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Abstract— We present a control-aware design optimization
method for quadrupedal robots. In particular, we show that it
is possible to analytically differentiate typical, inverse dynamics-
based whole body controllers with respect to design parameters,
and that gradient-based methods can be used to efficiently
improve an initial morphological design according to well-
established metrics.

We apply our design optimization method to various types
of quadrupedal robots, including designs that feature closed
kinematic chains. The methodology we present enables a
principled comparison of different types of optimized legged
robot designs. Our experiments, for example, suggest that
mechanically-coupled three-link leg designs present notable
advantages in terms of performance and efficiency over the
common two-link leg designs used in most quadrupedal robots
today.

I. INTRODUCTION

The animal kingdom has always inspired the design of
legged robots and the algorithms to control them [1, 2, 3, 4].
This fact is rooted in the numerous challenges inherent
to these machines. Indeed, locomotion is a complicated
task, requiring the simultaneous coordination of different
apparatuses. All body parts must be functional and have to
collectively support the movements of the whole system.

Once a machine is built, control specialists take the hard-
ware to the limit and assess its performance. The collected
data inform the construction of the next prototype, and
the whole process is repeated in an iterative fashion. This
approach to mechanical design not only demands consid-
erable resources, but it frequently ends up with sub-optimal
results [5]. For this reason, design optimization methods have
become increasingly important.

In this paper, we introduce computational models aimed
at significantly reducing these manual efforts and improving
their outcomes. We use our optimization pipeline to enhance
the hind leg architecture of a bio-inspired quadruped robot
(see Fig. 1). In widely adopted approaches [5, 6, 7, 8], a
design is evaluated based on open-loop trajectories output
by a kinodynamic planner. In contrast, we augment the op-
timization loop with a differentiable simulator and a whole-
body controller (see Fig. 2). Although this device increases
the computational burden, it allows a design to evolve in a
more realistic setting and instills awareness of the control
laws in it. To assess a model, we compute a performance
measure over a given set of control tasks in simulation.
Finally, we feed the gradient of this index to a quasi-Newton
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method that updates the design and initiates a new iteration.

Fig. 1. The robots Dog V3 (left) and Dog V2 (right). The design of Dog
V3’s hind limbs is inspired by the anatomy of quadruped mammalians (a),
whereas Dog V2 carries standard two-link legs (b). In this work, we optimize
their designs and compare their performances over a diverse set of motion
tasks.

We adapt link lengths and closed kinematic chain (CKC)
morphologies in both two- and three-segmented leg designs.
To this end, we formulate a holonomic constraint to model
general planar closed-loop topologies, and we extend our
whole-body control (WBC) implementation accordingly.

In summary, we present the following contributions:
• We propose a design optimization methodology that

takes into consideration the control objectives of a WBC
implementation. Our pipeline can adapt any continuous
variables a robotic design may depend on using a gradi-
ent method. We further derive the analytical expressions
of the required derivatives via SA.

• To demonstrate our approach, we optimize the three-
segmented hind limbs of a bio-inspired, four-legged
robot constrained by planar CKCs. Specifically, we op-
timize for link lengths and relative orientations between
rigidly attached bodies.

• We verify in simulation that optimized three-segmented
leg designs have clear advantages over standard two-
link ones with respect to various well-established per-
formance metrics.

II. RELATED WORK
A. Design Optimization Methods

Design optimization problems are concerned with finding
the best parameters that fully specify a mechanical system
based on some performance metrics. The design space may
consist of continuous variables (e.g., the length of a link)
or discrete decision variables (e.g., the type of an actuator).
The former setting is more common and is typically ap-
proached by using stochastic, derivative-free methods, such
as covariance matrix adaptation evolution strategy (CMA-
ES). Digumarti et al. [9] used this algorithm to determine
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Fig. 2. Comparison of general-purpose design optimization methodologies.
Top: Most existing approaches adopt stochastic, derivative-free methods
to tackle design optimization problems [5, 7, 9]. At each iteration, the
optimization algorithm updates the design parameters p based on a per-
formance measure L that assesses the open-loop states xk and control
inputs τk generated by a kinodynamic planner. Bottom: Our approach
augments the optimization loop with a QP-based whole-body controller
and a differentiable simulator. We propose computing the gradient of the
objective function efficiently through SA and feeding it to a gradient method.

both the optimal morphology and controller parameters to
maximize the speed of a quadruped robot subject to actuator
limits. Ha et al. [5] employed CMA-ES to find the best link
lengths for different legged machines to perform a single,
predetermined task. They noticed that three-segmented legs
lessen the torque requirements of a robot because they afford
shorter moment arms. However, since they actuated all the
joints, they unnecessarily increased their power consumption
and inferred the supremacy of two-link designs over three-
link ones.

Chadwick et al. [7] proposed a computational framework
that optimizes for the legs of walking robots using a genetic
algorithm (GA). It takes into account lengths and masses of
the links, torsional spring parameters, and efficiency models
for the motors. The motion trajectories are computed by
solving a nonlinear programming problem (NLP), and each
design is evaluated based on the corresponding open-loop
joint torques.

Ha et al. [6] adopted SA to simultaneously optimize design
and motion parameters with a gradient method. Similarly,
Dinev et al. [8] used gradient descent in a bilevel optimiza-
tion strategy to adapt link lengths and base dimensions for
a quadruped robot. They relied on numerical differentiation
to obtain the derivatives of a motion planner formulated as
an NLP. In this work, we also present an SA formulation
and employ finite difference (FD) to compute the required
gradients. However, we include a whole-body controller
in the optimization loop: this addition encourages more
refined results, as it makes the procedure closer to real-world

experimental setups. Moreover, we optimize for complex
four- and five-bar linkages that constrain the motion of the
system in a nontrivial way.

Finally, Chevallereau et al. [10] proposed a method to
guide the leg design of bipeds with mono-articular and bi-
articular linear actuation. Their approach includes a first,
analytic-heuristic step that provides insight into the design
problem, and a second, numerical one that uses the sequential
quadratic programming (SQP) algorithm. Once again, the
performance of a design is evaluated based on open-loop
signals as opposed to our methodology.

B. Whole-Body Control Algorithms for Legged Robots

Bellicoso et al. [11] formulated an inverse dynamics
controller for ANYmal [12] as a cascade of quadratic pro-
gramming (QP) problems; these were solved hierarchically to
enforce strict priorities on the various tasks to be performed.
In [13], the authors further enhanced their implementation
with a planner based on the zero-moment point (ZMP).
For all our experiments, we employed a similar QP-based
control strategy, but without strictly prioritizing the various
objectives. This decision facilitated our implementation and
did not affect the motion capabilities of the systems we
considered.

Recently, the WBC framework has also been studied in
the context of model predictive control (MPC) formulations
where the full dynamics of complex systems are taken into
account [14] or, alternatively, simplified models are used in
combination with hierarchical whole-body controllers. Kim
et al. [15] applied the latter approach to the quadruped robot
Mini-Cheetah [16]; convex MPC was used to find optimal
reaction forces with a simple model of the robot, and whole-
body hierarchical optimization was employed to compute
joint torque, position and velocity commands based on the
reaction forces computed by MPC.

In principle, any control algorithm can be integrated into
our methodology, as long as it is differentiable – for instance,
[11, 15, 17]. We adopted a QP-based whole-body controller
because it represents the best compromise between complex-
ity and performance, and its derivatives can be computed
through closed-form expressions [18].

C. Bio-Inspired Mechanical Legs

Two-link leg designs have become the standard choice for
quadruped robots. However, the anatomy of cats and dogs
exhibits three-link legs comprising a femur, a tibia, and a
foot segment [19]. This fact motivated a breed of bio-inspired
four-legged machines, such as BigDog [2], MIT Cheetah
[3], and Cheetah-Cub [4]. Previous work highlighted the
advantages of bio-inspired leg designs. However, to the
best of our knowledge, there exists no study comparing the
performance of two- and three-segmented legs over generic
control tasks.

Ananthanarayanan et al. [20] showed the efficacy of
tendon-bone co-location designs in reducing the stresses
acting on the limbs of MIT Cheetah [3]. They further
proposed a novel fabrication method to produce links with



structural properties peculiar to mammalian bones. Ruppert
and Badri-Spröwitz [19] tested a biarticular muscle-tendon
structure in a robotic leg and verified its superiority to
conventional pantograph architectures in terms of energy
efficiency. Similar experiments and conclusions were attained
for various other bio-inspired leg designs – e.g., [21, 22].

All the above designs were conceived after careful in-
spections of animal anatomies. However, their performance
analyses were mostly carried out on simplified experimental
setups or relied on stripped-down simulation models. Also,
because their focus was rather specific, the authors did not
propose original optimization tools to tackle general design
problems.

III. WHOLE-BODY CONTROLLER

In this section, we describe a WBC formulation that
implements the inverse dynamics of constrained floating-base
robots as the solution of a QP problem [11]. This controller
is qualified to accommodate dynamic motion tasks such as
trotting or jumping. Furthermore, under mild requirements
on the definition of the QP control problem, the computed
solution can be differentiated with respect to any parameter
the system may depend on [18]. In combination with a dif-
ferentiable simulator and SA [23], a robot becomes amenable
to undergoing design optimization via gradient methods.

A. Constrained Mechanical Systems

The equations of motion [24] of a constrained legged robot
can be written as:

M(q)u̇+ h(q,u) = S>τ+ Jc(q,u)
>λ (1a)

s.t. Jc(q,u)u̇ = w(q,u) , (1b)

where q ∈ Rnq is the vector of the generalized coordinates,
u ∈ Rnu is the vector of the generalized velocities, M(q) ∈
Rnu×nu is the symmetric and positive definite inertia matrix,
h(q,u) ∈ Rnu is a generalized force vector containing
the Coriolis, centrifugal and gravitational effects, τ ∈ Rnτ

is the actuation vector, and S ∈ {0, 1}nτ×nu is the joint
selection matrix that defines how the joint torques act on
the system. Finally, Jc(q,u) ∈ Rnc×nu is the Jacobian
associated with nc constraints, λ ∈ Rnc is the vector of the
Lagrange multipliers corresponding to the constraint forces,
and w(q,u) ∈ Rnc is an arbitrary function of q and u.

The constraint equation (1b) is written in the so-called
acceleration form, and its rows may enforce, among others,
contact constraints or kinematic restrictions due to closed-
loop topologies. If the support feet of the robot are modeled
as points [11, 24], then each contact constraint introduces
three equations of the form IrIS(q) = const . ∈ R3, which
can be differentiated twice to yield

JS(q)u̇ = −J̇S(q,u)u . (2)

In the next section, we express arbitrary planar CKC con-
straints in a parameterized, general form.

Fig. 3. Example of a robotic arm featuring a five-bar linkage. Left: Graph-
ical depiction of a manipulator with np = 5 consecutive links of lengths
p1, p2, . . . , p5. Right: Geometric representation of the planar CKC. Each
link i is construed as a vector with radial and angular coordinates pi and
αi, respectively, relative to the reference frame A for i = 1, 2, . . . , 5.

B. Planar Closed Kinematic Chains

In Section V, we optimize the hind leg design of a
quadruped robot featuring both four- and five-bar linkages
by using a quasi-Newton method. To do so, we define each
CKC as a differentiable scleronomic constraint depending on
a set of continuous design parameters.

Apart from merely aesthetic considerations, CKCs in a
legged robot are convenient for different reasons. Firstly, they
allow conveying torque signals to the passive joints of a robot
without resorting to additional actuators [3]. Moreover, by
arranging all the motors on the robot body, the legs can be
made significantly lightweight, which is a requirement for
many quadrupedal system control algorithms [15]. Finally,
closed-loop topologies are found in animal legs in the form of
muscle-tendon structures, which demonstrated both structural
and mechanical benefits [19, 20, 21, 22].

Let p =
[
p1 p2 · · · pnp

]> ∈ Rnp denote the vector
of design parameters that fully describe a planar CKC with
np consecutive links. Specifically, let p1, p2, . . . , pnp be
the lengths of these links. Then, the closed-loop topology
constrains the origin of the first link along the opened
mechanism to coincide with the tip of the final one (see
Fig. 3).

Under typical definitions of the vector of the generalized
coordinates q, we can express a planar CKC constraint as:

fCKC(q,p) :=

[
cos (Θq+ θ)>

sin (Θq+ θ)>

]
p = 02×1 , (3)

where Θ ∈ {0, 1}np×nq is a constant binary matrix, θ ∈
Rnp is a constant vector of angle offsets, and cos : Rn → Rn

and sin : Rn → Rn represent the element-wise cosine and
sine functions, respectively; 0m×n ∈ Rm×n is the m × n
zero matrix. In turn, we can rewrite (3) in the acceleration
form (1b) by differentiating it twice, resulting in:

JCKC(q,p)u̇ = −J̇CKC(q,u,p)u , (4)

where JCKC(q,p) ∈ R2×nu is the planar CKC constraint
Jacobian matrix.



C. Quadratic Programming Control Problem

One of the simplest yet most effective ways to simultane-
ously control different tasks for a constrained robotic system
involves solving a QP problem [11]. Specifically, the QP
control problem at a certain time t given the vectors q and
u of the generalized coordinates and velocities, respectively,
has the following form:

argmin
z

1

2
z>Q(q,u)z+ c(q,u)>z (5a)

s.t. A(q,u)z = b(q,u) , (5b)
K(q,u)z � l(q,u) , (5c)

where z ∈ Rn, Q(q,u) ∈ Rn×n, c(q,u) ∈ Rn, A(q,u) ∈
Rm×n, b(q,u) ∈ Rm, K(q,u) ∈ Rp×n, l(q,u) ∈ Rp, and
the symbol � denotes a component-wise non-strict inequal-
ity. For the above problem to be convex and differentiable,
Q(q,u) must be symmetric and positive definite, and the
rows of A(q,u) must be linearly independent [18]. The
vector of the optimization variables z can be chosen in
a number of different ways, each affecting the makeup of
the QP control problem, as well as the computational effort
required to solve it. In Section V, we conduct our analysis
having defined z :=

[
u̇> τ> λ>

]> ∈ Rnu+nτ+nc =
Rnz . This choice greatly simplifies the formulation of the
controller. Indeed, the plain equations of motion (1) of the
constrained system can be directly translated to the form of
the equality constraints (5b) as:[

M(q) −S> −Jc(q,u)
>

Jc(q,u) 0nc×nτ 0nc×nc

]
z =

[
−h(q,u)
w(q,u)

]
. (6)

In our implementation, we assume that the magnitude of
each joint torque must be less than or equal to some constant
τ̃ ∈ R>0. Thus, we can write a linear inequality of the form
(5c) as:[

0nτ×nu Inτ 0nτ×nc
0nτ×nu −Inτ 0nτ×nc

]
z � τ̃ 1(2×nτ )×1 , (7)

where 1m×n ∈ Rm×n is the m×n matrix whose entries are
all equal to 1, and In ∈ Rn×n is the n× n identity matrix.

We additionally impose a pyramidal approximation of the
friction cone constraints on the ground reaction forces λc

as presented in [11, eq. (29)]. In all our experiments, the
robot treads on a flat ground with constant surface normal
n =

[
0 0 1

]> ∈ R3.
Finally, the objective function (5a) prescribes swing leg

and base motion tracking tasks, contact foot position tracking
tasks, and overall joint torque minimization tasks. All the
target trajectories for the various control tasks are computed
by a locomotion planner, which we introduce in Section V.

IV. DIRECT SENSITIVITY ANALYSIS

We evaluate a robotic design by calculating a performance
measure over a fixed set of control experiments in simulation
[5, 6, 7] (see Section V). For the sake of simplicity, let
us consider a scenario where the CKC design must be
optimized over a single task – the same formulation can

then be straightforwardly extended to any number of trials.
Moreover, let the task of interest span N discrete time steps
of duration h ∈ R>0.

Let xk := [q>k u>k ]
> ∈ X ⊆ Rnx and τk ∈ Rnτ represent

the state vector and the actuation vector of the system at time
step k, respectively, as defined in Section III-A. Additionally,
let the design undergoing optimization be uniquely defined
by a vector of design parameters p ∈ Rnp ; for example, each
component of p may represent the length of a link along a
given CKC (see Section III-B).

Eventually, let the following assumption hold.

Assumption 1. The initial state x0 and the vector of
design parameters p satisfy the following system of nonlinear
equations:

f0(x0,p) = 0nx×1 , (8)

where f0 : Rnx+np → Rnx is of class C1(Rnx+np) and is

such that the Jacobian matrix
∂f0(x0,p)

∂x0

∣∣∣∣
x0,p

∈ Rnx×nx

evaluated at 〈x0, p〉 is full rank.

The purpose of (8) is to provide a well defined initial
state given a specific p. For example, f0 may prescribe the
fulfillment of holonomic constraints arising from closed-loop
topologies, and subsequently set the remaining unconstrained
degrees of freedom to arbitrary values. Most importantly, (8)
implicitly redefines the initial state x0 as a function of p.
Indeed, we can employ the result stated in the following
theorem [25].

Theorem 1 (Dini’s Implicit Function Theorem). If Assump-
tion 1 is met, then there exists a neighborhood Up ⊂ Rnp

of p and a unique function x0 : Up → Rnx such that
f0(x0(p

′),p′) = 0nx×1 and

dx0(p)

dp

∣∣∣∣
p′

= −∂f0(x0,p)

∂x0

∣∣∣∣−1
x0(p′),p′

∂f0(x0,p)

∂p

∣∣∣∣
x0(p′),p′

(9)
for any p′ ∈ Up.

For a given vector of design parameters p, we define the
initial sensitivity s0(p) as the matrix

s0(p) :=
dx0

dp

∣∣∣∣
p

∈ Rnx×np . (10)

If a solution of (8) exists for a given p, then the cor-
responding unique initial state x0 = x0(p) is a function
of p, even though an analytic expression for it may not
exist. However, we can always compute the total derivative
of x0(p) with respect to p using (9).

Let ςk : Rnx+nτ+np → Rnx be a differentiable function
capturing the simulator dynamics at time step k. Specifically,
given xk, τk and p, we can write xk+1 = ςk(xk,τk,p).
Also, let us define the time-varying feedback control pol-
icy µk as a differentiable function µk : Rnx+np → Rnτ

outputting the actuation vector τk at time step k given the
corresponding state xk and the vector of design parameters
p, that is τk = µk(xk,p). In this work, µk yields the optimal
joint torques as computed by the QP control problem (5).



Finally, the design optimization problem can be formalized
as the following nonlinear programming problem:

min
p
L :=

N−1∑
k=0

lk(xk,τk) (11a)

where f0(x0,p) = 0nx×1 , (11b)
xk+1 = ςk(xk,τk,p), ∀k , (11c)
τk = µk(xk,p), ∀k , (11d)

and the terms lk : Rnx+nτ → R, k = 0, 1, . . . , N − 1
are differentiable scalar functions that represent a demerit
measure to be minimized.

To optimize the objective function (11a) by using a
gradient method, we must evaluate its total derivative with
respect to the vector of design parameters p; given the initial
sensitivity s0(p), this can be done recursively [23]. To this
end, we note that the dependency on p of the initial state
x0(p) propagates through the constraints (11c) and (11d) to
all the input torques and subsequent robot states. Thus, we
can write

dL
dp

∣∣∣∣
p

=

N−1∑
k=0

[(
∂lk
∂xk

+
∂lk
∂τ k

∂µk

∂xk

)
sk +

∂lk
∂τ k

∂µk

∂p

]
,

(12)

where sk(p) :=
dxk

dp

∣∣∣∣
p

∈ Rnx×np is the sensitivity at time

step k = 1, 2, . . . , N , and we omitted the dependencies on
xk, τk, and p for the sake of readability.

Given sk(p), sk+1(p) can be recursively calculated for
any k = 0, 1, . . . , N − 1 by the chain rule as

sk+1(p) :=
dxk+1

dp

∣∣∣∣
p

=
∂ςk
∂xk

sk +
∂ςk
∂τ k

dτk

dp

∣∣∣∣
p

+
∂ςk
∂p

,

and the terms
dτk

dp

∣∣∣∣
p

can be analogously computed as

dτk

dp

∣∣∣∣
p

=
∂µk

∂xk
sk +

∂µk

∂p
.

V. IMPLEMENTATION

In the following sections, we solve the design optimization
problem (11) for Dog V3, a dog-like robot with three-
segmented hind legs featuring planar CKCs, and we compare
the resulting design to Dog V2, a quadruped robot with two-
link limbs (see Fig. 1). We do so by computing the gradient
of the objective function (11a), and then feeding it to the
L-BFGS algorithm [26]; our implementation is based on the
publicly available LBFGS++ library [27].

A. Experimental Setup

All the results we present were obtained on the same set
of control tasks T. Each trial was executed for 4.24 s, which
roughly corresponds to 6 strides of the robot trotting gait. We
weighted the objective functions by the estimated relative
frequency of the respective task in prospective real-world
applications; afterwards, we got an overall performance
index by summing them up. The different trials are tagged

TABLE I
CONTROL TASKS

Tag Description Weight

STAND stand at nominal body height (48 cm) 0.17
CROUCHED TROT trot in place at a body height of 42 cm 0.07
NOMINAL TROT trot forward at a velocity of 0.4m/s 0.5
POWER TROT trot forward at a velocity of 0.8m/s 0.26

and summarized in Table I. As time step duration h, we used
8.3ms, which results in N = 508 discrete trajectory steps.

We complemented the QP-based whole-body controller
of Section III with inequality constraints of the form (7)
bounding the absolute values of the joint torques from
above by 60Nm. We coupled the controller with a simple
kinematic planner that, given the current state of the robot as
well as task-specific information, computes the trajectories
to be tracked for the robot base and swing feet as Catmull-
Rom splines [28]. We calculated the stance foot locations via
Raibert heuristics [1, 15].

For the simulations, we performed a forward integration of
the equations of motion using a semi-implicit Euler method;
i.e., we implemented the simulator dynamics as:

ςk(xk,p) :=

[
Inq hInu
0nq Inu

]
xk +

[
h2Inu
hInu

]
u̇∗k(xk,p) , (13)

where the vector of the optimal generalized accelerations
u̇∗k(xk,p) was directly output by the whole-body controller.

For the simulation to be stable, we had to modify the CKC
constraint formulation (3) within the QP control problem by
applying Baumgarte’s method as in [24, eq. (2.110)].

We computed the gradient of the objective function (11a)
using a double-sided FD method. Although we implemented
the SA procedure and assessed its correctness by comparing
its outputs to the FD ones, we did not employ it in the
optimizations. Indeed, our codebase does not support auto-
matic differentiation; therefore, the modification of any part
of the design optimization problem (11) would have required
adequate changes in the SA partial derivatives, resulting
in an impractical, error-prone process. However, the small
number of iterations required by L-BFGS to converge largely
compensated for the extra computational cost induced by FD
(see Section VI).

To prevent singular configurations from easily occurring
in the CKCs [29], we added a relaxed log-barrier term [17,
eq. (9)] to (11a) that penalized values for the condition
number of the CKC constraint Jacobian matrix above a
predefined threshold. We further set the objective function
equal to infinity whenever we attained unfeasible closed-loop
topologies during the line search phase of L-BFGS. These
expedients were sufficient to always ensure the convergence
of our approach.

B. Design Performance Metrics

In this section, we present the three performance metrics
we used to optimize the hind legs of Dog V2 and Dog V3.



Fig. 4. Leg design diagrams for Dog V2 and Dog V3. The points H and K
denote the hip and the knee joints, whereas F denotes the robot’s point foot.
Left: Diagram of Dog V2’s hind leg. A motor actuates the knee joint; p1
denotes the length of the femur, and L0 − p1 the one of the shank. Right:
Diagram of Dog V3’s hind leg. The only actuated joints are located at T and
H. The parameters ai, i = 1, 2, . . . , 5 (resp., bi, i = 1, 2, . . . , 4) denote
the link lengths of the upper CKC (resp., lower CKC), which is marked by
a red, solid (resp., gray, dashed) line. The pose of the link a2 is fixed in
the two-dimensional leg reference frame; assuming that the position of H
is known, we parameterize the orientation of a2 through the angle ξ with
respect to the x-axis1. Finally, f denotes the length of the foot.

For each measure, we write the relative objective functions
lk, k = 0, 1, . . . , N − 1 of (11a).

1) Squared Magnitude of Actuation Vector: We define the
average squared magnitude of the actuation vector (SMAV)
as the following scalar function [5, 7]:

SMAV :=

N−1∑
k=1

lSMAV
k (τk) =

N−1∑
k=1

h

N
‖τk‖22 . (14)

By minimizing (14), we reduce the strain the actuators are
subject to, and thus we cut down the risk of breakage.

2) Power Quality: The power quality quantifies the an-
tagonism in a machine and the balance of power among the
motors [30]. It does not take into account the dynamics of the
motors, nor any loss model: it solely informs the kinematic
design of a mechanism.

The mean power quality (PQ) is defined as:

PQ := −
N−1∑
k=1

lPQ
k (xk,τk) =

N−1∑
k=1

h

N

[
(11×nuπ)

2 − ‖π‖22
]
,

(15)
where π = π(xk,τk) := (uSxxk) ◦ (S>τk) ∈ Rnu is the
power tuple of the system at time step k, uSx ∈ {0, 1}nu×nx
is the selection matrix such that uk = uSxxk, and ◦ denotes
the Hadamard product.

1Note that in our discussion about planar CKC constraints of Section III-
B, we did not consider the case where one of the links along a CKC is fixed
in the mechanism reference frame. However, (3) can easily be extended to
this new parameterization.

3) Required Power with Zero-Regeneration Motor Model:
We can estimate the energy consumption of a design through
a zero-regeneration motor model discarding negative power
[30]. In particular, the average power required to perform a
task is defined as:

PZR :=

N−1∑
k=1

lPZR
k (xk,τk) =

N−1∑
k=1

h

N
11×nu bπc+ , (16)

where the operator b·c+ : Rn → Rn
≥0 sets the negative

components of a vector of Rn to zero.

VI. RESULTS

A. Two-Link Leg

As a preliminary study, we optimized the hind legs of Dog
V2, a robot dog with no CKCs in its mechanical design (see
Fig. 4). In this simple example, we only have one design
parameter p1 denoting the length of the femur link, and we
set its initial value to 28 cm.

To compute the various masses and moments of inertia,
we model each link as a rigid rod. We additionally model an
actuator at the knee joint [7, 12] as a point mass. Finally, we
constrain the total length of the stretched leg to be equal to
L0 = 56 cm and its total mass to be equal to M0 = 2.37 kg.

We optimized the hind leg of Dog V2 by running L-BFGS,
having concentrated 52% of the leg masses in the actuators.
The optimal femur lengths corresponding to the SMAV and
the PZR objectives are, respectively, 10.08 cm and 35.84 cm.
These results suggest that a short femur and long shank
reduce the torque requirements, whereas a long femur and
short shank lessen the energy requirements. This trend is
in accordance with previous research [5, 7, 9]. However,
as was observed by Chadwick et al. [7], two-link designs
favor a femur and shank of equal dimension for versatility
reasons. Also, most such designs have no motors at the knee
joints and employ, e.g., belt transmissions to impart torque
signals instead. Thus, in the next section we compare various
optimized three-segmented legs to two-link ones with equal
link lengths and “massless” actuators.

B. Three-Segmented Leg

Fig. 4 shows a simplified diagram of Dog V3’s three-
segmented leg. It contains two CKCs and is fully defined by
ten parameters, which we stack in a vector p ∈ Rnp = R10.
Once again, we constrained the total mass of the leg to
be equal to M0, and we enforced the stretched leg length
constraint L0 = a3+b2+f . For simplicity, we did not adjust
the inertial properties of the links as their lengths varied, and
we kept them constant instead.

We ran L-BFGS on diverse initial values for p and using
SMAV, PQ, or PZR as objective functions. We additionally
optimized for three-segmented designs with coaxial hip and
knee actuators; this configuration is found in most existing
robots because it is easy to be manufactured and requires
no special engineering effort to be implemented. The best
outcomes are summarized in Table II, where we included
the performance achieved by Dog V2 with a femur and



TABLE II
RESULTS OF THE OPTIMIZATIONS OF Dog V2 AND Dog V3

In the first column from the left, the name of each optimized design has the form “〈robot model〉-〈optimized measure〉”. We further append the “+” symbol
when the corresponding optimization was performed with the parameters a2 and ξ both fixed to 0 – i.e., the points T and H in Fig. 4 coincided. The
second column contains the total number of iterations until L-BFGS converged. The next eleven columns contain the optimized CKC parameters expressed
in millimeters or in radians. The last three columns display the values taken on by the performance metrics SMAV [N2m2], PQ [W2], and PZR [W] in
the simulator described in Section V, respectively. If present, the initial values are underlined and written with a light gray font.

Name Iterations p1 a1 a2 a3 a4 a5 ξ b1 b2 b3 b4 SMAV PQ PZR
Dog V2 - 280 - - - - - - - - - - 1183 -427 24
V3-SMAV+ 5 - 60 51 - 200 203 60 66 200 197 - 50 42 160 160 50 63 160 160 1287 778 -719 -141 27 21
V3-SMAV 14 - 80 63 40 43 200 195 70 91 200 207 5.9 5.9 60 40 160 162 60 88 160 157 1273 680 -484 -97 24 20
V3-PQ+ 11 - 60 53 - 200 204 60 64 200 198 - 50 34 160 160 50 75 160 163 1287 754 -719 -45 27 21
V3-PQ 10 - 70 53 50 34 200 203 70 85 200 198 3.8 3.8 60 41 160 160 60 91 160 159 1745 750 -1594 -141 35 21
V3-PZR+ 23 - 70 130 - 200 126 70 188 200 183 - 60 118 160 205 60 264 160 205 1259 658 -685 -53 26 19
V3-PZR 11 - 80 124 40 57 200 167 70 116 200 171 5.9 5.9 60 86 160 149 60 159 160 169 1273 758 -484 -52 24 20

a b c d e f

Fig. 5. Initial (left, red) and optimized (right, green) three-segmented leg designs of the robots listed in Table II; namely, V3-SMAV+ (a), V3-SMAV (b),
V3-PQ+ (c), V3-PQ (d), V3-PZR+ (e), and V3-PZR (f).
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Fig. 6. Performance of the robot designs listed in Table II in the ODE-based simulator on the NOMINAL TROT experiment for the SMAV (left), PQ
(center), and PZR (right) metrics. To enhance clarity, the y-axis of the leftmost plot is on a logarithmic scale.

shank of equal length. Almost all the optimizations of Dog
V3 converged after less than 15 iterations, despite the large
parameter space. On average, each iteration took roughly
2min (np = 8) or 3min (np = 10) due to the gradient
calculations by FD. These computation times are competitive
to ES- or GA-based approaches. For instance, the smallest
optimizations in [7] required about 15min to conclude, and
the related rollouts did not include a whole-body controller
in the loop, as in this work.

The three rightmost columns of Table II allow us to
compare the optimized versions of Dog V3 to Dog V2. The
results of the former are consistently superior to the latter’s
by a wide margin. For instance, the performance of Dog V2
on the SMAV measure is 1183N2m2, whereas all the results
for Dog V3 exhibit values smaller than 780N2m2. Identical
observations hold for either PQ or PZR.

Although box constraints2 can be added to steer L-BFGS
towards certain directions or to prevent unfeasible designs,
we did not enforce any to keep the implementation as simple
as possible. Interestingly, the CKCs of Dog V3 proved well-
formed when optimized on either SMAV or PQ, whereas they
were much more bizarre when we adopted the PZR measure

2More complicated requirements on the CKC design parameters can be
enforced through penalty terms in the objective function [7].

(see Fig. 5). We assume this comes from the fact that the
power requirements of a motion task are intimately related
to the motion itself. Thus, it is necessary to resort to exotic
solutions to reduce them.

To validate the optimized designs, we evaluated the perfor-
mance metrics within a different, polished simulator based
on the Open Dynamics Engine (ODE) [31]. In this engine,
the contacts between rigid bodies undergo both static and
dynamic friction, and the system dynamics are integrated
stably through an implicit Euler method. In Fig. 6, we show
the plots of the SMAV, PQ, and PZR metrics over a single
stride for the NOMINAL TROT task. All the optimized three-
segmented designs consistently outperform Dog V2 despite
the greater complexity of the ODE-based simulator.

VII. DISCUSSION

A. Conclusions

In this work, we leveraged gradient methods to overcome
well-known drawbacks of derivative-free design optimiza-
tions, such as long optimization times and weak convergence
guarantees. We evaluated the performance of a quadruped
robot on a set of dynamic motion tasks. We tracked the
kinematic plans using a whole-body controller, thereby in-
creasing the optimized designs’ awareness of the control ob-



jectives. Finally, by parameterizing general planar CKCs, we
could run our method on bio-inspired three-segmented limb
architectures featuring such mechanisms. In all our tests,
this type of leg achieved conspicuous gains in performance
compared to traditional two-link designs. Hopefully, these
findings will foster the conception of new breeds of bio-
inspired quadruped robots.

B. Limitations and Future Directions

In our experiments, we employed FD to compute the re-
quired derivatives for our gradient method. We could signifi-
cantly improve the time efficiency by employing analytic SA,
as it would only cost some extra sparse matrix multiplications
at each time step during the forward simulation.

Although we only optimized for the mechanical design of
a legged robot, the same methodology can equally be used
for any parameter of the controller and the kinematic planner.
For this purpose, we may either perform all the optimizations
jointly or in an alternate fashion.

For the gradient computations, we utilized a simulator
based on a semi-implicit Euler method. Thus, it would
be interesting to see what improvements more polished
differentiable simulators (e.g., [32]) would bring. Also, by
adopting more advanced control algorithms, such as MPC-
based strategies, the optimized systems would exhibit even
better performances.

Finally, the success of our “sim-to-sim” transfer paves
the way for future hardware realizations. We plan to build
and test an actual prototype based on the optimized designs
presented in this work.
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