
Ungar – A C++ Framework for Real-Time Optimal
Control Using Template Metaprogramming

Flavio De Vincenti and Stelian Coros

Abstract—We present Ungar, an open-source library to aid the
implementation of high-dimensional optimal control problems
(OCPs). We adopt modern template metaprogramming tech-
niques to enable the compile-time modeling of complex systems
while retaining maximum runtime efficiency. Our framework
provides syntactic sugar to allow for expressive formulations of a
rich set of structured dynamical systems. While the core modules
depend only on the header-only Eigen and Boost.Hana libraries,
we bundle our codebase with optional packages and custom
wrappers for automatic differentiation, code generation, and
nonlinear programming. Finally, we demonstrate the versatility
of Ungar in various model predictive control applications, namely,
four-legged locomotion and collaborative loco-manipulation with
multiple one-armed quadruped robots. Ungar is available under
the Apache License 2.0 at https://github.com/fdevinc/ungar.

I. INTRODUCTION

The advancements in model predictive control (MPC) meth-
ods have endowed robots with exceptional athletic skills.
Recent displays of humanoid [8] and quadruped robots [4, 11]
have shown feats that were once prerogative to science fiction.
However, significant engineering efforts are still necessary
to make such practical MPC implementations possible. The
solution of big nonlinear programming (NLP) problems at
real-time rates clashes with the inherent high dimensionality
and fast dynamics of mechanical systems. These conflicting
aspects translate to onerous computational costs to be met in
fractions of seconds, thus calling for complex data structures
and ingenious software designs.

We seek to facilitate the manual endeavors flowing into
the development of MPC controllers. In our vision, ease of
use and relevance to a broad range of applications are of
paramount importance. These objectives are only achievable
by carefully averting any runtime computational overheads.
At the same time, user interfaces must provide an intuitive
syntax that mirrors standardized, mathematical formulations
of optimal control problems (OCPs).

Achieving robust MPC performance is challenging in many
ways. Efficient NLP solvers must be coupled with fast deriva-
tive computations. Given the large numbers and interrelation-

This research was supported by the Swiss National Science Foundation
through the National Centre of Competence in Digital Fabrication (NCCR
DFAB) and through Grant No. 200021 200644, and by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (Grant No. 866480).

We express our gratitude to Miguel Angel Zamora Mora and Zijun Hui for
their precious contributions to the development of Ungar.

The authors are with the Computational Robotics Lab, ETH Zurich,
Switzerland. flavio.devincenti@inf.ethz.ch

ships of the state and control variables, manual implemen-
tation of first and second-order derivatives would result in a
tedious, error-prone process. Also, although mature automatic
differentiation (AD) and NLP libraries exist, most implemen-
tations require all the variables stacked in a single vector,
which necessitates some index-keeping logic. This fact begs
the question of what data structures could store them while
guaranteeing zero-cost access operations and adaptability to
different system designs.

With Ungar, we provide a metalanguage that addresses
these modeling challenges. Our solution introduces constructs
that significantly simplify the definition of the NLP prob-
lems typically arising in optimal control. We use template
metaprogramming (TMP) to delegate the generation of the
necessary implementations to the compiler, while users can
focus exclusively on the architectural details of a desired
MPC application. Our approach makes the transcription into
code of structured variable sets seamless while encoding all
hierarchical and indexing information at compile time. Con-
sequently, all read/write operations acting on correspondingly
created objects incur no additional costs, just like ad hoc
programming solutions. Since the core of Ungar is header-
only, its integration in C++ projects is effortless. However,
we also include an optional interface to CppADCodeGen
[3, 15] for automatically generating derivatives and an optional
sequential quadratic programming (SQP) solver using OSQP
[20] as a backend; if enabled, all external dependencies are au-
tomatically downloaded through CMake. Finally, we illustrate
the capabilities of Ungar by implementing MPC controllers
for increasingly complex systems, including quadruped robots
and teams of four-legged manipulators cooperatively carrying
an object.

Related Work

There exist many open-source packages to assist in the
creation of MPC controllers. A noncomprehensive list includes
frameworks for modeling, simulation, and optimization-based
control of mechanical systems, such as the Control Toolbox
[10] and its successor OCS2 [9], Drake [21], Crocoddyl [18],
TOWR [25], FROST [13], Quad-SDK [19], SymForce [17],
etc. These libraries are geared toward robotic applications and
the OCPs they solve require specific structures. In contrast,
NLP-oriented frameworks address more general classes of
nonlinear optimization problems; notable examples are IPOPT
[24], ACADOS [14, 22], PSOPT [2], CasADi [1], etc. Ungar

https://github.com/fdevinc/ungar

1 // Define integral constants.
2 constexpr auto N = 30_c;
3 constexpr auto NUM_ROTORS = 4_c;
4

5 // Define "leaf" variables.
6 constexpr auto position = var_c<"position", 3>;
7 constexpr auto orientation = var_c<"orientation", Q>;
8 constexpr auto linear_velocity = var_c<"linear_velocity", 3>;
9 constexpr auto angular_velocity = var_c<"angular_velocity", 3>;

10 constexpr auto rotor_speed = var_c<"rotor_speed", 1>;
11

12 // Define "branch" variables.
13 constexpr auto x = var_c<"x"> <<= (position, orientation, linear_velocity, angular_velocity);
14 constexpr auto X = var_c<"X"> <<= (N + 1_c) * x;
15 constexpr auto u = var_c<"u"> <<= NUM_ROTORS * rotor_speed;
16 constexpr auto U = var_c<"U"> <<= N * u;
17 constexpr auto decision_variables = var_c<"decision_variables"> <<= (X, U);

Listing 1. Decision variables of an OCP for controlling a quadrotor with Ungar.

Fig. 1. Hierarchical relationships among state and input variables of an OCP
for controlling a quadrotor and underlying memory representation. At every
time step k, we define the robot’s state xk as a stacked vector containing its
position pk ∈ R3, orientation qk ∈ S3 ⊆ R4, linear velocity ṗk ∈ R3, and
angular velocity ωk ∈ R3. The inputs uk consist of the four rotor speeds
ωi
k ∈ R, ∀i ∈ {1, 2, 3, 4}. Finally, X ∈ R13(N+1) and U4N denote the

stacked state and input vectors, where N ∈ N is the discrete time horizon—
in the diagram, N = 2. Using TMP techniques, Ungar supports the generation
of data structures for efficiently manipulating raw data arrays.

complements the above libraries by providing novel system
modeling features. In particular, it allows for quickly setting
up the data structures required by widely adopted AD im-
plementations and OCP solvers. Eventually, while MPC is its
primary focus, the design of Ungar makes it suitable for any
application requiring the solution of finite dimensional NLP
problems.

II. DATA STRUCTURES

In this section, we introduce the two main data structures at
the heart of Ungar: variables and maps. We accompany their
descriptions with motivating examples in the robotics domain.
We remark that the classes we discuss build on only two
external dependencies, namely, Eigen [12] and Boost.Hana [7].
The former is a linear algebra template library ubiquitous in
robotics codebases due to its fast performance and versatility;
the latter is a collection of utilities and containers that greatly
simplify the implementation of TMP algorithms. Since both

are header-only, we wrap them within Ungar to make its
integration in C++ projects as straightforward as possible.

A. Variables

At the core of Ungar lies the Variable template class.
Variables describe the structure of quantities of interest
such as states, inputs, or parameters. Each variable has a
name and a kind1, and it is related to all other variables
through hierarchical relationships. When a Variable object
is instantiated, all this information is encoded in its type
using three template parameters: a compile-time string for
the name, an integer number identifying its kind, and a
compile-time map representing the variable hierarchy. We em-
ploy boost::hana::string and boost::hana::map
types to designate the name and the variable hierarchy, re-
spectively. In particular, the latter maps variable names to sub-
Variable objects or arrays thereof.

To clarify and explain the above design choices, let us
consider the decision variables of a finite horizon MPC for
controlling a quadrotor. The state xk of the system at time
step k consists of the robot’s pose and velocity; the control
inputs uk comprise four rotor speeds. Given a discrete time
horizon N ∈ N and assuming a direct multiple shooting
formulation [6], the optimization variables amount to the
stacked state and input vectors X = [x⊤

0 x⊤
1 . . .x⊤

N]⊤ and
U = [u⊤

0 u⊤
1 . . .u⊤

N−1]
⊤, respectively. Then, we can use

the Ungar template object var_c to instantiate the relevant
variables as shown in Listing 1.

The var_c construct takes a fixed string denoting the name
of the variable and an optional integer parameter representing
its kind: if present, it instantiates a “leaf” variable, i.e., a
variable that has no additional substructures; otherwise, it
creates a “branch” variable, which is only defined in relation
to its subvariables. We identify the kind of a leaf variable with
1 for scalars, an implementation-defined constant Q for unit
quaternions, and any positive integer for a correspondingly

1In this paper, we assign distinct meanings to the terms kind and type.
To clarify, kind denotes the mathematical group to which a variable belongs,
while type exclusively refers to C++ data types.

sized vector. As schematically represented in Fig. 1, Ungar
allows mapping the structures encoded by variables to con-
tiguous memory buffers (see Section II-B).

In our example, the lines 1-3 define a discrete time horizon
N of 30 time steps and the number of rotors as integral
constants [7] through the user-defined literal _c. The lines
5-10 define the leaf variables for the pose and velocity of
a quadrotor, as well as its rotor speeds. Instead, the lines
12-17 introduce the branch variables for xk, X, uk, and
U, respectively. We observe that xk consists of the stacked
position, orientation, linear velocity, and angular velocity of
the robot, while X contains N+1 stacked states. Then, we can
immediately express the above structural information using
the overloaded functions operator<<=, operator,, and
operator* as shown at lines 13-14. Similarly, we define the
branch variables for uk and U, and finally we stack X and
U inside the object decision_variables at line 17.

All the variables defined in Listing 1 are constexpr
and can be queried at compile-time for two main pieces of
information: their sizes and their indices within the hierarchy.
For instance, with reference to the diagram in Fig. 1 and for
N = 30, we can write

1 static_assert(
2 x.Size() == 13 &&
3 X.Size() == 403 &&
4 u.Size() == 4 &&
5 U.Size() == 120 &&
6 decision_variables.Size() == 523
7);

and

1 static_assert(
2 X(x, 0).Index() == 0 &&
3 X(x, 1).Index() == x.Size() &&
4 X(x, 1, linear_velocity).Index() == 20 &&
5 decision_variables(U).Index() == X.Size() &&
6 U(u, 0).Index() == 0 &&
7 U(u, 1).Index() == 4 &&
8 U(u, 1, rotor_speed, 0).Index() == 4 &&
9 U(u, 1, rotor_speed, 1).Index() == 5

10);

As shown in the above listings, we can access all subvari-
ables of any branch variable using the function call operator
operator(). If multiple copies of a subvariable exist, we
must write the zero-based index of the subvariable we are
interested in. Most importantly, if there is no ambiguity in the
path from a branch variable to any of its subvariables, we can
bypass all intermediate variables as shown in Listing 2: this
feature is very convenient when the variables are organized in
deep hierarchies. Finally, Ungar provides macros for defining
variables according to the convention that their name is
identical to the corresponding object name. Thus, Listing 1
can be rewritten in a more succinct way as shown in Listing 3.

B. Variable Maps

The Variable framework provides the means to de-
scribe complex systems with a minimal yet expressive syntax
without incurring runtime costs. To turn system descriptions
into useful data structures, Ungar offers the template class

VariableMap. A variable map associates a variable with
an array of scalars and each subvariable with a subarray. To
perform the various mappings, we adopt the Eigen::Map
class [12], which allows interfacing raw buffers with dense
matrix expressions seamlessly. All necessary Eigen maps are
created during the execution of the VariableMap construc-
tor; therefore, accessing any subvariable data has no runtime
cost. This is only possible due to our adoption of TMP
techniques and makes Ungar akin to a metalanguage.

Given some user-defined scalar type scalar_t, we can
create a variable map for the quadrotor decision variables
introduced in Section II-A as:

1 auto vars = MakeVariableMap<scalar_t>(
decision_variables);

Then, we can access all submaps by passing corresponding
subvariables to the Get method. For example, we can initialize
all unit quaternions to identity rotations and all remaining
decision variables to zero [12] as:

1 vars.Get(X).setZero();
2 for (auto k = 0; k < N + 1; ++k) {
3 vars.Get(orientation, k).setIdentity();
4 }
5 vars.Get(U).setZero();
6 static_assert(
7 std::same_as<
8 decltype(vars.Get(U)),
9 Eigen::Map<Eigen::VectorX<scalar_t>>&

10 >
11);

We remark that all objects returned by the Get method
have reference types, hence they do not perform copies and
directly manipulate the underlying data. Also, the returned
type depends on the kind of the corresponding variable, so
it can be a reference to scalar_t, an Eigen map to a unit
quaternion, or an Eigen map to a vector. Branch variables
are always mapped to vectors spanning all the corresponding
subvariables (line 6).

We enable this flexibility by internally adopting compile-
time maps associating subvariables to corresponding data sub-
arrays. While this solution ensures the best possible runtime
performance, it can be demanding in terms of compile time
and memory consumption. This can be undesirable if, for in-
stance, such variable maps are employed only for intermediate
code generation steps; indeed, most code generators optimize
the input code, thus making any performance optimizations
unnecessary at this stage. We address this need with a lazy ver-
sion of VariableMap named VariableLazyMap. Lazy
maps instantiate Eigen maps on demand, which is a cheap
operation involving the copies of two integer numbers. Their
constructors require a data buffer with the correct size as:

1 VectorXr underlying{decision_variables.Size()};
2 auto lvars = MakeVariableLazyMap(underlying,

decision_variables);

In particular, we can rewrite our initialization example as:

1 lvars.Get(X).setZero();
2 for (auto k = 0; k < N + 1; ++k) {
3 lvars.Get(orientation, k).setIdentity();

1 static_assert(X(x, 1, linear_velocity) == X(linear_velocity, 1));
2 static_assert(U(u, 1, rotor_speed, 0) == U(rotor_speed, 1, 0));
3 static_assert(U(u, 1, rotor_speed, 1) == U(rotor_speed, 1, 1));
4 static_assert(decision_variables(X, x, 1, linear_velocity) == decision_variables(linear_velocity, 1));
5 static_assert(
6 decision_variables(U, u, 2, rotor_speed, 3) == decision_variables(u, 2, rotor_speed, 3) &&
7 decision_variables(U, u, 2, rotor_speed, 3) == decision_variables(rotor_speed, 2, 3)
8);

Listing 2. Equivalent expressions for unambiguous variable hierarchies.

1 // Define integral constants.
2 constexpr auto N = 30_c;
3 constexpr auto NUM_ROTORS = 4_c;
4

5 // Define "leaf" variables.
6 UNGAR_VARIABLE(position, 3);
7 UNGAR_VARIABLE(orientation, Q);
8 UNGAR_VARIABLE(linear_velocity, 3);
9 UNGAR_VARIABLE(b_angular_velocity, 3);

10 UNGAR_VARIABLE(rotor_speed, 1);
11

12 // Define "branch" variables.
13 UNGAR_VARIABLE(x) <<= (position, orientation, linear_velocity, b_angular_velocity);
14 UNGAR_VARIABLE(X) <<= (N + 1_c) * x;
15 UNGAR_VARIABLE(u) <<= NUM_ROTORS * rotor_speed;
16 UNGAR_VARIABLE(U) <<= N * u;
17 UNGAR_VARIABLE(decision_variables) <<= (X, U);

Listing 3. Equivalent transcription of Listing 1 with improved readability using macros.

4 }
5 lvars.Get(U).setZero();
6 static_assert(
7 std::same_as<
8 decltype(lvars.Get(U)),
9 Eigen::Map<Eigen::VectorX<scalar_t>>

10 >
11);

We highlight that the only difference between VariableMap
and VariableLazyMap objects lies in the return types of
Get. As shown in the static assertion of line 6, lazy maps
return Eigen maps by value instead of reference.

III. EXPERIMENTS

We validate Ungar by implementing two MPC schemes for
different but related systems. The former is a quadrupedal
locomotion controller based on the single rigid body dynamics
(SRBD) model [5]; the latter is a centralized MPC controller
for collaborative locomotion and manipulation using one-
armed quadruped robots [23]. In particular, the cooperative
loco-manipulation example extends the simple locomotion
controller to multiple arm-endowed robots carrying a shared
payload. Our accompanying video presents recordings of sim-
ulation experiments using both controllers. These applications
allow us to showcase the versatility of Ungar in defining
completely different variable hierarchies by changing only a
few lines of code. Although we do not provide the source
code for the controllers we discuss, we bundle the library with
multiple examples, including nonlinear MPC implementations
for a quadrotor and a miniature radio-controlled car [16].

A. Implementation Details

We implement our controllers relying exclusively on the
functionalities provided by Ungar. For our tests, we employ the
core data structures alongside the optional CppADCodeGen
wrapper [15] and SQP solver. We base our solver on the recent
work by Grandia et al. [11] and refer the interested reader to
[23] for more details.

To generate the necessary derivatives, CppADCodeGen
requires all functions to depend on a single array of data
including both independent variables and parameters. We
comply with this interface through Ungar maps as described
in Section II-B. For each controller, we define the variable hi-
erarchies decision_variables and parameters. The
decision variables include states and control inputs, while the
parameters contain inertial properties, reference trajectories,
physical constants, etc. In the following sections, we will
show the definitions of only the decision variables of the
various MPC controllers to keep the exposition succinct.
Nevertheless, we consistently adopt this subdivision in all
our implementations, and we invite the reader to explore the
examples in the library for a detailed walk-through.

Ungar requires compilers with C++20 support2. We im-
plemented and thoroughly tested our controllers on Ubuntu
22.04.2 LTS with GCC 11, but Ungar’s core modules do
not depend on any OS-specific instructions. However, we
note that our optional CppADCodeGen wrapper uses runtime

2For convenience, we provide a library version compliant with C++17
on a separate Git branch. Although this adaptation lacks some features, it
implements all the most important functionalities of Ungar. We refer the reader
to the documentation on the GitHub webpage for further information.

compilation and dynamic linking features offered by Linux.
Compile Times: Ungar map objects have no runtime over-

heads by construction. Thus, we only provide a benchmark of
the compile times for systems with different sizes. For this pur-
pose, we measure the time required to build a VariableMap
and a VariableLazyMap object for the decision variables
defined in Listing 3. We take this measurement for different
values of N and NUM_ROTORS on a laptop computer with an
i7-11800H, 2.30GHz, 16-core CPU, and we plot correspond-
ing heatmaps in Fig. 2. We can see that the lazy map has more
favorable compile times, requiring only 14 s to build the data
structures for an octocopter with N = 390. In contrast, for the
same setup, the compile time of VariableMap is 39 s long.
Although VariableMap scales less favorably compared to
VariableLazyMap, we can notice that they have similar
compile time performance for time horizons smaller than 100
time steps. Nevertheless, we recommend using lazy maps for
prototyping and switching to VariableMap for production
code to get the fastest runtime performance.

B. Quadrupedal Locomotion
We base our MPC formulation for quadrupedal locomotion

on the controller of Bledt and Kim [5], but with three notable
differences. Firstly, we use the nonlinear SRBD equations
without linearizations or simplifications. Secondly, we repre-
sent orientations with unit quaternions instead of Euler angles
to prevent singularity issues. Lastly, we employ a Lie group
time-stepping method to integrate the dynamics conserving
quaternion unit-norm constraints [23].

We define our variable hierarchy as shown in Listing 4. In
particular, we can see that less than 19 lines of code suffice
for generating the data structures required to manipulate the
robot’s states and inputs. While an MPC locomotion controller
requires additional components to be of practical use, such
as gait planners, inverse kinematics solvers, and whole-body
controllers, we can already appreciate the potential of Ungar in
simplifying the formulation of NLP problems with elaborate
structures.

C. Collaborative Loco-Manipulation
We use Ungar to implement an MPC controller that si-

multaneously optimizes ground reaction forces, manipulation
wrenches, stepping locations, and body trajectories for a team
of one-armed quadruped robots collectively manipulating an
object. The resulting optimal control problem is very high-
dimensional and presents coupled dynamics and deep hierar-
chies among states and inputs. For instance, each robot has 4
legs, and each leg is associated with a ground reaction force
and a stepping location at every time step; also, each robot
has an arm that, in turn, corresponds to a manipulation force
and torque.

We formulate our MPC for collaborative loco-manipulation
(CLM) as an extension of the SRBD to multi-agent systems
and refer the interested reader to [23] for a detailed description
of our model. As shown in Listing 5, the creation of Ungar
variables for the seemingly involved CLM setting requires only
minor changes to the locomotion control problem of Listing 4.

NUM_ROTORS

30

90

1 5
0

21
0

27
0

33
0

39
0

Variable map

4 6 8 4 6 8
NUM_ROTORS

Variable lazy map

10

20

3O

C
om

pi
le

 ti
m

e
[s

]

Fig. 2. Compile times to generate the implementations of a VariableMap
(left) and a VariableLazyMap (right) for the multirotor example of
Listing 3. We benchmark Ungar against different time horizons and numbers
of rotors by varying the lines 2 and 3. The heatmaps manifest the more
desirable compile times of the lazy map compared to its non-lazy alternative.
For this reason, the VariableMap type should only be employed when
seeking the best MPC performance possible.

D. Limitations

The optimal runtime efficiency of Ungar is due to a large
number of compile-time computations. However, if the vari-
able hierarchies become too deep or nested, then compile
times may become significantly high. Also, we observed
compiler crashes when instantiating VariableMap objects
for very large OCPs, once again caused by the excessive
amount of compile-time computations. In these rare cases, it
is sufficient to adopt the VariableLazyMap type, which is
considerably less computation-intensive and provides almost
the same performance as its non-lazy version. For future work,
we will optimize the design of Ungar to improve its compile
times. We additionally plan to expand the library with more
tools to facilitate the implementation of high-performance
MPC controllers.

IV. CONCLUSION

In this paper, we introduced Ungar, a C++ template library
for real-time MPC applications. Our framework uses TMP
techniques to address modeling needs overlooked in existing
NLP and optimal control software packages. In particular, it
provides a metalanguage to describe complex systems in terms
of variable hierarchies. Then, it lets compilers produce highly
efficient code for manipulating raw data buffers based on
these hierarchies. As shown in our quadruped locomotion and
collaborative loco-manipulation experiments, these features
enable great flexibility in formulating NLP problems and
simplify AD-compliant implementations.

1 // Define integral constants.
2 constexpr auto N = 30_c;
3 constexpr auto NUM_LEGS = 4_c;
4

5 // Define "leaf" variables.
6 UNGAR_VARIABLE(position, 3);
7 UNGAR_VARIABLE(orientation, Q);
8 UNGAR_VARIABLE(linear_velocity, 3);
9 UNGAR_VARIABLE(angular_velocity, 3);

10 UNGAR_VARIABLE(force, 3);
11 UNGAR_VARIABLE(relative_position, 3);
12

13 // Define "branch" variables.
14 UNGAR_VARIABLE(leg_input) <<= (force, relative_position);
15 UNGAR_VARIABLE(x) <<= (position, orientation, linear_velocity, angular_velocity);
16 UNGAR_VARIABLE(X) <<= (N + 1_c) * x;
17 UNGAR_VARIABLE(u) <<= NUM_LEGS * leg_input;
18 UNGAR_VARIABLE(U) <<= N * u;
19 UNGAR_VARIABLE(decision_variables) <<= (X, U);

Listing 4. Decision variables of an OCP for quadrupedal locomotion using the single rigid body model.

1 // Define integral constants.
2 constexpr auto N = 10_c;
3 constexpr auto NUM_ROBOTS = 2_c;
4 constexpr auto NUM_LEGS = 4_c;
5

6 // Define "leaf" variables.
7 UNGAR_VARIABLE(position, 3);
8 UNGAR_VARIABLE(orientation, Q);
9 UNGAR_VARIABLE(linear_velocity, 3);

10 UNGAR_VARIABLE(angular_velocity, 3);
11 UNGAR_VARIABLE(force, 3);
12 UNGAR_VARIABLE(relative_position, 3);
13 UNGAR_VARIABLE(torque, 3);
14

15 // Define "branch" variables.
16 UNGAR_VARIABLE(leg_input) <<= (force, relative_position);
17 UNGAR_VARIABLE(arm_input) <<= (force, torque);
18 UNGAR_VARIABLE(robot_input) <<= (NUM_LEGS * leg_input, arm_input);
19 UNGAR_VARIABLE(payload_state) <<= (position, orientation, linear_velocity, angular_velocity);
20 UNGAR_VARIABLE(robot_state) <<= (position, orientation, linear_velocity, angular_velocity);
21 UNGAR_VARIABLE(x) <<= (payload_state, NUM_ROBOTS * robot_state);
22 UNGAR_VARIABLE(X) <<= (N + 1_c) * x;
23 UNGAR_VARIABLE(u) <<= NUM_ROBOTS * robot_input;
24 UNGAR_VARIABLE(U) <<= N * u;
25 UNGAR_VARIABLE(decision_variables) <<= (X, U);

Listing 5. Decision variables of an OCP for collaborative loco-manipulation with two robots modeled as single rigid bodies. We highlight the differen-
ces from the locomotion controller formulated in Listing 4. In particular, we mark newly added variables in yellow and modified variables in light blue.

REFERENCES

[1] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and
Moritz Diehl. CasADi – A software framework for nonlinear optimiza-
tion and optimal control. Mathematical Programming Computation, 11
(1):1–36, 2019. doi: 10.1007/s12532-018-0139-4.

[2] Victor M. Becerra. Solving complex optimal control problems at no
cost with psopt. 2010 IEEE International Symposium on Computer-
Aided Control System Design, pages 1391–1396, 2010.

[3] Bradley M. Bell. CppAD: a package for c++ algorithmic differentiation.
[Online]. Available: https://github.com/coin-or/CppAD.

[4] Marko Bjelonic, Ruben Grandia, Moritz Geilinger, Oliver Harley, Vi-
vian Suzano Medeiros, Vuk Pajovic, Edo Jelavic, Stelian Coros, and
Marco Hutter. Offline motion libraries and online mpc for advanced
mobility skills. The International Journal of Robotics Research, 41:903
– 924, 2022.

[5] G. Bledt and Sangbae Kim. Implementing regularized predictive
control for simultaneous real-time footstep and ground reaction force
optimization. 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6316–6323, 2019.

[6] M. Diehl, H. Bock, H. Diedam, and Pierre-Brice Wieber. Fast direct
multiple shooting algorithms for optimal robot control. 2005.

[7] Louis Dionne et al. Boost.Hana: Your standard library for metapro-
gramming. [Online]. Available: https://github.com/boostorg/hana.

[8] Boston Dynamics. Atlas Gets a Grip — Boston Dynamics. https://www.
youtube.com/watch?v=-e1 QhJ1EhQ, January 2023.

[9] Farbod Farshidian et al. OCS2: An open source library for optimal
control of switched systems. [Online]. Available: https://github.com/
leggedrobotics/ocs2.

[10] Markus Giftthaler, Michael Neunert, M. Stäuble, and Jonas Buchli. The
control toolbox — an open-source c++ library for robotics, optimal
and model predictive control. 2018 IEEE International Conference
on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), pages 123–129, 2018.

[11] Ruben Grandia, Fabian Jenelten, Shao-Hua Yang, Farbod Farshidian, and
Marco Hutter. Perceptive locomotion through nonlinear model predictive
control. ArXiv, abs/2208.08373, 2022.

[12] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[13] Ayonga Hereid and Aaron D. Ames. Frost: Fast robot optimization and

https://github.com/coin-or/CppAD
https://github.com/boostorg/hana
https://www.youtube.com/watch?v=-e1_QhJ1EhQ
https://www.youtube.com/watch?v=-e1_QhJ1EhQ
https://github.com/leggedrobotics/ocs2
https://github.com/leggedrobotics/ocs2

simulation toolkit. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vancouver, BC, Canada, September 2017.
IEEE/RSJ.

[14] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. Acado
toolkit—an open-source framework for automatic control and dynamic
optimization. Optimal Control Applications and Methods, 32, 2011.

[15] Joao Rui Leal et al. CppADCodeGen. [Online]. Available: https://github.
com/joaoleal/CppADCodeGen.

[16] Alexander Liniger, Alexander Domahidi, and Manfred Morari.
Optimization-based autonomous racing of 1:43 scale rc cars. Opti-
mal Control Applications and Methods, 36:628 – 647, 2015. URL
https://api.semanticscholar.org/CorpusID:11242645.

[17] Hayk Martiros, Aaron Miller, Nathan Bucki, Bradley Solliday, Ryan
Kennedy, Jack Zhu, Tung Dang, Dominic Pattison, Harrison Zheng,
Teo Tomic, Peter Henry, Gareth Cross, Josiah VanderMey, Alvin Sun,
Samuel Wang, and Kristen Holtz. SymForce: Symbolic Computation
and Code Generation for Robotics. In Proceedings of Robotics: Science
and Systems, 2022. doi: 10.15607/RSS.2022.XVIII.041.

[18] Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bi-
lal Hammoud, Maximilien Naveau, Justin Carpentier, Ludovic Righetti,
Sethu Vijayakumar, and Nicolas Mansard. Crocoddyl: An Efficient
and Versatile Framework for Multi-Contact Optimal Control. In IEEE
International Conference on Robotics and Automation (ICRA), 2020.

[19] Joseph Norby, Yanhao Yang, Ardalan Tajbakhsh, Jiming Ren, Justin K.
Yim, Alexandra Stutt, Qishun Yu, Nikolai Flowers, and Aaron M. John-
son. Quad-SDK: Full stack software framework for agile quadrupedal
locomotion. In ICRA Workshop on Legged Robots, May 2022.

[20] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and
S. Boyd. OSQP: an operator splitting solver for quadratic
programs. Mathematical Programming Computation, 12(4):
637–672, 2020. doi: 10.1007/s12532-020-00179-2. URL
https://doi.org/10.1007/s12532-020-00179-2.

[21] Russ Tedrake and the Drake Development Team. Drake: A planning,
control, and analysis toolbox for nonlinear dynamical systems, 2016.
URL http://drake.mit.edu.

[22] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Jonathan
Frey, Niels van Duijkeren, Andrea Zanelli, Branimir Novoselnik,
Thivaharan Albin, Rien Quirynen, and Moritz Diehl. acados – a
modular open-source framework for fast embedded optimal control.
Mathematical Programming Computation, Oct 2021. ISSN 1867-
2957. doi: 10.1007/s12532-021-00208-8. URL https://doi.org/10.1007/
s12532-021-00208-8.

[23] Flavio De Vincenti and Stelian Coros. Centralized model predictive con-
trol for collaborative loco-manipulation. In Robotics: Science and Sys-
tems, 2023. URL https://api.semanticscholar.org/CorpusID:259319056.

[24] Andreas Wächter and Lorenz T. Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106:25–57, 2006.

[25] Alexander W Winkler, Dario C Bellicoso, Marco Hutter, and Jonas
Buchli. Gait and trajectory optimization for legged systems through
phase-based end-effector parameterization. IEEE Robotics and Automa-
tion Letters (RA-L), 3:1560–1567, July 2018. doi: 10.1109/LRA.2018.
2798285.

https://github.com/joaoleal/CppADCodeGen
https://github.com/joaoleal/CppADCodeGen
https://api.semanticscholar.org/CorpusID:11242645
https://doi.org/10.1007/s12532-020-00179-2
http://drake.mit.edu
https://doi.org/10.1007/s12532-021-00208-8
https://doi.org/10.1007/s12532-021-00208-8
https://api.semanticscholar.org/CorpusID:259319056

	Introduction
	Data Structures
	Variables
	Variable Maps

	Experiments
	Implementation Details
	Quadrupedal Locomotion
	Collaborative Loco-Manipulation
	Limitations

	Conclusion

