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Abstract— Control policies trained using deep reinforcement
learning often generate stiff, high-frequency motions in response
to unexpected disturbances. To promote more natural and
compliant balance recovery strategies, we propose a simple
modification to the typical reinforcement learning training
process. Our key insight is that stiff responses to perturbations
are due to an agent’s incentive to maximize task rewards
at all times, even as perturbations are being applied. As an
alternative, we introduce an explicit recovery stage where
tracking rewards are given irrespective of the motions generated
by the control policy. This allows agents a chance to gradually
recover from disturbances before attempting to carry out their
main tasks. Through an in-depth analysis, we highlight both
the compliant nature of the resulting control policies, as well
as the benefits that compliance brings to legged locomotion. In
our simulation and hardware experiments, the compliant policy
achieves more robust, energy-efficient, and safe interactions
with the environment.

I. INTRODUCTION

Legged animals effectively mitigate environmental uncer-
tainties through behaviors characterized by compliance. Nav-
igating uneven terrains, they instinctively adjust their speed
and direction to accommodate the variations in landscape,
guaranteeing a level of stability and adaptability. Similarly,
while leading a dog on a leash, we observe this compliant
behavior in action. A gentle tug can subtly guide the dog,
indicating a new course of movement.

Achieving this compliant behavior is crucial for legged
locomotion as it enables natural movement patterns, fa-
cilitates adaptation to various environmental uncertainties,
and reduces energetic costs [1]. However, in robotics, the
focus on precision and functionality often overshadows this
importance. While the traditional “stiffer is better” rule may
improve precision under disturbances, it comes with costs
such as increased energy or torque demand. Additionally, un-
expected interactions like colliding with an obstacle in such
a system can generate sharp and high-frequency motions,
potentially harming the environment and the robot.

In this work, we present a deep reinforcement learning
(DRL) approach to create a quadrupedal locomotion con-
troller that exhibits compliant behaviors in the presence of
external disturbances. It is inspired by the fact that the prior-
ities of different objectives, such as precision or efficiency,
change depending on the environment [2]. Given external
interference, the associated rewards should consequently
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Fig. 1: The snapshots of Unitree Go1 robot displaying distinct responses
between the baseline policy (fig. 1a) and the compliant policy (fig. 1b) when
subjected to a pull via a leash. The compliant version exhibits a gentler
reaction to external disturbances and manages diverse perturbations more
effectively. A detailed quantitative analysis can be found in Section IV.

adapt to permit temporary deviations from the task objective.
To this end, our training strategy is enhanced with a recovery
stage activated by a randomly sampled disturbance. During
this stage, the focus moves away from strict adherence to
tracking accuracy, towards an emphasis on energy efficiency.

In our extensive simulation and hardware experiments, the
resulting policy could adapt to its surroundings by deviating
from its given commands when necessary. This leads to
smooth recoveries from pushes and minimizes the forces ap-
plied to the environment in the event of collisions. Moreover,
this approach reduces energy and torque usage in response to
disturbances and enhances locomotion robustness, enabling
navigation across complex terrains. Deployed on the Unitree
Go1 robot, we validated this durability in natural settings.

In summary, the main contributions of this paper include:
• Introduction of a training procedure for a legged lo-

comotion controller that exhibits compliant interactions
with the environment.

• Exploring the impact of compliant behavior on robust-
ness and energy efficiency during perturbations through
simulations and hardware tests.

II. RELATED WORK

Over recent years, reinforcement learning (RL) has
achieved significant milestones in the control of diverse
legged mechanisms, ranging from hopping robots [3], to
bipedal [4] and quadrupedal [5] walkers. While these
methodologies exhibit admirable fidelity in tracking user-
defined goals and carry out robust and sophisticated maneu-
vers, Xie et al. [6] observed that many controllers based on
RL exhibit motion patterns that appear more rigid compared
to the responses of animals or humans when subjected
to disturbances. Such stiffness can often be attributed to



high PD gains, which are indispensable for facilitating
dynamic movements. In response, Lee et al. [7] proposed
a compliance-induced motion controller that modulates a
physically simulated character’s stiffness in the applications
of character animation. Their approach enables the controller
to mitigate impact forces when interacting with the environ-
ment, thus yields a compliant control resulting in fluid and
natural motions, both in passive responses to external per-
turbations and active engagements, such as door operations.
While our objectives align closely with their research, the
implementation of their method on robot hardware remains
challenging because it is dependent on interactive force
measurements, which are typically unavailable in real world.

In the field of legged robotics, particularly concerning
the real-world deployment of RL policies, several studies
[5, 8, 9] emphasize the benefits of employing moderate joint
feedback gains. This strategy is empirically recognized as
advantageous for enhancing the sim-to-real transition and
for minimizing potential harm to hardware, especially when
positioning the robot on irregular terrains. Beyond merely
adjusting joint gains, an intriguing development is presented
by Gangapurwala et al. [10], where a locomotion controller
is trained at a notably low frequency which encourages
less aggressive movement while maintaining a commendable
degree of resilience against environmental uncertainties.

Building on the strategy of employing modest joint feed-
back gains, we further explore the compliant responses of
DRL policies to external disturbances or uncertainties in the
environment, drawing inspiration from the prior studies by
Lee et al. [7] and Gangapurwala et al. [10]. Our training
process is enhanced by introducing random disturbances
to the robot, followed by a recovery stage that induces a
tempered response to perturbations. As a result, the resulting
policies exhibit less aggressive response to disturbances and
achieve better energy efficiency.

Our approach presents potential advantages in developing
systems geared towards safe interactions between humans
and robots or between the environment and robots. This
is particularly relevant for applications such as assisting
visually impaired people [11], fostering human-robot col-
laboration [12], and navigating through confined or densely-
packed environments [13].

III. DEEP COMPLIANT CONTROL

We employ DRL to train a control policy that ex-
hibits compliant behaviors to external disturbances. To in-
still these behaviors, the policy must identify disturbances
solely through proprioceptive sensor inputs since force mea-
surements are inaccessible. Consequently, our observation
encompasses both the current and previous states of the
robot. This leads us to define an RL task that aims to
map a sequence of historical robot states with respective
joint commands. Furthermore, we enhance the standard RL
training approach by introducing a multi-stage episodic RL
training that incorporates a recovery stage. During this stage,
the robot prioritizes stabilization and balance recovery over
strictly following a velocity command.

TABLE I: Overview of the reduced observation vector ô. We use the
cartesian coordinate system with the x-axis for the left, the y-axis for the
upward, and z-axis for the forward direction.

Names Symbols Units

Base height y m
Local gravity gx, gy , gz m/s2

Joint angles q0...11 rad
Local velocity vx, vy , vz m/s

Local angular velocity ωx, ωy , ωz rad/s
Joint rates q̇0...11 rad/s

A. Observation and Action Spaces

The classical approach to estimate external force acting
on a robot is to monitor the time variation of proprioceptive
sensor observations [14, 15]. For example momentum-based
observers, as proposed by Morlando et al. [15], are able to
estimate external forces from joint angles q, joint rates q̇,
joint torques τ and ground reaction forces fgr. Inspired by
this, we include the current and previous joint angles, rates
and the latest inputs of the PD controller in the observation
vector. Since ground reaction forces are not easily accessible,
we excluded them from our observations. This approach
configures the system as a Partially Observable Markov
Decision Process (POMDP), allowing our policy to learn
how to identify external disturbances.

We define the reduced observation vector ôt (Table I)
which contains the base height, gravity vector, linear and
angular velocity in the local body frame as well as angles and
rates of all twelve rotational joints. At time t, ôt represents
the most recent measurements of the robot’s state.

To encode the current state of the PD controllers, we use
the previous reduced observation at time t−1 as well as the
corresponding joint action commands at−1.

Finally, we want to pass task commands to the agent that
define the desired body velocities in longitudinal direction
v∗z , sideways v∗x as well as yaw rate ω∗

y . Together, we get an
observation vector ot = {ôt−1,at−1, ôt, v

∗
x, v

∗
z , ω

∗
y} ∈ R83.

The action of the control policy is joint target angles which
are passed to the low-level PD controller.

B. Reward

We adapt the reward structure proposed by Ji et al. [16]
that splits reward terms in a positive rpos and a negative rneg
term and define the total reward r as

rpos = max(0, wlin rlin + wang rang + wh rh) (1)
rneg = we re + wτ rτ + wpose rpose + wcl rcl (2)

r = rpos · exp(0.45 · rneg) (3)

This structure guarantees a positive reward, preventing the
policy from opting for early termination.

The mathematical expressions of each subreward term
and their corresponding weights are detailed in Table II.
The terms rlin and rang align the robot’s velocity with the
desired velocity by penalizing deviations. The terms re and
rτ impose penalties based on the instantaneous mechanical
power of each joint, considering both its absolute value



TABLE II: Reward terms and corresponding weights.

Name Function Weight

Linear velocity rlin exp(−8
(
(vx − v∗x)

2 + (vz − v∗z )
2
)
) 0.8

Angular velocity rang exp(−8 (ωz − ω∗
z )

2) 0.5
Energy re |τ · q̇| -0.015
Torque rτ ∥τ∥22 -0.0015
Pose rpose ϕ2 + ψ2 + 10 · (y − ydes)2 -2.0

Foot clearance rcl
∑

i=0...3

∥vi,xz∥22 · (pfi,y − pdes
fi,y

)2 -0.1

Foot height rh
∑

i=0...3

(p
peak
fi,y

/pdes
fi,y

− 1)2 -0.7

and the actuator losses proportionate to the applied torque,
expressed as P ∼

∑
i |τi · q̇i| + α · τ2i , where α is a

certain coefficient. This approach is influenced by the work
of Fu et al. [17], highlighting the important role of energy
efficiency in generating natural locomotion patterns. The
term rpose aligns the robot base relative to the ground plane
at zero pitch ϕ, zero roll ψ and a base height of ydes =
0.31m. Finally, the terms rcl and rh encourage the policy
to take larger strides. The dense reward rcl promotes larger
swing height. Meanwhile, the sparse reward rh penalizes
deviations between the actual peak foot height during the
swing and the target value. This penalty is applied once the
foot makes contact with the ground. The desired step height
is set at pdes

fi,y
= 0.08m.

C. Multi-stage episodic RL training

Starting from the same initial state, the robot has a
designated 4.0 s time slot to learn walking with a desired
velocity randomly sampled in the ranges of [−1.0, 1.0]m/s,
[−0.5, 0.5]m/s and [−0.5, 0.5] rad/s for forward, sideways,
and turning speed, respectively.

Inspired by a recent study proposing the division of a
training episode into multiple stages to tackle the explore-
vs-exploit dilemma [18], we divide the training episode into
three distinct stages: walking, recovery, and post-recovery.
This segmentation recognizes that objectives shift in priority
based on the environmental context. Emphasizing compli-
ance, we reduce the focus on tracking accuracy after a push,
instead prioritizing energy efficiency and smooth recovery.
Consequently, we adjust the recovery stage rewards to sup-
port this focus. More details on each stage are as follows.

1) Walking stage: First, we train the robot to walk undis-
turbed for a duration of 2.0 s. Throughout this stage, the
agent receives the full reward, as described in Section III-B.

2) Recovery stage: In this stage, we introduce a distur-
bance impulse by applying a velocity offset to the robot’s
base, simulating a push in the horizontal direction. The
velocity offset for both forward and sideward directions is
uniformly sampled up to a maximum magnitude of 1.0m/s.
Additionally, a rotational push with a maximum magnitude
of 1.0 rad/s is applied in all three axes.

After applying the impulse, the agent learns to act com-
pliantly while recovering from the push. We give it a time
frame of 1.0 s to get back to the steady state of walking in
which it does not get a penalty for deviating from the given

TABLE III: PPO hyperparameters.

Batch Size 8192 GAE discount factor 0.95

Mini-batch size 512 Desired KL-divergence 0.02

Number of epochs 30 Learning rate adaptive
Clip range 0.2 Initial std. deviation exp(−1)

Entropy coeff. 0.01 Policy & VF layers [256, 128, 64]
Discount factor 0.99 Activation Function ELU

motion command. More specifically, we exchange the reward
rlin and rang by constant values that represents the average
rewards during the walking stage. The duration of this stage
is picked empirically based on the assumption that is must be
long enough to enable a smooth recovery but short enough
to not unnecessarily extend training duration.

3) Post-recovery stage: Finally, in the third stage, we
revert to the full reward as in the walking stage, to ensure the
robot resumes regular walking post-push recovery. Spanning
a duration of 1.0 s, this stage aims to prevent any decline in
walking performance subsequent to a disturbance.

D. Other Training Details

In our training environment, we simulate a robot on a
flat surface but introduce variable slopes by adjusting the
gravity vector that peaks at a 10% incline. It is resampled
uniformly at the start of an episode. This measure enables the
RL policies to navigate across sloping or irregular terrains.

To ensure efficient training, we take additional measures.
First, we early terminate an episode if the robot collapses,
which is determined when the base height y < 0.2m, or
if any part of the robot, apart from its feet, comes into
contact with the ground. Second, an adaptive push curricu-
lum is designed in consideration of the agent’s limitations in
walking and recovery abilities at the early phase of training.
During the early phase, we assess the agent’s walking
performance, skipping the recovery and post-recovery stages
if it doesn’t meet the mark. Specifically, we take the average
of the rlin reward and check if it has exceeded 85% of its
maximal value. This strategy is designed to guarantee the
agent effectively masters the stepping motion before it is
exposed to external perturbations. It’s essential to emphasize
that initiating pushes too early can prompt an excessive
caution in the agent, possibly steering it into an unfavorable
local optimum because of the steep penalties associated with
collapses. Third, we progressively increase the maximum
desired velocity command, reaching up to 1.0m/s. This
approach ensures a gradual challenge escalation for the
agent, allowing it to adapt more effectively.

Additionally, to prevent large KL-divergence during the
training process, we utilize an algorithm that adaptively ad-
justs the learning rate based on the current training progress,
as proposed by Rudin et al. [19].

IV. RESULTS

We demonstrate the efficacy of our approach through
simulation and hardware experiments. For the experiments,
we trained policies for the quadruped robot Unitree Go1,
utilizing data generated by a physical simulation tool based
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Fig. 2: Heatmaps depicting the push recovery success rates for both the
baseline and the compliant controller. A contour line indicates the 80%
success threshold

on Open Dynamics Engine [20], operating at a simulation
rate of 240Hz. Every joint on the robot was equipped with
a PD controller with gains set at Kp = 40 and Kd = 1.
To enhance the realism in simulation, we incorporated an
actuator latency of 30ms as identified by Margolis and
Agrawal [8]. Our control policy is queried at 60Hz, updating
the PD references for the robot’s joints.

For RL training, we used the implementation of proxi-
mal policy optimization (PPO) algorithm [21] from stable-
baseline3 [22] with the hyperparameters specified in Ta-
ble III. The agent was trained for up to 200 million samples,
and when executed on a system equipped with a Ryzen
7 3700X CPU and GTX 1070 GPU, full training takes
roughly 15 hours. To ensure consistency and reproducibility
of the results, we ran every simulation experiment multiple
times using five policies trained with distinct random seeds.
The resulting data from these runs was averaged and is
presented in the figures along with standard deviations in
the subsequent subchapters.

A. Push recovery

In the push recovery test, we assessed policies trained us-
ing our method and compared them against the performance
of baseline policies. The baseline policies were trained with
the same RL training setup but excluded the recovery stage.
The test involved a brief forward walking segment, after
which a push was introduced. We evaluate the policies’
ability to withstand the push with maximal disturbance of
1.5m/s in both horizontal axes. With varying push timings,
10 experiments per seed for every grid point get conducted
and marked as either pass or fail in case the robot falls over.
The averaged success rate is visualized in Figure 2.

From the result, it is evident that the compliant policies
hold a slight advantage. For compliant policies, the 80%
success rate contour encloses 78% of all grid points, whereas
the baseline achieves 73%. However, this difference is subtle
and we conclude that both the baseline and compliant
policies perform commendably when evaluated against the
straightforward pass-or-fail criterion.

Upon closer observation of the policies’ behaviors, the ad-
vantages of compliant behavior become clear. We examined
the robot’s base velocity data after receiving an impulse of
0.5m/s in the sideways direction. As shown in Figure 3,
it’s evident that compliant policies facilitate a more gradual
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Fig. 3: The plots show the decay time of a velocity disturbance for the
baseline (fig. 3a) and the compliant controller (fig. 3b.) The average is
represented by the lines, with shaded regions indicating the minimum and
maximum values of 20 individual runs of the same policy.

TABLE IV: Statistics of power and torque (averaged over specific time
intervals) during a sideways pushing scenario. Values represent the mean
and standard deviation from 5 experiments with different seeds.

Quantity
Average

Baseline Compliant

Power before push [W] 80.1± 1.38 78.5± 1.96

Power after push [W] 166.9± 25.8 140.9 ± 17.0

Torque before push [N ·m] 26.9± 0.66 25.5± 0.76

Torque after push [N ·m] 27.4± 1.28 25.8 ± 0.98

recovery. This indicates the system does not resort to ag-
gressive forces to counter disturbances. In comparison, our
compliant policy takes 85% more time to stabilize after a
disturbance, resulting in smoother movements.

Additionally, we evaluated the energy and torque demands
of the policies trained with both the baseline and compliant
setups across 5 different seeds. table IV displays the mean
values and standard deviations of the averaged energy and
torque over a 1 s time window before and after the push. Fol-
lowing the application of a push, the compliant policies show
a considerable improvement in energy efficiency, consuming
15% less mechanical power and requiring 6% fewer motor
torques compared to the baseline (bold numbers in table IV).
Interestingly, even in situations without disturbances, compli-
ant policies perform marginally better than their counterparts.

We assessed the response of the policies to an impulse of
0.5m/s applied from various directions. Figure 4 indicates
the duration, in seconds, required for the policy to recover
from the impulse. In both scenarios—when the robot is in
motion (Figure 4b) and when the robot remains stationary
(Figure 4a)—the compliant policies exhibit a gentler reaction
and, as a result, need more time to return to a stable state.

Shifting our focus from impulses to applied forces, we
simulated a robot on a leash (as depicted in Figure 1)
by consistently applying force while directing the robot to
walk straight forward. Figure 5 illustrates the discrepancy in
velocity tracking along different directions when the robot is
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Fig. 4: Measurements of the decay time in seconds of a velocity disturbance
in all horizontal directions while standing still (fig. 4a) or walking forward
(fig. 4b) at 0.5m/s. The solid line represents the average values from five
policies trained with different seeds, with 10 runs each. The surrounding
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Fig. 5: Measurements of the average walking velocity offset in m/s when
being dragged by a constant force and walking forward at 0.5m/s. In an
undisturbed case both policies perform with an error < 0.05m/s.

dragged with forces of magnitudes 10N and 20N. As with
the impulse test, the baseline policy has a stiffer response and
permits less movement in the direction of the force compared
to the compliant policy. As a result, the velocity deviation
of the compliant policy tends to surpass that of the baseline.
It’s worth noting that the robot’s compliance varies with the
direction of the force. This variation can be attributed to
the robot’s geometry, which offers enhanced stability when
subjected to forward or backward forces.

B. Safe Interaction with Environment

Compliance is closely related to safety, especially during
interactions with the environment. When robots come into
contact with humans or inadvertently bump into objects, it’s
crucial they don’t apply excessive force. Overexertion risks
damaging both the environment and the robot hardware.

To evaluate the safety aspect of controllers, we spawned a
large box within the simulation for the robot to encounter via
collision. As showcased in Figure 6, we directed the robot
to proceed linearly towards the obstacle. Upon impact, the
compliant policy enforces a milder force on the obstacle,
effectively minimizing its progression in that direction. This
results in the robot being gently deflected to the side upon
contact, resuming its original trajectory once the obstruction
no longer counteracts the preset command. On the other
hand, the baseline policy remains undeterred in its onward
motion, overlooking the countering force from the object,
causing a considerable relocation of the obstacle.

(a) Baseline (b) Compliant

Fig. 6: The robot collides with a box weighing 2kg while following the
command v∗x = 0.4, v∗z = 0, and ω∗

y = 0. The box’s initial position is
indicated by the transparent area, and the robot’s path is traced by the dotted
lines.

(a) Cluttered terrain (b) Uneven terrain

Fig. 7: The robot traverses a ball pit of spheres weighing 0.5 kg (fig. 7a)
and an uneven terrain with height variations up to 5 cm (fig. 7b.)

C. Uneven and Cluttered Terrain Navigation

We conducted additional simulation experiments to evalu-
ate the proficiency of the policies in managing environmental
uncertainties, particularly with respect to diverse terrains. In
the first scenario, the compliant policy encounters an area
scattered with balls, as illustrated in Figure 7a. The balls are
modeled as rigid spheres, each with a weight of 0.5 kg and a
radius of 5 cm. They are positioned in a 20 by 20 grid with
a spacing of 3 cm between each sphere.

In the second scenario, we deployed the robot to uneven
terrains, which were randomly generated using Perlin noise
[23] with a magnitude of 5 cm and a frequency of 0.5 as
illustrated in Figure 7b. We emphasize that both scenarios
were not shown to the policy during the RL training phase.

In both scenarios, the compliant policy adeptly navigates
through the challenges presented by the obstacles and the
roughness of the terrain. It is worth highlighting that the
policy can handle disturbances that are exclusively acting on
the feet while during training only pushes on the base were
seen. Meantime, the baseline policy exhibits stiffer and more
aggressive reactions in challenging conditions. The forceful
reactions produce high impacts on the feet, resulting in less
fluid and graceful movement. Due to this, there’s an elevated
chance of the robot becoming trapped or toppling over.

These results are consistent with the observations made by
Lee et al. [23], suggesting that on challenging terrains for
legged robots, it is often more effective to flexibly follow
a desired velocity, especially when the feasible range of
target speeds is unclear. For a more comprehensive grasp
of the policies’ behaviors, we encourage readers to watch
the supplementary video showcasing our experiments.
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Fig. 8: The snapshots from the hardware experiments featuring the Unitree Go1 robot.

D. Hardware Verification

We verified our findings from the simulation experiments
on the Unitree Go1 robot hardware. To transfer our policy
to the hardware effectively, we employed a Kalman filter-
based state estimator by Bledt et al. [24] paired with a
contact estimator trained through supervised learning. The
contact estimator runs at a frequency of 240Hz and processes
joint states and actions from the previous four timesteps
as inputs and generates boolean contact states for each
foot as outputs. In contrast to the approach by Ji et al.
[16], this training was not done concurrently but with data
gathered from a fully trained policy. Furthermore, to bridge
the simulation-to-reality gap more efficiently, we integrated
dynamics randomization [25] into the RL training. This
entailed random sampling of the friction coefficient within
[0.5, 1.2] and adding a calibration offset to each joint, which
was drawn from a zero-mean normal distribution with a
standard deviation of 0.01 rad.

After the RL training of both the compliant and baseline
policies, we executed pull and push tests in a controlled
environment. Initially, we utilized a 1 kg weight linked to a
pulley system to exert pulling forces on the robot, as shown
in Figure 8a. During this test, the robot under the compliant
policy generally moved in the force’s direction rather than
opposing it. Conversely, the baseline policy led the robot to
counteract the force, which made it more prone to toppling.
In the following test, depicted in Figure 8b, we applied an
impulse to the robot by swinging a suspended 3 kg ball from
a set height. Consistent with our simulation outcomes, the
compliant policy reacted to the impact in a more gradual
manner, while the baseline policy responded more abruptly.

In another test illustrated in Figure 8c, we placed the
robot in an environment littered with wooden blocks and
soft mats. Here again, the compliant policy outperformed,
showing superior resilience and maneuvering over obstacles
better than the baseline. We also tested the robot with the
compliant policy in an outdoor setting with varied and sloped
terrains, as highlighted in Figure 8d. Even though the policy
was not specifically trained for cluttered or rugged terrains,
the robot skillfully managed these challenges using our
compliant policy.

For a visual representation of these hardware tests, we
encourage readers to check out the footage included in our
supplementary video.

V. CONCLUSION

In this work, we present a DRL approach to learn a
legged locomotion control policy that exhibits compliant
behaviors to environmental uncertainties. By inducing the
compliant behavior that recovers from disturbance with a
smooth response, we experimentally demonstrate that our
compliant policy achieves more robust, energy-efficient,
and safe interactions within the environment. Notably, we
demonstrated that the policy reliably navigates uncluttered
or uneven terrains, even those not presented during the RL
training phase. These findings align with insights shared by
Lee et al. [23], emphasizing that the ability to flexibly adhere
to a desired velocity enhances traversal over difficult terrains.

In this paper, we leverage a basic RL framework with
a simple reward function. Yet, our multi-stage episodic RL
training strategy can be combined with a variety of RL
techniques, such as motion imitation [9, 26], which integrates
demonstrations from animals or model-based controllers into
the learning process. Determining how this training strategy
influences and promotes more compliant behaviors using
these methods remains a subject for our future research.

Furthermore, we are keen to explore the generation of
complex behaviors that require active interactions with the
environments [7] in our future work. This might encompass
tasks like door-opening or transporting items along a desig-
nated route, especially when there are uncertainties regarding
the object’s dimensions or weight. Although our current
research primarily centers on passive responses, broadening
its ambit to include active engagements offers promising
prospects for a multitude of potential applications.
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