery motions are 

also updated to show more relevant examples after parame-
ters are locked. To update the gallery, we sort the motions 
in the dataset based on the similarity of parameter values 
locked by the user, and the quality of emotional expression. 
This gives users alternate motions satisfying the preferences 
indicated by the locked features. 
Geppetto thus supports various workfows. An optimal 

workfow may combine both manual and automatic editing 
as needed. Our video shows such workfows in action. 

5 IMPLEMENTATION 

Motion synthesis using physics simulation 

Geppetto currently supports 2 robotic platforms (Figure 5), a 
walking robot and an industrial robotic arm. Walking robots 
have been used in interactive settings such as in animatron-
ics [16] and consumer products[53]. As a representative from 
the class of walking robots, we use a small quadruped robot 
with 3 degrees of freedom (DOF) per leg. The robotic arm is 
an industrial, 6 DOF KUKA arm [31]. Similar robotic arms 
have been used for applications requiring expressive motions 
such as collaborative building [59] and interactive art [23]. 
We consider periodic walking motions for the quadruped, 
and the task of moving towards a target for the robotic arm. 

Motion synthesis for quadruped. The quadruped robot’s mo-
tion consists of periodic coordinated limb movements (gait 
cycle). We leverage an existing motion generation frame-
work that uses constrained trajectory optimization to com-
pute valid parameter values for achieving stable walking 
cycles [36]. The framework achieves physical plausibility by 
accounting for physics-based constraints such as kinematics, 
gravity, friction, and hardware constraints such as motor 
joint and torque limits. This framework has been previously 
demonstrated to work on real hardware [36], and further 
details on these aspects can be found in the supplementary 
material. 

Based on prior research, we expose 11 parameters afecting 
the robot’s motion style for generating a dataset of diverse 
motions [25, 27, 50]. Various motion styles can be created 
by using diferent robot poses and gait patterns (e.g., gallop-
ing, trotting, walking etc.). Gait patterns are defned for a 
gait cycle. These patterns are characterized by the order of 
limb movements, and the relative phase of limb swing and 
stance. The robot’s pose is defned using relative joint angles 
of the robot’s limbs, as well as its global torso orientation 
angle defned relative to the ground plane. A pose consists 
of 7 angular values – torso angle, front and rear hip angles, 
front and rear knee angles, and front and rear ankle angles 
(Figure 5a). Apart from speed (1DOF), pose (7DOF), gait time 
(1DOF) and pattern (1DOF), we also parameterize foot height 
(1DOF) to create efects such as “feet stomping". The gait pat-
tern corresponding to each gait style is discretely encoded 
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Figure 5: (a) The quadruped’s motion is parameterized us-
ing robot pose, walking speed, foot height, gait time, and 
gait pattern (shown in red). (b) The arm is driven by a Boids 
focking simulation. 

using a graph (Figure 5a), while all other parameters are 
continuous. 

Motion synthesis for robotic arm. The expressiveness of robotic 
arms moving towards a goal can be afected by many features, 
such as the curvature and smoothness of its path [5], and 
the variability of its speed [64]. Instead of directly prescrib-
ing the robot arm’s path and speed, we use Boids focking 
simulation for driving its motion – inspired by the approach 
used in Mimus [23]. 

The Boids framework uses virtual agents called boids, and 
a set of simple interaction rules between them to create 
smooth, complex and natural emergent behaviors [45]. We 
defne a fock of m number of boids in the 3D task space, 
and then use the resultant average path of the fock as the 
target path for the robotic arm’s end-efector, to be achieved 
through Inverse Kinematics (IK). The resultant motion and 
the path of the fock depend upon the interaction rules that 
decide each boid’s movement, as a reaction to its nearby 
fock-mates within a small neighborhood around itself. 
We use 5 interaction rules – 3 rules from the basic boids 

model [45]: separation, alignment, and cohesion; and 2 addi-
tional rules: goal-seeking, and exploration. Each rule creates 
a unique steering force that moves and updates a boid’s po-
sition in the space as the simulation progresses (see Figure 
5b). Separation steers a boid to avoid crowding with local 
fock-mates, while alignment steers it towards the average 
heading of the fock. Likewise, cohesion aims to move boids 
towards the average position of neighboring fock-mates. 
The seek rule complements these basic rules, by steering the 
boids to move towards a pre-defned goal in space (e.g., the 
blue goal point in Figure 5b). Finally, exploration encourages 
randomness in the fock by steering the boids towards a ran-
dom goal intermittently. This rule is thus an extension of the 
seeking rule for random goals along the fock’s path. 

Varying the strength of each interaction rule, fock speed, 
and the neighborhood of infuence for boids can generate 
diverse focking behaviors. The strength of various rules is 
controlled using the corresponding weight parameters. The 
exploration rule is further parameterized by the sampling 
frequency and position of random goals. Finally, to achieve 
more diversity in motion generation, we also defne a pa-
rameterized initialization procedure that initializes the fock 
to move in one of 6 specifc directions for a certain period 
of time. In total, 11 parameters (10 continuous, 1 discrete) 
defne the motion of the arm. 

Semantic mapping framework 

The semantic information about the robot motions is ob-
tained through our mapping framework that relates the ro-
bot’s motion parameter space to emotional expression space. 
Our framework leverages the simulation to generate a dataset 
of diverse motions, evaluates the emotional expression of 
the dataset motions using crowdsourcing, and then uses re-
gression to obtain the mapping between motion parameters 
and emotional expression (Figure 1). 

Motion dataset generation. We generate a dataset of diverse 
motions for the quadruped and the robotic arm using sam-
pling of motion parameters. The sampling process captures 
the design space of possible motion styles that can be cre-
ated by changing various motion parameters. We empirically 
choose a sampling range for all the continuous variables to 
generate sufcient motion variations while ensuring physi-
cal feasibility. The discrete parameters such as gait pattern 
for the quadruped and initial direction of boids motion for 
the robotic arm are uniformly sampled from a fxed set of 
possible values. For each sampled motion parameter set, we 
record an animation of the corresponding robot motion for 
crowdsourcing evaluation. For the quadruped, 2,000 motion 
parameter sets were sampled, resulting in 2,000 unique mo-
tions. 1,230 motions were physically infeasible due to col-
lisions or instability, resulting in 670 motions for the fnal 
dataset. Similarly, 1,000 motions were sampled for the robotic 
arm, all of which were physically feasible and retained. 

Crowdsourcing evaluation of perceived emotion. By crowd-
sourcing emotion perception, the system can give a relative 
scoring to each motion, per emotion, such that a higher score 
refects a better expression of an emotion. 
While there is often consensus about the particular emo-

tion that is expressed by a motion, the degree of expressive-
ness is highly subjective and its perception varies between 
individuals. Given this, we model the score as a Gaussian 
distribution N(µ, σ ) with mean µ, and uncertainty σ . To 
compute the score, we create a modifed Swiss-system style 
tournament [12] where each motion sample in the dataset is 
treated as competitor, and competes with others to obtain 
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the highest score per emotion category. We use the TrueSkill 
rating system [37] to convert the results of the tournament 
into Gaussian scores for individual samples. 

To efciently compute emotion ratings of motion samples 
using TrueSkill, we use an elimination-based tournament set-
up instead of exhaustively competing each sample against 
every other. This enables us to efciently deal with a large 
number of samples, and the inherent subjectivity in the data, 
to get the ‘top’ designs for each emotion. After 1 round 
of comparisons, wherein each sample is compared 5 times 
(against 5 diferent designs, by 5 diferent people), the de-
signs ranked in the bottom half are eliminated. This process 
is repeated over 3 rounds (with 5, 5, and 10 comparisons), 
until we obtain the top motion samples for a given emotion. 
Elimination of ambiguous, low-ranking samples in earlier 
rounds allows expressive, high-ranking samples to have a 
higher number of comparisons against other highly-ranked 
designs, which improves the quality of their score estimate 
(reducing the corresponding uncertainty σ of the estimate). 
This strategy provides more accuracy for the high-ranking 
samples, while minimizing resources spent on ambiguous, 
low-ranking samples. For the quadruped dataset there were 
a total of 3,355 comparisons to arrive at quality rankings 
for the top 25% of the samples. A more naive approach of a 
pure round-robin without elimination would require twice 
the number of comparisons (6,700), and the quality of the 
comparisons would be lower as there would be more com-
parisons to low-ranking designs. 

Figure 6: Interface crowd-workers used to judge emotion. 

To conduct the tournament, crowd workers on Amazon 
Mechanical Turk serve as judges for each comparison be-
tween motion samples. For each comparison, a worker is 
shown a pair of robot motion videos, and asked “Please iden-
tify which of the two robot motions seems , or, if they are 
equivalent", where is one of: happier, sadder, angrier, 
more surprised, more scared, or more disgusted (Figure 6). 
Such a pairwise comparison approach has been preferred in 
the literature over asking the workers to provide an absolute 

score for individual samples [63]. To ensure the quality of 
the ratings, we enforced heuristics such as a minimum-time 
requirement for each comparison, and excluded data from 
workers who choose the same response (i.e., left, right, or 
equal) repeatedly (the supplementary material provides more 
details). In addition to crowdsourcing noise, emotion percep-
tion is subjective, so the developed interface accommodates 
uncertain data. 

Mapping parameters to emotion. After the data is collected, 
a mapping between movement and perceived emotion is 
computed. Specifcally, given an n-dimensional motion pa-
rameter set ϕn and a corresponding real-valued perception 
score µ, our goal is to learn a function f : ϕn → µ, that pre-
dicts the score for any seen or unseen motion represented 
by its parameter set. Obtaining such a function f that can 
estimate the perceptual quality of any emotion for a mo-
tion allows us to (a) gauge the perceptual quality of user’s 
motion design at a given time, on the fy, and (b) help the 
user understand which parameters to edit, and how to edit 
that parameter to achieve the desired efect. The predictor 
function f thus powers the slider curves and the automatic 
slider. 

Figure 7: Comparison of predicted emotion values using 
linear regression (orange) with their crowdsourced values 
(gray) for the test samples of the quadruped motion dataset. 
The best (happy) and worst (surprised) ftting emotion cate-
gories are displayed. 

Regression is used to construct such predictor functions 
that relate parameters and emotions. Both linear regression 
(LR) and Artifcial Neural Networks (ANN) were explored 
for this purpose. Geppetto however uses LR, as LR provided 
a ft similar to ANN, and was much faster to execute. For the 
quadruped, the best-ft emotion (happy) had an R2 score of 
0.50, and the worst-ft (surprise) had R2 = 0.12 (Figure 7). The 
variation in the ft quality for diferent emotion categories 
is an indication of the subjective nature of emotion ratings, 
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and the inherent difculty in expressing nuanced emotions 
through parameterized walking motion. To account for this, 
we deemphasize ambiguous and noisy samples during re-
gression. Details about regression, and further results for all 
emotion categories with ANN and LR can be found in the 
supplementary material. 

Design using predictor functions 
Given a motion parameter set ϕ, a predictor function f for 
an emotion outputs the corresponding perception score. Let 
the motion parameter set corresponding to current robot 
motion be ϕn , such that it consists of n parameters pi – 
ϕn = p1, . . . ,pn . To compute the parameter-perception curve 
for the slider corresponding to p1, we vary p1 linearly over 
the displayed range, without changing the values of other 
parameters p2, . . . , pn . The corresponding values of f are 
then visualized as a curve on the slider. With every manual 
or automatic user-initiated operation that changes the cur-
rent motion parameter set ϕn , we dynamically update all the 
slider curves. The slider curves also get updated when users 
change the target emotion for their motion design. Since 
the predictor functions are obtained from noisy data, we 
compute and plot the 95% confdence interval (CI) for the 
predicted score at each point along the curve. 

Figure 8: Interfaces used in the study’s two conditions, pa-
rameter (left) and semantic (right). 

The predictor functions not only predict the perceptual 
quality of an emotion for a motion parameter set, but also 
provide information about regions in the parameter space 
that correspond to better emotional expression. Starting from 
a point in the parameter space ϕ, such regions can be reached 
by moving along the direction of predictor function f ’s gra-
dient ( ∂f ). The automatic slider leverages this to update the ∂ϕ 
robot motion. Unfortunately, since ϕ consists of both dis-
crete and continuous parameters, we cannot compute the 
gradient ∂f with respect to all parameters. Consequently, ∂ϕ 
when the automatic slider is used, we update the discrete 
and continuous parameters one by one. We frst update the 
discrete parameter to achieve the user requested change as 
best as possible. Given the discrete parameter’s value, we 
then change the continuous parameters using the gradient-
based update. Specifcally, for a given motion parameter set 
ϕ with continuous parameters set ϕc , the updated parameter 

∂f ′ set is ϕc = ϕc + δ ∂ϕc 
, where δ is the step-size along the 

gradient. The step-size is proportional to the change in the 
slider cursor position (∆), which consequently refects the 
desired change in robot’s emotional expression (∆f ). The 
step-size δ required to achieve the desired ∆f is computed 
using backtracking line-search [40]. δ is positive if the user 
moves the automatic slider to increase the expression and is 
negative otherwise. 

6 EVALUATION 

The target audience for Geppetto is users without any ro-
botics or animation background. To evaluate Geppetto, we 
therefore conducted a user-study with participants who had 
no experience in animation or HRI. 

Participants 
12 participants (9 males, 20-35 years of age) were recruited. 
Participants were reimbursed $25 USD for their time. 

Study Design 

The study had a within subject design, with participants 
creating expressive motions for the quadruped using two 
versions of the system (Figure 8). The parameter control UI 
allowed editing robot motion parameters with sliders but 
did not provide informative curves, automatic slider, or the 
gallery. The semantic control UI was the full interface as de-
scribed above. We thus compare Geppetto with a diminished 
version of itself. This is because state-of-the-art tools (e.g., 
Maya) either do not account for robot’s physics or would 
require custom plugins to do so. Further, it would be hard 
to test complex tools such as Maya with our target audience 
of casual users due to the vast amount of prior knowledge 
the users would need to even begin to use the tools. Since 
the quality of guidance provided by the semantic control UI 
depends upon the predictor function accuracy for an emo-
tion, the emotion categories with highest (happy, sad), and 
the lowest (surprised) predictor function accuracy were used. 
The order of the UI conditions and emotions were counter-
balanced. 

Procedure 

The study began with an overview of the design task for 5 
minutes, followed by participant training and motion design 
sessions for 50 minutes, concluding with a 5-minute survey. 
The survey consisted of 5-pt Likert-scale questions (anchors: 
1= not at all; 5 = extremely) to understand user perception 
of various UI features and overall design experience (see 
the supplementary for more details). For each condition, the 
participants were given the UI’s demo and training for up 
to 10 minutes. Post training, participants were given up to 5 
minutes each for designing happy, sad, and surprised robot 
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motions. Thus, each participant designed 6 robot motions in 
total. Participants’ motion designs were automatically saved 
every 30 seconds, as well as when they indicated they were 
fnished. 

Results 
Qantitative results. We compare the parameter control and 
semantic control UI using two quantitative measures – de-
sign time and design quality. The perceptual quality of emo-
tional expression in the user-created motion designs is evalu-
ated using crowdsourcing, with the top and bottom 5 synthe-
sized designs for each category included in the tournament. 
These top and bottom-most synthesized designs were chosen 
based on their prior crowdsourcing scores. The tournament 
structure and crowdsourcing pipeline (rounds, design com-
parison and elimination strategy, crowdworker fltering) are 
similar to our earlier crowdsourcing experiments on syn-
thesized designs. We analyze corresponding crowdsourcing 
scores using confdence intervals and efect sizes, instead 
of null hypothesis signifcance testing [14]. This choice is 
inspired by increasing concerns over such hypothesis testing 
for experimental results in various research felds [13, 17, 48]. 
The resultant scores from crowdsourcing show that on 

average, users were able to create better expressive motions 
across all emotions using the semantic UI (Figure 9). The 
corresponding efect sizes (Cohen’s d) between semantic vs. 
parameter control UI for happy, sad and surprised categories 
are d = 0.79, 0.64, and 0.35 respectively, which represent 
moderate-to-high efect sizes. Although surprised motions 
from the semantic UI scored higher on average than motions 
from the parameter control UI (Figure 9), the lower efec-
tiveness (0.35) can be attributed to the limited data-driven 
guidance available, highlighting the efect of data certainty 
on semantic UI’s performance. 

Figure 9: Mean emotion perception scores of the top 5 de-
signs from the original dataset (Synthesized) with those cre-
ated by the study participants. Bars show 95% CIs. 

We also fnd that the designs created using the semantic 
UI outperform the best motions from our original dataset 
(Figure 9, semantic vs. synthesized). This points toward both 
the strengths and drawbacks of our system. The dataset syn-
thesized using sparse random sampling may not be capturing 
the design space with high fdelity. Subjective crowdsourc-
ing analysis of the dataset adds further ambiguity and noise 
to the data. Despite this, Geppetto allows users to explore 
beyond the synthesized dataset by enabling and leveraging 
their intuition of parameters at design time, guided by the 
emotion predictor functions. 

Figure 10: Individual and average design times are shown 
using dots and lines respectively, for both of our UIs. Shaded 
regions represent 95% CI. 

Along with obtaining more emotive fnal outcomes, the 
participants also tended to take less design time on aver-
age with the semantic UI (Figure 10). Overall, the semantic 
UI enables users to start with better designs and to explore 
higher quality designs during their session (Figure 11). The 
higher initial scores of designs from the semantic UI in Fig-
ure 11 can be attributed to the use of motion gallery. After 
this initial boost, however, the semantic UI enables users to 
further improve the quality of their designs through features 
such as the annotated sliders and parameter comparison 
cursors. This is evident in the upward slope of the orange 
line representing semantic UI in Figure 11. Thus, the gallery, 
the annotated sliders, and parameter comparison cursors 
together provide a powerful workfow that allows users to 
achieve more optimal designs. 

Qalitative feedback and observations. The survey provided 
further insights about designing with Geppetto. All partic-
ipants reported that they are extremely likely to prefer se-
mantic control UI to parameter control UI (5-pt Likert score: 
M = 4.67, SD = 0.49). Participants also believed that with 
the semantic control UI, they could create relatively better 
designs (M = 4.67, SD = 0.49), in less time (M= 4.83, SD = 0.38). 
This feedback further corroborates the quantitative results. 
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Participants’ design satisfaction varied across emotions, and 
was related to the quality of semantic information provided. 
Consequently, 11 of 12 participants were satisfed with their 
happy design, while only 2 participants were satisfed with 
their surprised design. 

Figure 11: The evolution of the quality of user-designs (bars 
represent 95% CIs). The dotted lines represent the linear ft 
of mean scores over all emotions and participants, and the 
bands are a 95% CI around the ft. 

The participants also provided feedback on individual 
UI features. 10 participants found the motion gallery and 
slider curves to be extremely or very useful. The parameter-
comparison cursors and the automatic slider were also found 
to be extremely or very useful by 6 participants. The gallery 
catered to participants who were unclear about how to ex-
press an emotion, as well as to participants who had rough 
ideas about their desired design, by providing them with 
design alternatives. Uncertainty information on slider plots 
was also found to be useful. Specifcally, 2 participants com-
mented that since the surprised emotion slider curves had 
high uncertainty (surprise is our worst-ftted emotion), they 
trusted the curves less, and explored editing on their own. 
Parameter locking was only found to be very useful by 3 
participants. Only the participants who had a clearer idea of 
what they wanted used parameter locking. Finally, 8 partici-
pants reported the semantic UI to be extremely or very useful 
in developing an understanding of the efect of parameters 
on emotional expressions. 

The feedback and usage patterns point to the diversity of 
interactions and workfows that emerged during the study. 
Participants combined manual and automatic editing fea-
tures fuidly. The feature usage also varied across participants. 
For instance, some subjects only used the motion gallery for 
design initialization, while some others leveraged it, with the 
help of parameter comparison cursors, to better learn and 
understand how specifc body poses and other subtle motion 
features could be achieved. The automatic slider was also 
used in multiple ways; some used it to fne-tune their motion 
designs, while others used it to obtain a good starting point 

especially when they were dissatisfed with the gallery ex-
amples. This highlights the dependence of workfows on the 
noise in the data and accuracy of semantic information. Since 
surprise was not well captured by the gallery, participants 
used the automatic slider the most for this emotion. 

Participants’ responses also highlighted the limitations of 
Geppetto. Some participants found the automatic slider to be 
very aggressive since it caused major changes to the motion, 
meaning nuanced features, which may have existed prior, 
were lost. While parameter locking helps with capturing user 
intent about desired improvement and preserving nuances, 
it needs more understanding of the parameters and desired 
motion characteristics for efective use. The majority of par-
ticipants requested an edit history and better navigation 
of their design trajectory. Some participants also requested 
the ability to edit robot structure and aesthetics for more 
expressiveness. Finally, participants echoed the need of cap-
turing and enabling motion design with additional semantic 
information. Many participants thought about expressive 
motions in the space of actions and wanted to understand 
the mapping between parameters and space of possible and 
meaningful actions, so as to combine these actions into a 
behavior. For instance, one participant wanted to edit the 
parameters to make the robot drag its feet for appearing sad, 
while another participant wanted the robot to jump in place 
to express excitement. While our gallery enables users to 
map parameters to these desirable actions indirectly, users 
may or may not fnd the action they are looking for in the 
gallery. 

7 GENERALIZATION, SCALABILITY, AND 
HARDWARE TRANSFER 

Geppetto’s framework generalizes across diferent kinds of 
robots as demonstrated by the quadruped and robot arm 
examples. Overall, the most challenging part of making Gep-
petto work for a new robot is obtaining a parameterized 
motion simulation. Once a dataset of motions is created, 
Geppetto requires approximately 4.5 hours and $150 USD for 
crowdsourcing per expression. While this may not be a sig-
nifcant amount of efort, re-using semantic information ex-
tracted from a particular robot’s dataset to enable the design 
of a robot with diferent morphology will improve the scala-
bility of Geppetto. Such transfer of the data-driven semantic 
map between robots, however, is dependent on the underly-
ing motion behavior parameterization. For the quadruped, 
since the motion is parameterized in the joint space, the 
parameterization and the corresponding semantic map is 
dependent on the robot’s morphology. To design behaviors 
of a six-leg hexaped, for instance, using the quadruped’s se-
mantic map, the joints of the extra pair of hexaped’s legs will 
have to be mapped to quadruped’s front or back leg joints. 
Since this might limit the possible hexaped behaviors that 
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can be designed with Geppetto, collecting a new hexaped 
motion dataset might be more preferable over re-using the 
quadruped dataset. 

On the other hand, the task space parameterization of the 
robot arm’s motion is independent of the robot morphology. 
The corresponding semantic map might hence transfer more 
readily to diferent types of robot arms. We conducted a 
preliminary experiment to validate this. Using the semantic 
map of the 6 DOF KUKA arm, we tried to design motions 
for a 5 DOF custom robot arm. Apart from the diference in 
number of joints (DOF), the two robot arms also had very 
diferent link lengths. We were able to directly transfer the 
pre-synthesized motions of KUKA arm to the custom arm, 
while maintaining the resultant expression to a reasonable 
extent (corresponding examples can be found in the video). 
Further work is needed to validate this explicitly. 
Geppetto’s physics-based simulation supports the hard-

ware transfer of designed motions, and has been previously 
verifed on real hardware [36]. However, such a transfer is 
sometimes impeded by extreme user edits, which may drive 
the robot’s motion parameters to infeasible regions at de-
sign time (e.g., an extreme user-commanded quadruped pose 
could result in the robot dragging its body on the ground 
– an infeasible motion for a real robot). Geppetto currently 
warns the users when such infeasibility occurs, and enables 
them to manually rectify such extreme edits. Finally, cer-
tain high-speed motions such as angrier robot arm motions 
may transfer with lower fdelity, owing to safety factors in 
collaborative settings with industrial robot arms. 
Another factor that may afect the hardware transfer of 

motions from Geppetto is the embodiment of the physical 
robot. While Geppetto allows users to observe the simulated 
motion in 3D, from diferent viewpoints and zoom levels, 
it is likely that a full-scale robot may change the emotion 
perception from that of the simulated motion. This points to 
an interesting future user-study, which can specifcally focus 
on the efect of robot’s physical scale and its embodiment on 
emotion perception. There is also an exciting opportunity 
of porting Geppetto to a virtual reality (VR) platform, for 
supporting higher fdelity design. 

8 DISCUSSION AND FUTURE WORK 

Currently, Geppetto allows design space exploration and edit-
ing given a single high-level semantic goal. Enabling concur-
rent design to express a mixture of emotions will provide the 
users with greater fexibility of design. Further, high-level 
semantics could be coupled with task-specifc mid-level se-
mantics to better capture user-intent. For instance, mid-level 
semantics corresponding to emotionally expressive motion 
design may correspond to actions such as dragging feet, 

jumping, or appearing crouched. Beyond composite behav-
iors, extending Geppetto to support the design of interactive 
behaviors is also an interesting direction of future work. 
Geppetto will also beneft from better dataset generation 

techniques. In particular, adaptive sampling would allow the 
system to capture the design space with more fdelity. On-
demand sampling at design time may also enable Geppetto 
to provide guidance based on user-preferences. 

Finally, any simulation-driven design system can only be 
as good as the underlying simulation. Our current motion 
parameterization and simulation do not produce motions 
suitable for conveying subtle emotions such as disgust and 
surprise. Parameterizing and synthesizing emotionally ex-
pressive robotic behaviors is an exciting future area of re-
search. We also currently limit ourselves to the creation of 
robotic expressions through motions only. However, aesthet-
ics and physical structure are equally important for visual 
appeal. Parameterization and editing of aesthetics is thus 
an interesting open problem. In particular, we envision a 
semantic design system that exposes the coupling of struc-
ture and motion towards creating appealing robots. Such a 
system will not only support the design of next generation of 
social and collaborative robots, but will be equally valuable 
for consumer robotics. 

9 CONCLUSION 

Towards increasing the accessibility of robot behavior design, 
we presented a simulation-driven and crowd-powered sys-
tem that enabled semantic design of robot motions. Despite 
the subjectivity of the task, the system enables an intuitive 
design experience with the help of data-driven guidance 
and design space exploration, as demonstrated by our user 
study. We hope that our work will lead to the development 
of additional tools that allow both novices and experts to 
create desirable robots, and more broadly, open the door to 
future investigations of mixed-initiative interfaces across all 
domains of design. 
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