
Generating Gaits for Simultaneous Locomotion and Manipulation

Julian Whitman, Shuang Su, Stelian Coros, Alex Ansari, and Howie Choset

Abstract— Modular robots can be rapidly reconfigured into
customized articulated legged morphologies capable of mobile
manipulation and inspection. However, current gait genera-
tion methods do not keep pace with the speed of physical
reconfiguration. This work focuses on quickly creating gaits
for modular legged robots. We build on a recent method that
uses trajectory optimization to design quasi-static gaits given
only robot geometry and foot contact patterns. We develop
methods to automatically generate contact patterns for new
gaits and transitions between them. We show the utility of
these methods applied to robots with many limbs, such that
limbs can be fluidly reassigned to locomotion, manipulation,
or inspection tasks, or to adapt gaits to hardware failures
online. We demonstrate gait and transition generation with
our modular hexapod and dodecapod robots. The robots switch
between gaits that use all limbs for locomotion and those that
leave some limbs free to pick up objects or position a camera.

I. INTRODUCTION

A number of researchers work on modular robots that can
be reconfigured to support task needs [1], [2], [3], [4]. For
instance, our own hardware [5] can be assembled into highly-
articulated platforms capable of legged locomotion, mobile
manipulation, and inspection [6]. While modular hardware
allows us to rapidly prototype new robot morphologies,
planning for locomotion and manipulation may still require
significant time and computational resources. To make these
systems practical, new control methods are needed that can
keep pace with physical reconfiguration.

To address this challenge in the context of robot mobility,
[7] presents a trajectory optimization based approach to
gait design that can quickly synthesize optimal quasi-static
gaits given only a robot’s geometry and a desired footfall
pattern. While this approach can create a wide variety of
gaits for legged robots, it requires that footfall patterns
be hand-crafted for each gait, and no methods have yet
been developed to transition between gaits designed in this
fashion.

The set of behaviors that a robot will need may not be
known before deployment. For instance, a robot may need
to fluidly change the role of its limbs from locomotion
to manipulation or inspection. Modules and limbs may
also fail, requiring the robot to adapt its gait. Rather than
precomputing all possible gaits for such situations, we create
new gaits online to enable rapid deployment minutes after
reconfiguration. Building on [7], this work develops means
to quickly and automatically synthesize footfall patterns i) to

All authors are at Carnegie Mellon University, 5000 Forbes Ave., Pitts-
burgh, PA 15213, USA. E-mail: jwhitman@cmu.edu

This work was supported by NASA Space Technology Research Fel-
lowship NNX16AM81H and by the Robotics Collaborative Technology
Alliance program.

enact transitions between two known gaits and ii) to generate
new candidate gaits that use a desired subset of the robot’s
limbs, so that remaining limbs may be used for peripheral
tasks or to compensate for failures. See Fig. 1 for a depiction
of the gait transition process.

The following, Sec. II provides relevant background mate-
rial, including an overview of the gait design algorithm from
[7]. Section III describes our approach to transition and gait
generation. We demonstrate these methods on locomotively
redundant morphologies, i.e., those with more limbs than
necessary for quasi-static locomotion. Section IV presents
hardware experiments that demonstrate our modular 18-DoF
hexapod switching between hexapedal and quadrupedal gaits
in order to carry a package. Similarly, we demonstrate a 12-
limbed 36-DoF robot that switches gaits to locomote while
simultaneously picking up objects and positioning a camera.
Section IV-C describes experiments comparing our optimized
gait transitions to an interpolation transition developed as
a simple alternative. Section V discusses limitations of our
method and directions for future work.

II. BACKGROUND

A. Gait generation

There are several alternative methods used to perform
gait design. A common approach is to use a central pattern
generator (CPG), a system of coupled oscillators that gen-
erates rhythmic open-loop joint trajectories [8]. A CPG is
created by assigning oscillator-joint pairings, then assigning
parameters to the network including connection weights, os-
cillator frequencies, amplitudes, and offsets. These methods
rely on computationally expensive global stochastic searches
to find effective network parameters, for instance, requiring
at least 15 minutes for robots composed of 12 or fewer
modules [2], [9], [10]. With these methods, if the robot is
reconfigured, expensive computation is required to modify
gaits. [11] generated a low dimensional map of behaviors
which could then be used to quickly regenerate gaits online
after the robot was damaged, but required two weeks of
precomputation for each robot design.

Other techniques have been developed to create gaits,
often for narrow classes of robot morphologies. Geometric
mechanics-based approaches have been used to discover gaits
for snake-like robots [12], [13]. Nelder-mead optimization
has been used to learn leg swing timing for a six degree-
of-freedom hexapod [14]. These methods require a designer
to specify motion parameterizations which are specific to
one morphology, and so would not be well-suited to rapid
modular reconfiguration.



Generate Transition

Gait Candidates

Fig. 1: We demonstrate means for a modular robot to create
gaits and gait transitions, in particular, to reassign limbs
from locomotion to peripheral tasks. In the above figure, the
front right limb is reassigned and the robot switches from a
hexapedal to a pentapedal gait. A set of candidate footfall
patterns is created, and one is selected to create a gait (see
Sec. III-B). Next, a transition phase to switch into the new
gait is generated and executed (see Sec. III-A). Last, the new
gait is executed, and the reassigned limb is freed to pick up
an object while the robot locomotes.

B. Gait generation with trajectory optimization

In contrast the gait design methods mentioned previ-
ously, this work builds on a relatively recent trajectory
optimization-based gait design approach from [7], since it
was shown to efficiently create gaits for a variety of legged
robot morphologies. In this approach, a gait for a robot with
nJ joints is specified by a motion plan P consisting of a
series of m discrete points in the configuration space. Each
row of P is the trajectory of one joint over the cycle period,
and each column is the robot configuration at time step i,
~qi ∈ SnJ , P = [~q1 . . . ~qm−1, ~qm]. Gaits are cyclical so
~q1 = ~qm. To generate continuous motions, at each time,
t, the columns of P are interpolated with a cubic spline

interpolation function to find joint angles ~q(t),

~q(t) = interp(P , t) (1)

The objective function for the trajectory optimization
problem includes motion smoothness, and achieving user
inputs including desired robot velocity, body height, body
orientation, and foot step height. A sequential quadratic pro-
gramming solver uses the objective analytical gradients and
Hessians to concurrently generate trajectories for the robot’s
feet, center of mass, and full-body poses using a simplified
inverted pendulum dynamics model. Constraints maintain the
center of pressure within the support polygon, the convex
hull of foot contacts, at each time step. Additional constraints
enforce a no-slip condition at contacts and bound the angular
velocity of joints. The resulting gaits can then be verified
in a full rigid body dynamics simulation. Initial trajectory
seeds are formed from a footfall pattern which encodes the
stance or swing phases for a walking sequence, that was
hand-crafted and input by a user in [7]. The footfall pattern
for a robot with nF feet over m time steps is represented
by a matrix of binary contact flags C ∈ {0, 1}nF×m. The
contact state of each foot at each time step is either 0 for
swing phase or 1 for stance phase.

The optimization process converges quickly– for instance,
with 20 time steps it requires under one minute of com-
putation time to complete for our twelve-limbed robot with
36 joints. Because of its efficiency and flexibility, we adopt
this technique to create individual motions for our modular
robots.

C. Transitions between gaits

One of the benefits of CPGs is that transitions between
gaits can be enacted by varying the network parameters and
allowing the system to stabilize to a new limit cycle [15],
[16]. Similarly, transitions between gaits parameterized by
step timing or step size can be implemented by varying those
parameters [17], [18], [19]. These approaches rely on low-
dimensional motion parameterizations selected beforehand,
and so may not support rapid reconfiguration. Further, they
do not apply to gaits designed with the trajectory optimiza-
tion framework of [7].

III. FOOTFALL PATTERN GENERATION

The motion generation algorithm of [7] requires footfall
patterns as an input. Hence, to synthesize new gaits that
allow reassigning limb roles, new footfall patterns must
be generated in which failed limbs, or limbs needed for
peripheral tasks, are nonlocomotive, i.e. in swing phase over
the full gait cycle. The remainder limbs are locomotive, i.e.
with a stance phase within the current footfall pattern. All
possible footfall patterns and corresponding motions could
be precomputed offline for a given robot. However, there
are a combinatorial number of footfall patterns for any fixed
number of time steps. Rather than precomputing all possible
motion plans for a robot, we make new motion plans online
as needed to speed up deployment after reconfiguration. To
create transitions between two known gaits, we pose the



F
oo

t N
um

be
r 6

5
4
3
2
1

F
oo

t N
um

be
r 6

5
4
3
2
1

F
oo

t N
um

be
r 6

5
4
3
2
1

Gait 1

Transition

Gait 2

Fig. 2: Hexapod footfall patterns for a quadrupedal gait
(top), pentapedal gait (bottom), and transition between them
(middle). The contact state of each discrete time step is rep-
resented by a box. Red boxes represent the swing phase and
white represent stance. The pattern is interpreted from left to
right as the motion progresses. When limb 4 is reassigned,
gait 2 is generated, then the transition is generated to connect
the gaits. Shaded regions indicate boundary constraints in the
transition footfall pattern generator.

footfall pattern generation as an integer program. Then we
present a method to create new gaits when limbs must be
reassigned.

A. Transition generation

This work contributes a new method of generating gait
transitions by posing footfall pattern creation as an integer
quadratically constrained program (IQCP). Given two known
gaits and their footfall patterns, we propose a method to
generate quasi-statically stable transitions in a two step
process. First an IQCP is solved for a footfall pattern C ,
and second, this footfall pattern is used as the initial seed in
the trajectory optimization of [7].

While many footfall patterns could be used to create
transitions, our goal is to generate motions that appear
smooth and deliberate. The objective function of the integer
program is therefore to minimize the number of changes
between swing and stance states. We use a variable yj to
denote whether any foot switches between swing and stance
at each time step j.

Then for a robot with nF feet, we minimize the number
of such time steps over the number of total time steps m,

minimize
C∈{0,1}(nF ×m)

m∑
j=1

yj

subject to g(C ) ≤ 0

(2)

The integer-domain minimization problem is subject to a
vector of constraints ~g(C ) which effect the transition footfall

pattern. While these constraints are not derived directly from
first principles, they encode requirements for quasi-static
locomotion and contain strategies that help to make the
initial seed in the motion plan generation feasible. See the
Appendix for a full formulation of the IQCP constraints and
variables.
• Constraint set ~g1(C ) is a limit on the number of

changes between swing and stance phases for an in-
dividual foot. Over a transition period, each foot is
allowed to change from swing to stance or vice versa
at most twice.

• ~g2(C ) requires each swing phase to last more than one
time step.

• ~g3(C ) prevents stance phases of one time step in length,
and ~g4(C ) prevents stance phases of two time steps in
length. These two heuristic constraint sets ensure that
each stance phase lasts for at least three time steps,
which we found to empirically result in more “natural”
appearing behavior.

• Constraint set ~g5(C ) sets an upper limit to the total time
in the transition phase each foot may spend in stance
phase.

• To ensure that the feet share walking workload, ~g6(C )
and ~g7(C ) require that the difference in time spent in
swing phase between any two feet is no more than two
time steps.

• ~g8(C ) requires that at least three limbs be in stance at
each time step, which helps allow stance stability.

• Not all combinations of stance feet configurations are
equally desirable from a stability standpoint. For exam-
ple, solutions that satisfy ~g8 may include patterns where
all feet on the left side of a hexapedal robot are in swing
at once, while the others are in stance. Constraint sets
~g9(C ) and ~g10(C ) ensure that at least one limb on each
side is in stance at any moment in time.

As transition points, we select for simplicity the final point
in the first gait and the starting point in the second gait.
These are used both as constraints for the footfall pattern and
for the trajectory optimization. The constrained minimization
is solved with a Gurobi optimizer, a state-of-the-art integer
solver [20]. The solver outputs transition footfall patterns
in a few seconds. For instance, the transition pattern shown
in Figure 2, in which a transition for six limbs over 11 time
steps, C ∈ {0, 1}6×11, was generated in 4.5 s with a 2.5 GHz
Intel Core i7 processor. Similarly, the footfall pattern used for
the twelve-limbed robot over 18 time steps, C ∈ {0, 1}6×18,
was generated in 6 s.

As a simple alternative transition method, we directly
interpolate between two gaits. This is a straightforward,
common method of transitioning between compatible gaits
[19]. For our gaits, we interpolate between two matrices of
joint angles over a gait cycle. The initial gait Pa and final
gait Pb produce joint angles over time ~qa(t) and ~qb(t) as in
(1). Over the course of one cycle period T , the joint angles
for the interpolated transition at time t are:

~q(t) = ~qa(1−
t

T
) + ~qb

t

T
(3)



1

2

3

4

5

6

0 (% Gait) 100
(a)

0 (% Gait) 100
(b)

0 (% Gait) 100
(c)

0 (% Gait) 100
(d)

F
oo

t N
um

be
r

Fig. 3: Candidate footfall patterns for hexapod gait genera-
tion when one limb must become nonlocomotive. To avoid
testing every possible pattern, a small set of patterns similar
to the original are tested. Red regions represent swing states,
and white regions are stance states for each limb. (a) depicts
the original alternating tripod gait. After the reassignment
of limb 1, candidate patterns with limb 1 nonlocomotive are
tested: (b) the original pattern with limb 1 nonlocomotive, (c)
a pattern in which the swing phase of 4 and 5 are switched,
and (d) a pattern in which the swing phase of limbs 4 and
6 are separated.

This method is computationally simple, but as we show in
Sec. IV-C, may lead to the robot falling over or moving in
undesired directions.

B. Gait generation

In the procedure described in [7], footfall patterns were
input to the motion generator by a user. To enable a higher
level of autonomy for a rapidly assembled modular robot, we
tested methods for generating a footfall pattern when a subset
of limbs are reassigned to new roles. For instance, limbs may
be needed for a new manipulation or inspection task, or a
limb may no longer be usable due to hardware failure. We
developed three footfall pattern generation methods: 1) If
only one limb will be reassigned from locomotive to nonlo-
comotive, then we make a small modification to the current
footfall pattern. 2) If more than one limb will be reassigned,
then we use a pattern generation procedure similar to the
IQCP described in Section III-A. If the resulting patterns
from (1) or (2) do not result in feasible gaits, then 3) we
create a simple wave gait for the locomotive limbs.

1) One limb changes from locomotive to nonlocomotive:
If only one limb will change from a locomotive to nonloco-
motive role, as might occur in the case of a failed limb, then
for many-limbed robots a small variation may be sufficient
to regenerate an effective gait, so we create a footfall pattern
similar to the original pattern. A set of candidate gait footfall
patterns are derived from the original pattern, modified to
make the failed limb nonlocomotive, and differ by two types
of operations. In the first type of operation, the swing phase
of one limb which overlaps with another limb’s swing phase
is separated into its own step. This type of operation tends
to evolve the pattern towards a wave gait pattern where each
locomotive limb swings separately. Wave gaits have a higher
stability margin [21], but tend to be slower, than gaits with
longer swing phases like alternating tripod. In the second
type of pattern modification operation, the swing phases of
two locomotive limbs are switched. This allows gaits created

from modified patterns to form different support polygon
shapes. See Figure 3 for an example of candidate patterns.

These two operations on the original footfall pattern
result in a set of candidate patterns, one for each unique
switched swing phase or separated swing phase. To select
which candidate pattern should be used in the gait trajectory
optimization, the patterns are ranked with a static stability
heuristic. At each time step in a candidate pattern, the
distance from the center of mass to the centroid of the
support polygon is computed. Each foot placement during
this calculation is the average location of the foot in stance
phase during the original gait. The distances across time steps
are then summed. The best candidate patterns by this metric
are used to generate gaits. Depending on the computational
resources available, multiple gaits can be generated from
these candidate patterns, potentially in parallel, and the final
gait selected based on the cost at convergence. A gait with a
lower cost better fulfills optimizer objectives, such as having
a walking speed closer to the desired speed.

2) Other limb reassignments: The above method only
applies when one limb is reassigned from a locomotive to
a nonlocomotive role. When this is not the case, an entirely
new footfall pattern can be generated using an IQCP. The
procedure for this generation is the same as that of transition
generation, with the exception of altered boundary con-
straints. In the transition generation, the boundary constraints
are set to match the transition points in the first and second
gaits. Gait footfall patterns are cyclical, so these constraints
are replaced with a periodicity requirement. This algorithm,
unlike the previous, will only generate one contact pattern.

3) Fallback gait option: We observe that occasionally, the
motion optimization process of [7] fails to find satisfactory
motion plans when initialized with footfall patterns generated
via the two methods above. In this case, a wave gait footfall
pattern can be used. The locomotive limbs are each assigned
a small swing phase such that only one locomotive limb is
in swing phase at each time step.

IV. GAIT CREATION AND TRANSITION EXPERIMENTS

A. Robot hardware

To test our methods, we conducted experiments in which
we reconfigured our modules into two different legged
robots. The first, a hexapod, was composed of 20 modular
actuators [5], three for each of its six limbs and one for
each of its two grippers. The second, a dodecapod, was
composed of 38 modular actuators, three for each of its 12
limbs and one for each of its two grippers. A camera was
mounted on the end of one leg for inspection tasks. Each
actuated module contains a low-level processor which tracks
desired set points. Nonlocomotive limbs were controlled
with a gamepad joystick and transitions between gaits were
triggered via gamepad buttons.

B. Limb role reassignment demonstrations

We demonstrated our approach to gait and transition gen-
eration with a hexapod and a dodecapod robot. We emphasize
the utility of our method for redundant locomotors, like our



Hexapod initial
gait → final gait

Direct
interpolation
velocity (cm/s)

Optimized
transition
velocity (cm/s)

4→ 5 6.4 6.4
4→ 6 6.4 6.2
5→ 4 0.08 5.9
5→ 6 5.2 5.9
6→ 4 –4.0 5.2
6→ 5 4.8 6.0

TABLE I: A comparison of the simulated average forward
velocity during transitions on a hexapod robot. The “direct
interpolation” is created by linearly interpolating between
the joint trajectories of two gaits. “Optimized” transitions
are created using our two step optimization procedure. Gaits
are labelled by the number of locomotive limbs: “6” for an
alternating tripod hexapedal gait, “5” for a pentapedal gait in
which one front limb is nonlocomotive, “4” for a quadrupedal
gait in which the front limbs are nonlocomotive. The walking
speed of the interpolated transition is in many cases much
lower than the speed of both the 6.4 cm/s first and second
gaits. In one case, 6 → 4, the interpolated transition moves
the robot in the wrong direction.

robots, where limbs can be reassigned simultaneously to
peripheral tasks while still leaving enough limbs for quasi-
static locomotion. In each demonstration, the robot begins
with all limbs in locomotive roles. We choose a subset of
limbs to be reassigned, and create a new gait. We then create
a transition that maintains robot heading, orientation, and
speed. These examples show different sets of limbs used to
pick up and carry objects or to position a camera while the
robots locomote. Here we computed motion plans offline, but
because each motion plan takes under one minute to create,
they could be computed online in response to new tasks.
To emulate limb failures, between one and four limbs on the
dodecapod were randomly reassigned as nonlocomotive. Our
method was able to generate new gaits to compensate for the
loss of function, with the limitation that we assume failed
limbs remain in a relatively fixed position. The trajectory
optimization failed when the robot geometry did not allow
locomotive limbs to form a quasi-static support base, for
example, when two limbs on the left side of the hexapod
were made nonlocomotive. Other than these cases, we found
this method could generate gaits that allow limbs to be used
both for peripheral tasks and locomotion, and could generate
transitions between any two of those gaits. Snapshots of these
behaviors are shown in Figures 1, 4, and 5. The full gait
transition sequences are shown in the supplementary video.1

C. Comparison to interpolated transitions

In the experiments in Table I, each initial and final gait
were selected from hexapod gaits demonstrated in Sec-

1The supplementary video can be found at
https://youtu.be/xXfi55HPOfs

Fig. 4: A quadrupedal gait allows the use of the front limbs to
grasp and carry an object (middle). A different quadrupedal
gait allows the use of the middle limbs to grasp and carry
an object (bottom)

tion IV-B, which have varying combinations of locomotive
and nonlocomotive limbs. Interpolated transitions, created
using Equation 3, are computationally inexpensive. But, we
find that they may not achieve objectives such as maintaining
walking speed and heading. The optimized transitions consis-
tently move the robot forward, but the interpolated transitions
do not.

Interpolated and optimized transitions were also tested in
simulation for a dog-like 12-DoF quadruped. Two different
wave gaits were created, both of which were quasi-statically
stable and moved the quadruped forward. The interpolated
transitions did not maintain stability, and the quadruped fell.
An optimized transition was able to move between these
gaits while maintaining stability and forward speed, further
demonstrating the utility of transitions created through tra-
jectory optimization.

V. CONCLUSIONS

Robots with many limbs have high redundancy– limbs can
be reassigned to other roles without preventing quasi-static
locomotion. Reassigned limbs can be used for manipulation,
inspection, or left unused after limb hardware failures. We



Fig. 5: Dodecapod robot using its many limbs for manipu-
lation or inspection tasks. The four middle limbs can carry
a larger box than can any two limbs alone (top). One limb
is used to position a camera to inspect a pipe opening while
the front of the robot carries a package (bottom).

presented methods to create quasi-static gaits and transitions,
allowing us to reassign limbs on-the-fly.

Future work will extend the methods of [7] to create highly
dynamic gaits. This would allow the generation of faster-
moving gaits, especially for morphologies such as bipeds
and tripods. Additionally, this would allow gaits to better
account for the under-actuated motion of failed limbs, in
contrast to our current methods that assume failed limbs
remain in a fixed position. A limitation of our method is
that footfall pattern creation is largely decoupled from the
robot morphology and the motion plan generation. Future
work will investigate methods that explicitly consider the
interplay between these factors without a significant increase
in computation time.

We envision these methods of gait and transition gener-
ation as part of a full modular robot deployment process.
While the examples we present in this work show robots
locomoting in a straight line, these methods can be used
to allow legged robots to locomote in any direction. A
variety of gaits with varying locomotion directions could
be generated in parallel on multiple processors since each
gait is independent. A high-level planner could specify the
sequence of gait headings to follow a path, and build over
time a library of available gaits as needed. This work assumes
that the user designates which points on the robot can
be considered as “feet” during planning. Future work will
incorporate automatic recognition of potential contacts based

on module type and placement. Also, users must currently
select which legs should be reassigned, and control their
motion with a joystick. Future work will focus on the de-
velopment of automated tools for planning the reassignment
and control of nonlocomotive limbs. With such tools in hand,
a modular robot could be reconfigured, given high level task
descriptions, and deployed in a matter of minutes.

APPENDIX

The integer quadratically constrained program (IQCP) we
solve to generate footfall patterns requires a linear objective
function to be minimized subject to linear and quadratic
constraints. In this appendix, we formally describe the op-
timization problem described in Section III-A, which is
defined in full as:

minimize
C ∈ {0, 1}(nF×m),

y ∈ {0, 1}(m−1),
z ∈ {0, . . . nF }(m−1)

m∑
j=1

yj

subject to
h(C, y, z) = 0

g(C, y, z) ≤ 0

Here, C ∈ {0, 1}(nF×m) denotes the set of binary vari-
ables that encode swing or stance phases for each limb i ∈
{1, . . . nF } of the robot at each time sample j ∈ {1, . . .m}.
The set of variables y ∈ {0, 1}(m−1) corresponds to the
number of transitions between stance and swing phases, or
vice versa, at each time sample, which is computed with
the aid of auxiliary variables z ∈ {0, . . . nF }(m−1) and
constraints h(C, y, z). The first equality constraint, h1, sets
zj to be equal to the number of transitions between swing
and stance phases,

h1 = zj −
nF∑
i=1

(Ci,j − Ci,j+1)
2 = 0, ∀j ∈ {1, . . .m− 1}

The second equality constraint h2 sets y to be 1 for every
time step that exhibits at least one transition between phases,
and 0 otherwise,

h2 = (yj − 1)zj = 0, ∀j ∈ {1, . . .m− 1}

While the number of transitions between swing and stance
phases is used as a regularizer, the constraints g(C) that
guide the emergence of transition foot fall patterns, as
described in Section III-A, are formally defined here.

Constraint set g1 is a limit on the number of changes
between swing and stance phases for an individual foot. Over
a transition period, each foot is allowed to change from swing
to stance, or vice versa, at most twice,

g1 =

m−1∑
j=1

(Ci,j − Ci,j+1)
2 − 2 ≤ 0, ∀i ∈ {1, . . . nF }



g2 requires each swing to phase last more than one time step,

g2 = Ci,j − Ci,j+1 + Ci,j+2 − 1 ≤ 0,

∀i ∈ {1, . . . nF }, j ∈ {1, . . .m− 2}

g3 prevents stance phases of one time step in length,

g3 = −Ci,j + Ci,j+1 − Ci,j+2 ≤ 0,

∀i ∈ {1, . . . nF }, j ∈ {1, . . .m− 2}

and g4 prevents stance phases of two time steps in length,

g4 = −Ci,j + Ci,j+1 + Ci,j+2 − Ci,j+3 − 1 ≤ 0,

∀i ∈ {1, . . . nF }, j ∈ {1, . . .m− 3}

These two heuristic constraint sets ensure that each stance
phase lasts for at least three time steps, which we found to
empirically result in more ”natural” appearing behavior. g5
sets an upper limit to the total length of the transition phase
each foot may spend in stance phase, forcing each limb to
be in swing for at least two time steps,

g5 =

m∑
j=1

Ci,j −m+ 2 ≤ 0, ∀i ∈ {1, . . . nF }

To ensure that the feet share walking workload, g6 and g7
requires that the difference in time spent in swing phase
between any two feet is no more than two time steps,

g6 =

m∑
j=1

Ci1,j −
m∑
j=1

Ci2,j − 2 ≤ 0,

g7 = −
m∑
j=1

Ci1,j +

m∑
j=1

Ci2,j − 2 ≤ 0,

∀i1 ∈ {1, . . . nF }, i2 ∈ {1, . . . nF }, i1 6= i2

g8 requires at least three limbs in stance at each time step,

g8 = −
nF∑
i=1

Ci,j + nF − 3 ≤ 0, ∀j ∈ {1, . . .m}

This constraint helps ensure stance stability. However, not
all combinations of stance feet configurations are equally
desirable from a stability standpoint. For example, solutions
that satisfy g8 would include all feet on the left side of
a hexapedal robot being in swing, while the others are in
stance. Constraints g9 and g10 ask that at least one leg on
each side is in stance at any moment in time.

g9 = −
nF /2∑
i=1

Ci,j + 1 ≤ 0, ∀j ∈ {1, . . .m}

g10 = −
nF∑

i=nF /2+1

Ci,j + 1 ≤ 0, ∀j ∈ {1, . . .m}

REFERENCES

[1] T. Tosun, G. Jing, H. Kress-Gazit, and M. Yim, “Computer-aided com-
positional design and verification for modular robots,” in International
Symposium on Robotics Research. Citeseer, 2015.

[2] S. Bonardi, M. Vespignani, R. Moeckel, J. V. den Kieboom, S. Pouya,
A. Sproewitz, and A. Ijspeert, “Automatic generation of reduced CPG
control networks for locomotion of arbitrary modular robot structures,”
in Proceedings of Robotics: Science and Systems, Berkeley, USA, July.

[3] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems [grand challenges of robotics],” IEEE Robotics & Automation
Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[4] K. Stoy, D. Brandt, and D. J. Christensen, Self-reconfigurable robots:
an introduction. MIT Press, 2010.

[5] D. Rollinson, Y. Bilgen, B. Brown, F. Enner, S. Ford, C. Layton,
J. Rembisz, M. Schwerin, A. Willig, P. Velagapudi, and H. Choset,
“Design and architecture of a series elastic snake robot,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sept 2014, pp. 4630–4636.

[6] A. Ansari, J. Whitman, B. Saund, and H. Choset, “Modular platforms
for advanced inspection, locomotion, and manipulation,” in Waste
Management Conference, (In Press), 2017.

[7] V. Megaro, B. Thomaszewski, M. Nitti, O. Hilliges, M. Gross, and
S. Coros, “Interactive design of 3d-printable robotic creatures,” ACM
Transactions on Graphics (TOG), vol. 34, no. 6, p. 216, 2015.

[8] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: a review,” Neural networks, vol. 21, no. 4, pp.
642–653, 2008.

[9] D. J. Christensen, J. C. Larsen, and K. Stoy, “Fault-tolerant gait
learning and morphology optimization of a polymorphic walking
robot,” Evolving Systems, vol. 5, no. 1, pp. 21–32, 2014.

[10] V. Vonásek, S. Neumann, D. Oertel, and H. Wörn, “Online motion
planning for failure recovery of modular robotic systems,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 1905–1910.

[11] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[12] C. Gong, D. I. Goldman, and H. Choset, “Simplifying gait design via
shape basis optimization,” in Proceedings of Robotics: Science and
Systems, Ann Arbor, Michigan, June 2016.

[13] J. Dai, H. Faraji, C. Gong, R. L. Hatton, D. I. Goldman, and H. Choset,
“Geometric swimming on a granular surface,” in Proceedings of
Robotics: Science and Systems, Ann Arbor, Michigan, June 2016.

[14] J. D. Weingarten, G. A. Lopes, M. Buehler, R. E. Groff, and D. E.
Koditschek, “Automated gait adaptation for legged robots,” in Interna-
tional Conference on Robotics and Automation (ICRA), vol. 3. IEEE,
2004, pp. 2153–2158.

[15] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From
swimming to walking with a salamander robot driven by a spinal cord
model,” Science, vol. 315, no. 5817, pp. 1416–1420, 2007.

[16] W. Chen, G. Ren, J. Zhang, and J. Wang, “Smooth transition between
different gaits of a hexapod robot via a central pattern generators
algorithm,” Journal of Intelligent & Robotic Systems, vol. 67, no. 3-4,
pp. 255–270, 2012.

[17] G. C. Haynes and A. A. Rizzi, “Gaits and gait transitions for
legged robots,” in IEEE International Conference on Robotics and
Automation. ICRA, 2006, pp. 105–121.

[18] M. Travers, A. Ansari, and H. Choset, “A dynamical systems approach
to obstacle navigation for a series-elastic hexapod robot,” in 2016 IEEE
55th Conference on Decision and Control (CDC), Dec 2016, pp. 5152–
5157.

[19] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and
R. Siegwart, “Control of dynamic gaits for a quadrupedal robot,” in
Robotics and automation (ICRA), 2013 IEEE international conference
on. IEEE, 2013, pp. 3287–3292.

[20] Gurobi optimizer reference manual. Accessed 2017-02-28.
[Online]. Available: http://www.gurobi.com/resources/getting-started/
mip-basics

[21] S.-M. Song and K. J. Waldron, “An analytical approach for gait study
and its applications on wave gaits,” The International Journal of
Robotics Research, vol. 6, no. 2, pp. 60–71, 1987.


