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Figure 1: We present a method to convert animated digital characters into physically fabricated prototypes. Our physical characters can be
actuated using pins, strings, or posed by hand.

Abstract

We present a method for fabrication-oriented design of actuated de-
formable characters that allows a user to automatically create physi-
cal replicas of digitally designed characters using rapid manufactur-
ing technologies. Given a deformable character and a set of target
poses as input, our method computes a small set of actuators along
with their locations on the surface and optimizes the internal mate-
rial distribution such that the resulting character exhibits the desired
deformation behavior. We approach this problem with a dedicated
algorithm that combines finite-element analysis, sparse regulariza-
tion, and constrained optimization. We validate our pipeline on a
set of two- and three-dimensional example characters and present
results in simulation and physically-fabricated prototypes.
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1 Introduction

Character design is a vital part of animated movie production,
game development and other applications of computer graphics.
Many virtual characters are rigidly articulated, others are very de-
formable, and most of them show properties between these two

extremes ranging from humanoid virtual actors with bulging mus-
cles, to invertebrate figures like jelly monsters and stylized back-
ground characters such as plants, buildings and other man-made
objects. Digital characters are typically created solely for the vir-
tual worlds they live in. However, many other applications such
as theme park attractions, exhibitions, artistic installations or next-
generation games require real, physical embodiments of these fig-
ures. While there is an extensive set of tools for digital character
design and animation, translating animated characters to the real
world is an extremely difficult task. This problem is made even
more evident by the quickly growing availability of rapid manufac-
turing devices and services that might soon lead to a switch from
mass fabrication to personalized design of characters such as action
figures.

Realizing this technological trend, recent work by Bächer et al.
[2012] and Calı̀ et al. [2012] proposed solutions for transform-
ing articulated digital characters into 3D-printed figures that can be
posed in various ways. While this is a significant advancement in
fabrication-oriented character design, these methods are restricted
to rigidly articulated characters and, more importantly, do not ad-
dress the problem of how to animate the resulting figures.

Motivated by these observations, we propose a method for
fabrication-oriented design of actuated deformable characters.
Given a digital representation of an animated (or animatable) char-
acter as input, we seek to find a system of external actuators as
well as an internal material distribution that allow us to fabricate
a physical prototype whose range of deformation and movements
closely approximate the input. Our solution to this problem is a
dedicated algorithm that combines finite-element analysis, sparse
regularization, and constrained optimization. We demonstrate our
method on a set of two- and three-dimensional example characters.
We present results in simulation as well as physically-fabricated
prototypes with different types of actuators and materials.

2 Related Work

Designing and animating digitial characters is a central research
area in computer graphics. We refer the interested reader to the
survey by McLaughlin et al. [2011] for an overview of the many
challenges related to this task. Here, we focus on three fields that
are most closely related to our research.
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Computational Materials are used in animated movies and live-
action films to simulate the motion of, e.g., hair, cloth, and mus-
cles. For an overview of existing techniques, we refer to Nealen
et al. [2006]. A common challenge with such simulations is the
selection of material parameters that yield a desired deformation
behavior. Since hand-selecting the right parameters of a nonlinear
material model and the right spatial distribution of multiple mate-
rials is a virtually impossible task, Bickel et al. [2009] presented a
method to measure the parameters from a set of samples. However,
such a data-driven approach is an option only if the material, the
character in our case, is already physically available. Recent work
by Martin and colleagues [2011] offers an elegant way to sidestep
the tedious taks of parameter selection by describing material be-
havior through a set of example deformations. However, it is un-
clear how to translate example-based materials to physical materi-
als since a real-world counterpart might not even exist. We follow
the example-based modeling paradigm but solve a very different
problem—the deformation space of our characters is described by
a set of example poses, but we ask that the character be composed
of a set of given base materials and that example poses should be
reachable using only a limited number of external actuators.

Structural Design Optimization is used in engineering to design,
e.g., elastic structures [Bendsoe and Sigmund 2004]. Sizing opti-
mization adapts the thickness of components of a model to meet,
e.g., structural stability thresholds while keeping the topology of
the model fixed. Stava et al. [2012] improve the structural strength
of 3D printable objects based on a stress analysis by hollowing and
thickening parts or inserting supporting struts. In a shape optimiza-
tion problem [Haslinger and Mäkinen 2003], the goal is to find an
optimal shape defined by a prescribed domain. In graphics, realistic
structural models that can be interacted with are of importance in
physical simulations. Smith et al. [2002] optimize the geometry and
the mass of truss structures for designing, e.g., bridges, towers, or
roof supports. Procedural modeling in combination with structural
optimization is also used for the design of buildings [Whiting et al.
2012] and plant modeling [Hart et al. 2003], where static analysis
has been used to balance the weight of branches for creating realis-
tic tree structures.

Topology optimization can be seen as a generalization of this ap-
proach, involving additional features such as the number and loca-
tion of holes as well as the connectivity of the domain [Rozvany
2009]. We draw inspiration from topology optimization by formu-
lating the discrete material distribution problem as a continuous op-
timization task. While material optimization is only one part of our
pipeline, it is to our knowledge the first scheme to allow for multi-
ple target poses, nonlinear elastic models, unknown external forces,
and extreme deformations.

Fabrication-Oriented Design of physically reproducible objects
recently gained increased attention in the computer graphics com-
munity. Several approaches were presented for reproducing prop-
erties such as reflectance [Weyrich et al. 2009; Malzbender et al.
2012], subsurface scattering [Hasan et al. 2010; Dong et al. 2010],
and shape in the context of computing burr puzzles from 3D mod-
els [Xin et al. 2011], designing plush toys [Mori and Igarashi
2007], or designing furniture [Lau et al. 2011; Umetani et al. 2012].
Bächer et al. [2012] and Cali et al. [2012] presented systems for
creating 3D-printable posable characters, whereas Zhu et al. [2012]
proposed a method to synthesize mechanical toys given the motion
of their features as input. Common to these approaches is that they
generate models consisting of static geometry or piecewise rigid
parts. In contrast, our work addresses the problem of computing
a deformable character. The fabrication of deformable models has
been investigated in a number of recent works, including materi-
als with desired deformation behavior [Bickel et al. 2010], custom-
shaped rubber balloons [Skouras et al. 2012], and synthetic skin for

animatronic figures [Bickel et al. 2012]. Our work shares some of
these goals but takes a significantly different approach. Instead of
designing the rest shape of an object made of a single material, we
optimize for the spatial distribution of multiple materials, providing
a much larger and more expressive design space. Furthermore, we
automatically compute the number of actuators and their respective
locations and applied forces that allow us to accurately capture the
deformation space of the input model.

3 Overview

Our method accepts as input a mesh describing a deformable char-
acter in its neutral state as well as a set of target shapes that rep-
resent desired deformations. We then optimize for the actuation
parameters (number, placement, and forces) and an internal mate-
rial distribution that allow us to fabricate a physical character whose
range of deformation closely approximates the target shapes. Our
formulation admits arbitrary types of actuators, but we focus on
three variants in this work: pin-type actuators that can apply arbi-
trary forces at a given location, string-type actuators that can apply
forces only in certain directions, and clamp-type actuators that pre-
scribe the positions for sets of vertices, thus emulating the process
of posing characters by hand. As summarized in Fig. 2, our pipeline
for deformable character design consists of three main stages.

Initial Actuation The first stage determines an estimate of how
many actuators should be used and in which regions they should
be placed. We consider two variants: by default, we let the user
select actuation points on the model. This is convenient when the
user wants to have a particular number of actuators and/or knows
roughly where they should be placed. In other cases, in particu-
lar for characters without apparent articulation structure, it can be
difficult for the user to make a suggestion. In this case, we auto-
matically suggest a number of actuators and their locations using
sparse regularization.

Actuator Locations Given the number of actuators and an ini-
tial estimate for their locations, we next adjust their placement such
as to minimize the overall distance of the model to the individual
target poses. At this point, we take into account the type of actua-
tion, i.e., strings or pins, and solve the problem using constrained
optimization.

Material Optimization With the actuator positions fixed on the
model, the third stage computes an internal material distribution
that further optimizes the matching for the individual target poses.
We assume that there are two materials available and initially allow
each element of the model to assume an arbitrary convex combina-
tion of the base materials. As the optimization progresses, we drive
the elements’ materials toward one of the base materials, which
eventually results in a discrete material layout that is ready for fab-
rication.

Finally, we use the optimized actuator locations and material distri-
bution to fabricate a physical prototype of the deformable character
using rapid prototyping technology.

4 Theory

The input to our model consists of a deformable character in its
neutral pose as well as a set of target deformed poses. We represent
the models using triangle meshes for 2D characters and tetrahedron
meshes in the 3D case. We let nv denote the number of vertices in
the mesh and use X ∈ Rdim·nv to refer to the vector of undeformed
positions, where dim denotes the number of dimensions. Likewise,
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Figure 2: An overview of our optimization scheme: an input character and target shapes are provided by the user, the number of actuators
and their initial locations are determined, the positions of the actuators are optimized, and an internal material distribution is computed.
Finally, the physical prototype is fabricated.

we let ti ∈ Rdim·nv for i ∈ {1, . . . , np} denote the position vec-
tors of the np target poses.

4.1 Elastic Model

We start by constructing an elastic model of the input shape using
finite elements. Since the characters that we consider exhibit large
deformations, we use a nonlinear deformation measure but retain
linear elements for the sake of efficiency. For simplicity, we first fo-
cus on the three-dimensional case. Let Xe ∈ R12, resp. xe ∈ R12,
denote the vectors of concatenated undeformed, resp. deformed,
nodal positions Xe

i , 0 ≤ i ≤ 3, resp. xei , 0 ≤ i ≤ 3 of a single
tetrahedral element e. We first compute the deformation gradient
Fe(Xe,xe) = dD−1 where d is the (3×3) matrix whose columns
hold the edge vectors di = xei − xe0. Analogously, the edge vector
matrix D is defined through Di = Xe

i −Xe
0. We define the elastic

energy density of the element using a Neo Hookean material model,

Ψe(Fe) = µ(tr(Ce)− 3) +
κ

2
(det(Fe)− 1)2 , (1)

where µ and κ are material parameters and C = (Fe)TFe is the
right Cauchy-Green tensor. The elastic energy of the deformed el-
ement is then obtained by integrating (1) over its domain. Since
we use linear finite elements, the deformation gradient is constant
across the element such that we have W e = ΨeV e, where V e

denotes the volume of the tetrahedron. The global deformation
energy W (X,x) between the rest state X and an arbitrary de-
formed state x is obtained by summing up elemental contributions
as W (X,x) =

∑
eWe(Xe,xe). Finally, the elastic energy gives

rise to internal forces f iint ∈ Rdim·nv as

fint = −∂W (X,x)

∂x
. (2)

For the two-dimensional case, we use linear triangle elements, and
the derivation of the elastic energy is largely similar. As an im-
portant difference, however, we follow Skouras et al. [2012] and
expand the two-dimensional Cauchy-Green tensor to three dimen-
sions by inferring the thickness stretch from the assumption of
volume-preserving deformations. This allows us to also use (1) for
the two-dimensional case.

4.2 Optimization Scheme

Basic Formulation Our goal is to compute the internal material
structure of the deformable model and the sets of actuation forces
that, when applied to the model, lead to deformed states that are

as close as possible to their corresponding target shapes. As it is
generally not possible to exactly match the target poses, we ask that
the distance of each deformed pose xi to its corresponding target
pose ti be minimized. We quantify closeness using a distance en-
ergy function that measures differences in positions on the model’s
boundary between deformed xi and target poses ti as

Ed =
∑
i

Eid(t
i,xi) = 1

2

∑
i

∑
j∈B

||xij − tij ||2 , (3)

where B denotes the set of boundary vertices. Letting p denote the
vector of generic parameters that we want to optimize for, we seek
to find optimal values for p that minimize the distance energy Ed
when the physical system is at equilibrium. This can be formulated
as a constrained optimization problem:

min
xi,p

np∑
i

Eid(t
i,xi) (4)

s.t f iint(x
i,p) = −f iext(xi,p) ∀i ∈ 1 . . . np ,

where f iext are external forces including actuation. Note that the
objective function prefers deformed poses xi that are close to their
target counterparts, whereas the constraints require that each of the
xi is a physically-feasible solution, i.e., represents an equilibrium
state in which the internal forces f iint are in balance with the exter-
nally applied forces f iext.

Numerical Optimization The minimization problem (4) has a
large number of degrees of freedom as well as numerous nonlin-
ear constraints which have to be satisfied exactly. Following re-
cent work in graphics [Skouras et al. 2012; Narain et al. 2012], we
use an augmented Lagrangian method (ALM) to optimize for the
system’s variables. In ALM, the usual Lagrangian function is aug-
mented by an additional term penalizing constraint violations. The
resulting function is minimized iteratively by alternating between
unconstrained minimization of the modified objective and Lagrange
multiplier updates. For our specific optimization problem, the aug-
mented objective function has the following form,

Λ(x,p) = Ed(x)− λtf(x,p) +
µ

2
||f(x,p)||2 , (5)

where x ∈ Rdim·nv·np is the concatenation of the np deformed
position vectors xi and f(x,p) = fint(x,p) + fext(x,p).

In every step of the optimization, the multipliers λ are fixed, and
the minimization of Λ is performed using a Newton-Raphson pro-
cedure including line search. Bound constraints on the variables are



handled using a gradient projection approach as described in No-
cedal and Wright [2000]. After each minimization step, we update
the Lagrange multipliers using the scheme λi = λi − µfi, pro-
vided that the decrease in the constraints is sufficient. Otherwise,
the weight of the penalty term µ is increased while keeping the mul-
tipliers unchanged. The procedure stops when both the gradients of
Λ and of the constraints f are smaller than given thresholds.

4.3 Initial Actuation

Given a deformable character and its desired range of deforma-
tion, we first have to determine a number of actuators and an ini-
tial estimate for their locations. We will require that the actua-
tors be placed on the boundary of the characters and denote by
Q = (l,q1, . . . ,qnp) the actuation system where l ∈ Rdim·na

holds the locations of the na actuators in the rest state and each
vector qi ∈ Rdim·na holds the actuation forces for a target pose
ti. In some cases, the structure of a character will largely imply
the number of actuators. In other cases, the user can have a specific
idea of how many actuators should be used and where they should
be placed. Yet, for many characters, in particular those without
apparent skeletal structure, the answer to this question is far from
obvious.

In order to treat both of these cases, we support two variants of actu-
ator layout in our system: the user can hand-select a desired number
of points on the undeformed model, in which case we directly pro-
ceed to the next stage of our pipeline. Otherwise, we ask the user to
specify an admissible range for the number of actuators (e.g. 5-10)
and automatically compute a suggestion as described subsequently.

The underlying reasoning of our approach is that it is generally de-
sirable to have the smallest number of actuators that yield a suf-
ficiently good approximation of the target poses. Indeed, the me-
chanical complexity of real-world actuation systems typically im-
poses strict bounds on the number of actuators, as is the case for our
string-based setup (see Fig. 5) and animatronic figures in general
(see, e.g., [Bickel et al. 2012]). Finding the optimal number of ac-
tuators is an inherently discrete problem that does not directly lend
itself to continuous optimization. Instead of turning toward special-
ized optimization methods such as mixed-integer programming, we
draw inspiration from sparse regularization techniques used in, e.g.,
machine learning and image processing. Starting with a dense set of
actuators on the boundary of the model, we introduce a regularizer
that prefers sparse solutions, i.e., a small number of actuators.

A widely used approach for sparse regularization is to penalize the
L1-norm of the design variables, i.e., the sum of absolute values.

0.001 0.01 0.03 1.0

Figure 3: Sparse regularization demonstrated on the TourEiffel ex-
ample. The number of actuators (black arrows) is effectively con-
trolled by the coefficient ksparse (indicated below the figures).

In our case, the design variables are force vectors comprising two
or three components. Since all of these components have to be zero
simultaneously in order to obtain a zero net force, we introduce a
regularizer that penalizes the sum of force magnitudes. Consider-
ing only a single target pose i for the moment, we define a sparse
regularizer as

Rsparse(q
i) = ksparse

nv∑
j

(
dim∑
k

(qij)
2
k

)1/α

, (6)

where ksparse is a scaling parameter and α > 2 generalizes the
L1-norm to more strongly penalize small values. In order to in-
corporate multiple target poses, we ask that a given actuator should
have a zero value only if its force vectors vanish for all target poses.
This requirement can be modeled as

Rsparse(q
1, . . . ,qnp) = ksparse

nv∑
j

( np∑
i

dim∑
k

(qij)
2
k

)1/α

. (7)

We add this reqularizer to the basic optimization problem (4) with
p = (q1, . . . ,qnp) and, depending on the value of ksparse, obtain
solutions with different numbers of actuators (see Fig. 3). Since
it is not possible to choose ksparse a priori in order to obtain a de-
sired number of actuators na, we solve a sequence of problems with
different values of ksparse until we find a solution within the admis-
sible range specified by the user.

4.4 Actuator Locations

The initial actuation step provides us with a number of actuators and
their initial locations. Next, we improve the matching quality, i.e.,
the correspondence between deformed poses xi and target poses ti,
by allowing the actuators to slide along the boundary of the char-
acter. In order to ensure that actuators can move freely along the
surface but not in their normal directions, we introduce a penalty
term that attracts the actuators to the zero-levelset of a local dis-
tance field Φ around the surface. Using the implicit moving least
squares (IMLS) method of Öztireli et al. [2009], the distance field
is defined as

Φ(x) =

∑
k nk · (x−Xk)φk(x)∑

k φk(x)
, (8)

where φk(x) =
(

1− ||x−Xk||22
h2

)4
are locally-supported kernel

functions that vanish beyond their support radius h. Using this for-
mulation, we define a penalty energy

EIMLS =
∑
i

Φ(li)
2 (9)

that attracts the actuator locations li to the surface. In order to en-
sure that the actuation forces vary smoothly as the actuators move
along the surface, we distribute them to a local neighborhood of
vertices using the IMLS-kernels

f ik =
qijφk(lj)∑
l∈Sj φl(lj)

. (10)

Here, k, l ∈ Sj where Sj denotes the set of vertices whose kernel
functions are nonzero at lj (see also Fig. 4, left). In addition to this
penalty term, we also want to prevent actuators from moving too
close together as coinciding actuators would lead to a null-space
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Figure 4: Illustrations for the IMLS distance field (left) and the
string-based actuator (right).

during optimization. To this end, we define a C2 continuous repul-
sion term

Erep(lj , lk) = krep(εrep − ||lj − lk||)3 , (11)

which is activated whenever the distance between actuators is
smaller than a threshold value εrep.

Adding (9) and (11) to (3), we compute the optimal positions x and
parameters p = (l,q1, . . . ,qnp) which solve the problem (4).

String-Based Actuation The formulation so far assumed that the
actuators can apply forces qi in arbitrary directions. Since this is
not the case for strings, a few adaptations have to be made. A string
actuator is defined through an attachment point aj located on an
external support structure as well as another attachment point on
the surface of the character. The force that can be exerted by such
an actuator depends on the deformed configuration,

qij = kij
(aj − xij)

||aj − xij ||
, (12)

where kij > 0 corresponds to the tension of the string and xij is
the actuator’s location on the deformed surface (see Fig. 4, right).
Note that we require kij > 0 since the string can only pull, not
push. Using the formulation described above, we optimize for the
actuator’s location lj on the rest state but add kij and aj as further
degrees of freedom.

We enforce the condition that aj be on the support structure us-
ing a formulation similar to (9). Assuming a circular support, we
formulate the penalty energy as

Ejstring(aj) = (||aj − c|| − r)2 , (13)

where r is the radius of the support and c denotes its center.

In order to limit the likelihood of strings intersecting with the model
or tangling up during animation, we prefer string directions that are
close to the boundary normals at the attachment point. We express
this preference with a further penalty term

Edir = kdir

np∑
i

na∑
j

(
1−

qij
||qij ||

· ni(lj)
)2

, (14)

where ni(lj) =
∑

k ni
kφk(lj)∑

k φk(lj)
denotes the interpolated normal at the

string location lj in pose i.

4.5 Material Optimization

Even with the location optimization described in the previous sec-
tion, characters can have poses that are difficult to achieve. Such
difficult poses arise, e.g., from conventional articulation such as
the sharp bending of an arm. Approximating such poses with a
homogeneous material would require a large number of actuators.
We address this problem by allowing the material properties to vary
spatially, thus building preferences for deformation directly into the
model.

As a basis for material optimization, we will assume that there is a
library of non-miscible base materials (such as silicone and print-
able plastics) described by energy density functions W i. For sim-
plicity, we restrict considerations to two material types per charac-
ter, typically a soft and a stiff one. We allow the material properties
to vary among the elements but assume that each element consists
of a homogeneous material. If we directly constrain each element
to take on only material properties from the library, we arrive at a
discrete optimization problem and its associated difficulties. In or-
der to avoid the need for more complex optimization methods, we
convert the discrete problem into a continuous one by allowing the
per-element materials to be interpolations of the base materials. We
start the optimization by allowing arbitrary (convex) combinations
of the base materials and then progressively drive the interpolation
weights to the boundary of the intervals, thus enforcing a discrete
material distribution. On a technical level, we do not interpolate
material descriptions but the elastic energies that would result from
the different base materials. The effective deformation energy of a
given element e is defined as

W (Fe, ρe) = ρe W 1(Fe) + (1− ρe) W 2(Fe) , (15)

where ρe are interpolation weights. Adopting this interpolated
material model and adding the interpolation weights per ele-
ment as free variables to the optimization problem, we can solve
for a material distribution that leads to an optimal approxima-
tion of the target poses by optimizing for the parameters p =
(q1, . . . ,qnp , ρe1 , . . . , ρen). However, in order to obtain a phys-
ically meaningful solution, we have to drive the interpolation
weights to 0 or 1. We achieve this with a penalty energy of the
form

Rmat = kmat

∑
e

ρe(1− ρe) , (16)

where kmat is a scaling parameter that is progressively increased
until a solution is found that satisfies ρe(1 − ρe) < ε, where ε de-
notes a small threshold value. While the penalty term Rmat will
eventually ensure that all interpolation weights are either 0 or 1,
they can potentially assume values out of this range in earlier it-
erations. We therefore have to explicitly enforce the bounds on
the interpolation variables since we could otherwise encounter non-
physical material combinations that would hinder convergence.

The material optimization scheme computes material distributions
that are optimal in the sense of approximating the target poses.
However, multiple solutions can lead to equivalent approximations
of the target poses. In our approach, we aim to find macroscopic
material distributions rather than micro-level structures. We there-
fore favor larger material clusters rather than small, isolated islands
by adding the regularizer,

Rsmooth = ksmooth

∑
j

(ρj − 1

nj

∑
k∈Tj

ρk)2 , (17)

where Tj denotes the set of nj elements adjacent to element j. Fi-
nally, since our focus is on deformable characters, we also prefer



Figure 6: 3D printed example of a straight bar with uniform (left)
and optimized (right) material distribution that is bent into a ques-
tion mark shape by applying force only on its end caps. The small
orange icon shows the target shape.

soft materials over stiff ones in regions where the difference in ap-
proximation quality is small. We model this preference with a sec-
ond regularization term,

Rsoft = ksoft

ne∑
i

(ρe)2 , (18)

assuming that the soft material corresponds to ρ = 0.

5 Results

We evaluated our method by designing and fabricating six charac-
ters with different types of actuators and materials. For fabrication,
we used an Objet Connex350 multi-material printer with two base
materials of significantly different stiffnesses. We chose VeroClear,
a rigid and transparent material, and TangoBlack+, a black mate-
rial with properties similar to soft rubber. Three of the characters
were printed directly (“Palmy3D”, “Questionmark”, “Grampolo”),
whereas the remaining three were fabricated using silicone injec-
tion molding with 3D-printed rigid parts (“TourEiffel”, “Palmy2D”,
“WormEye”). We simulated the material behavior during the de-
sign process using measured data for silicone [Bickel et al. 2012]
and data provided by Objet for the 3D-printed materials. In the fol-
lowing paragraphs, we discuss our results and highlight the roles
played by the individual stages of our design pipeline.

Actuator Optimization For all examples shown in this paper, we
employed the sparse regularization approach for computing an ap-
propriate number of actuators. We observed that, especially for
characters that do not have an obvious internal structure, manually
selecting the number of actuators and their placement proved to be
difficult. Our automatic approach significantly simplified this de-
sign task.

Fig. 5 shows an example of string-based actuation. We extracted
five key frames from an artist-generated input animation and used
the sparse regularization method to automatically determine the
number of actuators as well as their initial locations. We fabricated
the model with silicone and attached strings driven by servo motors
to playback the animation. The strings are routed through pulleys
at a ring around the model, whose locations are optimized as well.
We refer to the accompanying video for the full animation.

The “QuestionMark” example (Fig. 6) is posed using clamp-type
actuators that fix both the position and orientation of the end caps of
the model. The remaining examples were designed using pin-type
actuators. We pose the planar characters by attaching small pins at

the actuators locations. These pins are then plugged into precision-
drilled holes in an acrylic plate to reproduce the target poses. The
3D characters, “Palmy3D” and “Grampolo”, were designed using
the same framework as for the 2D examples, but for simplicity, we
pose and animate these models by hand.

The first stage of our pipeline provides an initial guess for the ac-
tuator locations and already leads to fair approximation quality in
some cases. As can be seen from Table 1, however, the subsequent
actuator location optimization is able to significantly reduce the er-
ror for all examples.

Material Optimization Allowing material properties to vary spa-
tially further improves the visual and quantitative error of all char-
acters. A particularly striking example can be seen in Fig. 9, where
material optimization allowed us to create very different deforma-
tion styles with only two actuators. Note that our scheme leads to
intuitive solutions if the character exhibits mostly rigid articulation,
as is the case, e.g., for “Palmy2D” (Fig. 7) and “Grampolo” (Fig.
1, right). Although we used only one example pose for the “Gram-
polo” character, the optimization scheme was able to infer a mean-
ingful material distribution, putting soft material at joint locations
and rigid material at limbs. For characters with more complex de-
formations, however, the material distribution can be significantly
more complex as shown in Fig. 8 and Fig. 9.

Weight Selection Our method uses a number of different penalty
terms to enforce soft constraints or drive the solution toward a pre-
ferred subspace. The weights that we used for the different exam-
ples are listed in Table 2. For most of the weights, determining
an appropriate value posed no difficulty, since the corresponding
penalty terms were not directly competing with other objectives.
However, the weights of the regularization terms (17) and (18) have
a significant impact on the final material distribution. We set these
weights by first selecting a value for (18) which, together with the
target poses, determines the overall material structure. We use a
default value for (17) and, if necessary, adjust it with 1-2 iterations
to suppress small material islands without changing the boundary
of larger structures too much.

Accuracy, Robustness and Performance Our fabricated pro-
totypes show good agreement with the simulation. Fig. 7 illustrates
the progressive improvement during each step of our pipeline in-
cluding the final fabricated character.

A variation in the position of the actuators affects the resulting ma-
terial distributions. However, in practice we observed that a small
variation leads to a solution with similar quality. We also inves-
tigated whether multiple iterations of our pipeline would lead to
improved results but did not observe any significant improvement
after the first cycle in our experiments.

Statistics for each example including the number of elements, num-
ber of actuation points and computation times can be found in Ta-
ble 2. The largest fraction of the computation time is spent on mate-
rial optimization. This is mostly due to the fact that the optimization
scheme uses several outer iterations to increase the parameter kmat

that eventually enforces each element to assume one of the base
materials.

6 Conclusion

We presented a method for creating physically fabricated proto-
types of animated digital characters. Our approach automatically
finds a sparse set of actuation locations on the surface and optimizes
the internal material distribution such that the resulting character



Figure 5: “TourEiffel” model actuated with 5 strings. From a given animation, we extracted several key frames and automatically optimized
the actuator locations. The top row shows the resulting deformations in simulation. We also fabricated the model with silicone and attached
strings driven by servo motors to replay the animation (bottom row).

(a) (b) (c) (d) (e)

Figure 7: “Palmy2D.” Given 3 target poses (a), we use sparse regularization to find an initial location of 4 actuation points (b). We then
refine the location of the actuation points by allowing them to slide on the surface (c) and optimize for an internal material distribution that
allows us to better approximate the target poses (d). Columns (b-d) show the resulting simulated deformations of each optimization stage.
We validated the results by fabricating the character with silicone and rigid insets. The fabricated character is then posed using pins (e).



Figure 8: “WormEye.” Top row: Frames from an animation of two WormEye characters. Bottom row: Optimized material distribution and
actuator locations for reproducing poses present in the animation (left) and real fabricated deformed character (right).

Figure 10: “Palmy3D.” From left to right: Rest pose with optimized material distribution (black/stiff, blue/soft), simulated poses (blue)
overlaid with input target poses (red), 3D printed character.

Model Pose1 Pose2 Pose3 Pose4 Pose 5 Size
TourEiffel (1) 4.8/0.5 3.0/0.4 2.8/0.5 6.4/0.8 4.4/0.6 202
TourEiffel (2) 3.6/0.5 2.0/0.4 3.6/0.5 5.2/0.6 3.8/0.6 202
Palmy2D (1) 7.1/0.7 11.0/0.9 5.7/0.4 - - 100
Palmy2D (2) 7.6/0.4 7.4/0.5 4.8/0.2 - - 100
Palmy2D (3) 5.1/0.5 5.1/0.3 2.6/0.1 - - 100
Questionmark (2) 8.3/0.4 - - - - 80
Questionmark (3) 3.1/0.2 - - - - 80
Grampolo (1) 17.1/3.7 - - - - 102
Grampolo (2) 13.6/2.6 - - - - 102
Grampolo (3) 2.7/0.4 - - - - 102

Table 1: Error statistics. Max/mean Euclidean distance (in mm)
between vertices of the simulated poses and vertices of the input
poses after initial actuation (1), optimization of actuation locations
(2), and optimization of material distribution (3). The size corre-
sponds to the maximum length of the character’s bounding box.

Model #Elem. #Actuation Computation Weights
Points Time

TourEiffel 525 5 20min02s 1/-/-
Palmy2D 2745 4 5h26min 0.01/10−5/0.01
Palmy3D 8362 4 7h17min 0.1/10−7/0.01
WormEye 808 8 3h10min 1.5 10−4/10−6/0.1
Questionmark 4536 caps fixed 1h09min -/10−7/1
Grampolo 17709 7 4h44min 500/10−3/1

Table 2: Example statistics. From left to right: Number of ele-
ments, number of actuation points, total computation time, weights
used for the regularization terms Rsparse, Rsoft and Rsmooth.

exhibits the desired deformation behavior. We demonstrated our
method on a set of simulated as well as physically-fabricated char-
acters with different types of actuators and materials. We believe
that our method is an important step toward physics-based design
of real-world characters.

Limitations and Future Work We optimize for sets of actuation
forces corresponding to equilibrium states that are as close as pos-
sible to the target poses. However, knowing the forces at the de-
formed state does not imply that there is a unique way of getting to
that state from the undeformed configuration as there can be bifur-
cation points (buckling) along the way. While we did not encounter
this sort of problems in our examples, further treatment might be
necessary in order to ensure robust tracking of the input animation
in between target poses.

As one possible direction for future work, we would like to explore
the possibility of using a larger number or range of materials, e.g.,
by printing micro-level structures. An interesting related problem
is also the design of more elaborate actuation systems that would
enable us to animate more complex characters in an automated way.
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Figure 9: A straight bar is deformed into four different question
mark shapes by imposing position constraints on its end caps. The
first row shows the target shapes, the second row the result with-
out material optimization and the third our results after material
optimization (stiff/soft material shown in grey/blue color).
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