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Abstract— Task and motion planning is one of the key
problems in robotics today. It is often formulated as a discrete
task allocation problem combined with continuous motion
planning. Many existing approaches to TAMP involve explicit
descriptions of task primitives that cause discrete changes in
the kinematic relationship between the actor and the objects.
In this work we propose an alternative, fully differentiable
approach which supports a large number of TAMP problem
instances. Rather than explicitly enumerating task primitives,
actions are instead represented implicitly as part of the solution
to a nonlinear optimization problem. We focus on decision
making for robotic manipulators, specifically for pick and place
tasks, and explore the efficacy of the model through a number
of simulated experiments including multiple robots, objects
and interactions with the environment. We also show several
possible extensions.

I. INTRODUCTION

To perform manipulation tasks, even simple ones such as

picking up an object, robots must solve two tightly coupled

problems. The first is decision making: what strategy should

be used to pick the object? The second is motion planning:

how to move and perform the picking motion in an optimal

way based on the selected strategy? These problems together

are a simplistic instance of the task and motion planning

problem, or TAMP. Another instance of the problem involves

several robotic manipulators that are tasked with sorting and

organizing a set of objects that are scattered around their

environment. One way to solve this problem is to assign

each robot to specific pick-and-place tasks, and then find

the optimal trajectories for all of them simultaneously. The

main question TAMP aims to address is, what would be

the optimal assignment? The challenge there stems from the

interplay between the two problems that make up TAMP:

task planning, and motion planning.

The cost of a motion plan given a specific task is hard

to predict and expensive to evaluate, and even the smallest

change to the task description can cause the motion plan

to become infeasible. Thus, TAMP approaches are often

concerned with finding efficient ways for searching in the

space of task assignments [1], [2], [3].

The combinatorial complexity of TAMP could be partly

mitigated if task planning could be formulated in a unified,

continuous way. Furthermore, and perhaps more importantly,

a continuous formulation would allow the problem to be
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Fig. 1: The number of available actions, such as handovers,

increases exponentially with the number of manipulators.

integrated in differentiable simulators and neural networks

and ultimately be a step toward high-level decision making in

complex situations. For these reasons, our goal in this paper

is to propose a fully continuous formulation applicable to a

considerable subset of the TAMP problem domain including

task assignment and motion planning. Our emphasis is on

decision-making for robotic manipulators, particularly for

pick-and-place tasks. We address this challenge by treating

task assignment in an implicit manner. The idea is, instead of

assigning a pick-and-place task, to associate robots with ob-

jects using time-dependent, real functions. These functions,

in some sense, express for each point in time a degree of

which a specific robot should hold a specific object. Hence,

in contrast to explicitly defined pick events and place events,

they only implicitly define them.

Based on this concept, we define a smooth optimization

problem that can be readily solved using gradient-based

methods, such as Newton’s method. We demonstrate the

potential of this approach in a variety of settings, including

multiple manipulators and objects. We also show that this

approach is easily extendable to handle different grasps,

handovers and more complex interactions.

II. RELATED WORK

Modern approaches for task and motion planning combine

discrete high level decision making with continuous param-

eter search in different ways. In [1] the configuration space

is discretized and combined with the action skeleton into a



discrete constraint satisfaction problem that is then handed

to a generic CSP solver. Another popular method known

as Logic Geometric Programming (LGP) [2], [3] combines

symbolic action search with a non-linear program for finding

the trajectory. The exponential growth of the discrete action

space poses challenges for longer planning horizons, for

which several extensions have been developed [4], [5].

Other approaches, e.g. [6], [7] suggest to find the trajectory

by sampling. In [6] the symbolic actions and the continuous

parameter spaces are fused and solved simultaneously using

an off-the-shelf motion planner while in [7] the domain

specific constraints are utilized for factoring the problem,

enabling efficient sampling. As can be inferred by [8],

the main differences between different approaches are how

they solve for the continuous variables and how constraint

satisfaction interacts with the search for high level action

sequences. In general, TAMP is a very active research topic,

and the review in [8] is highly recommended.

TAMP covers a wide range of problems [9], and successful

completion of a task may hinge on effective manipulation,

which is an active research field on its own [10], [11],

[12]. However, while task planning for a single manipulator

already is challenging, increasing the number of agents puts

additional emphasis on the planning and decision making

algorithms. In some settings, e.g. in a factory or in a

warehouse, less general algorithms may be sufficient. Pick

and place problems involving multiple robots and handovers

may be solved using heuristics and sampling for exploring

the search space [13]. Another option might be to consider

the individual robots in a non-cooperative fashion [14].

Planning through kinematic modes using optimization has

previously been studied in [15] and [16] in the context

of motion synthesis for computer graphics and in [17] for

trajectory planning of rigid body systems. Similarly to our

work, these contributions also rely on optimization and

additional variables for describing switches between different

modes. Sampling based methods include e.g. [18] which

extends the popular probabilistic roadmaps method [19] with

multi-modal capabilities.

A similar concurrent work found in [20] builds upon

a concept known as signal temporal logic (STL) and a

smooth approximation thereof [21], which enables a fully

continuous approximation to task planning. The formulation

proposed in [20] also features auxiliary variables similar to

the ones used in this work. However, the formulation relies

on constraints that scale quadratically with the number of

objects. Additionally, it was not demonstrated on multiple

robots, and does not include a grasping parametrization and

uses floating end effectors during the planning with joint

angles computed in a separate step.

The idea of treating naturally discrete phenomena as

continuous has also been employed in other fields, such

as topology optimization. A popular method for optimiz-

ing structural integrity is known as Solid Isotropic Micro-

Structure with Penalization, or SIMP [22], [23]. In SIMP

the target domain is divided into finite elements whose

occupancy is modeled using a continuous range of values.
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Fig. 2: Example setup with two robotic manipulators and one

movable object.

For non-porous materials fractional values are difficult to

interpret, and therefore penalization techniques are needed

to drive the occupancy to either empty or solid. However, in

our method, fractional values do not constitute an issue.

III. OVERVIEW

The archetypal trajectory optimization problem we build

upon is
min
x(t)

J (x(t))

s.t. c(x(t)) = 0,
(1)

where x(t) denotes the trajectory of all state variables, J
is the objective, e.g. shortest path, and c(x) denotes user-

specified constraints such as initial and target positions on the

trajectory. To begin our discussion, consider a scenario where

a robotic manipulator is holding a box. The final desired

placement of the box is out of reach for the robot that is

currently holding it, but there is another robot close by that

can take the box from the first robot and bring it to its goal.

This handover maneuver is a decisive high-level task that

needs to be actively chosen. An illustration is shown in 2.

The pose of the object can be seen as a link in the

kinematic chain. The pose is thus governed by the kinematic

equations that are induced by the robot holding it. Put

differently, there is a set of constraints that the box and the

robot holding it must satisfy. During a handover, this set of

constraints change in what is known as a kinematic switch.

Much of the previous work mentioned above deals with

the explicit sequencing of actions. We instead enable the

kinematic switches to emerge as a result of solving a

nonlinear program. This is made possible by mollifying the

switches. This way we can simultaneously find the action

sequence and the motion trajectory using only gradient-based

methods without relying on integer-based techniques.

This example can be expressed as an extension of (1):

min
x(t)

J (x(t))

s.t. c(x(t)) = 0

c1(x(t)) = 0 ∨ c2(x(t)) = 0 ∨ c∅(x(t)) = 0 ∀ t

where x(t) also includes the trajectory of the object. The

constraints c1(x) and c2(x) define the grasping relationship

between the object and each manipulator, and c∅ is a function



whose value is zero when the object rests on the ground.

The distinguishing feature of this problem is that only one of

these constraints needs to be satisfied at a given time. In other

words, the box must be held by one or both manipulators

and/or be on the ground, but it cannot float.

While this could potentially be formulated as a mixed

integer problem, we instead opt for a fully continuous

formulation which we detail in the next section. Our main

idea is to relax the kinematic switches in the problem

by introducing time-dependent association weights wi(t) :
[0, T ] → [0, 1], i ∈ {1, 2}. These weights signify the

association between each robot and the box, or ”how much”

the constraints c1 and c2 need to be satisfied. With these

weights, the optimization problem is transformed into a

complementarity problem:

min
x,w1,w2

J (x(t))

s.t. c(x(t)) = 0

wi(t)ci(x(t)) = 0, ∀ i ∈ {1, 2}

w∅(t)c∅(x(t)) = 0

(2)

where w∅(t) = 1 −
∑

i wi(t). Any of the constraints c1, c2
and c∅ can now become inactive by choosing the weights w1

and w2 appropriately.

IV. METHOD

The problem presented in (2) provides the foundation of

our approach. In this section we refine the formulation to

add support for task allocation, multiple objects and robotic

manipulators, and more.

Trajectories We denote the joint angles of a manipulator

i ∈ M at time t ∈ [0, T ] by mi(t) ∈ R
n. The joint

angles can be subjected to box constraints of the form

mmin
i ≤ mi(t) ≤ mmax

i that correspond to the physical joint

limits of the robot. The trajectory of an object j ∈ P is

written analogously as pj(t) ∈ R
6. Objects consist of only

one rigid body and pj thus directly describes an object’s pose

in world coordinates. We use f : Rn → SE(3) for denoting

the forward kinematic function that maps the manipulator

state mi to an end effector position and orientation in the

world coordinate frame.

Task selection The allocation of a task j to a manipulator

i is modeled using a function wij(t) : [0, T ] → [0, 1] as

outlined in III. These variables form a key component of the

path constraints that will be developed in IV-A.

Resting Objects may need to be released before they have

reached the goal pose. To ensure physically plausible behav-

ior we restrict the resting pose of the object to be in a set

of stable configurations. E.g. a cube can be placed with any

face towards the ground, implying that the elevation of the

cube as well as one rotational axis is fixed. We introduce the

functions rdj(t) : [0, T ] → [0, 1] where d corresponds to a

specific resting pose. We use these functions to construct the

resting orientation constraints in IV-B.

Grasping During handovers from one robot to another,

different grasping poses may be necessary in order to prevent

robots from colliding. In this work we use cuboid objects of

size 0.06 m×0.06 m×0.2 m. We model the grasp pose with

two degrees of freedom; one along the longitudinal axis of

the object and one being the angle between the gripper and

the local y-axis of the object. A similar parametrization has

been used in [24] with an additional degree of freedom.

We denote the longitudinal offset and the angle with δij
and θij respectively. The longitudinal offset is subject to

a box constraint that depends on the physical dimensions

of the object, i.e. δmin
j ≤ δij ≤ δmax

j . We note that the

grasping parameters are defined per manipulator-object pair

and therefore are independent of t.

For conciseness we hereafter write yij(t) =
[

wij(t) δij θij
]T

. Given the grasping parameters

and the object state pj we can define g : (pj ,yij) → SE(3)
that maps the object state and grasping parameters to a

grasping pose for the end effector in world coordinates.

A. Differentiable kinematic switches

We model the kinematic switches as path constraints that

depend on m, p as well as the auxiliary functions wij(t).
The constraint has the form

Cpos := wij (fi(mi)− g(pj ,yij)) = 0 (3)

for manipulator i and object j. In addition we constrain the

velocities of the non-actuated bodies such that they equal the

weighted sum of the velocities of the end effectors that are

currently moving it. The velocity constraint is of the form

Cvel := ġ(pj ,yij)−
∑

i∈M

wij ḟi(mi) = 0. (4)

This constraint also ensures that the velocity of an object is

zero when wij = 0 ∀ i ∈ M. Together with (3), (4) ensures

that an object will be moving only when a manipulator holds

it. These two constraints thus fully describe the dynamical

relationship between the manipulator and the objects to be

manipulated.

B. Resting constraints

For a cube or a block with six faces the resting constraint

can be expressed as a constraint on the elevation and on

one of the orientation axes of the object. The number of

constraints thus equals the number of available resting ori-

entations. For brevity we write ŵdj(t) = 1−
∑

i∈M
wij(t).

The resting constraint can then be expressed as

Crest := ŵ(t)djrdj(t)φd(g(pj ,yij)) = 0

where φd is a function that captures the difference between

the relevant rotation axis for the resting pose d as well as the

resting elevation, e.g. corresponding to a floor or a table. By

setting
∑

d rdj(t) = 1 we ensure that at least one constraint

is active when ŵ(t)dj > 0.

C. Collisions

Collision free trajectories are ensured by imposing a

collision constraint of the form

Ccollision := ccollision(Ka(m,p),Kb(m,p)) ≥ 0 ∀ a, b ∈ C



where Ka,Kb denote a pair of forward kinematic functions

for collision primitives a, b ∈ C in the scene and the value of

ccollision is proportional to the squared distance between the

collision primitives and m,p denote the stacked trajectory

vectors. We refer the reader to [25] for details.

D. Trajectory optimization problem

By stacking the manipulator and object trajectories as well

as the grasping parameters into m, p and y respectively we

can now write the trajectory optimization problem as

min
m,p,y

J (m,p,y)

s.t. Cpos = 0 ∀ i ∈ M, j ∈ P

Cvel = 0 ∀ j ∈ P

Crest = 0 ∀ j ∈ P,

Ccollision ≥ 0 ∀ a, b ∈ C

mmin
i ≤ mi ≤ mmax

i ∀ i ∈ M

δmin
j ≤ δij ≤ δmax

j ∀ i ∈ M, j ∈ O

(5)

where J is an objective function. In the experiments we also

penalize joint velocities and accelerations of the manipula-

tors, i.e.

fv(mi) := ∥ṁi∥
2

and

fa(mi) := ∥m̈i∥
2

as well as the end effector velocities

fee(mi) := ∥ḟi(mi)∥
2.

J then reads

J =
∑

i∈M

(β1fv(mi) + β2fa(mi) + β3fee(mi))

where βl ∈ R, l ∈ {1, 2, 3} are constant weights.

The constraints in (5) are sufficient for preventing a single

manipulator from holding multiple objects simultaneously.

However, in our numerical experiments we have found that

adding an additional constraint that limits the capacity of

the manipulators is beneficial for guiding the optimization.

To prevent manipulators from acting on multiple objects

simultaneously we introduce a capacity constraint of the form

Ccap :=
∑

j∈P

wij(t) ≤ 1 ∀ t ∈ [0, T ],

which prevents a single manipulator from being fully respon-

sible for multiple objects simultaneously.

E. Constraint manifold

At the core of our formulation are the position and velocity

constraints (3)(4). Their most important property becomes

apparent only when the constraints are considered over time.

In order to illuminate this property we study the constraints

in a one dimensional setting with one free manipulator

located at m : t → R and a point object located at

Fig. 3: Level sets of (7). Non-zero velocities of a object-

manipulator pair are feasible simultaneously only for w = 1.

p : t → R and a constant weight w. The position and velocity

constraints then reduce to

w (m(t)− p(t)) = 0

and

ṗ(t)− wṁ(t) = 0 (6)

respectively. The constraint violation over time t ∈ [t1, t2]
can be quantified using the L2 norm:

d =

∫ t2

t1

(w (m(t)− p(t)))
2
+ (ṗ(t)− wṁ(t))

2
dt. (7)

From (7) we can deduce that:

1) If w = 0, the terms corresponding to the position

constraint and the manipulator velocity vanish, and

thus it must hold that ṗ(t) = 0.

2) If w ̸= 0, the position of the manipulator and the object

must coincide over the whole time span for the first

term to vanish. Since the position of the manipulator

and the object must coincide over time, the velocity

of the manipulator and the object must be the same.

Thus, in order for the velocity terms to cancel out, it

must either hold that w = 1 or ṗ(t) = ṁ(t) = 0.

This property can be visualized using the level sets of (7)

when m(t1) = p(t1) (Fig. 3).

Every additional manipulator will add a position constraint

as well as a velocity term of the form −wiṁi(t) to (6).

Thus, when multiple manipulators are moving the object, all

of their velocities must be equal to the velocity of the object,

and for the (non-zero) velocity terms to cancel out it must

hold that
∑

i wi = 1. Due to the shape of the constraint

manifold, the sum of the weights associated with one object

will tend towards either 0 or 1. Individual weights between 0

and 1 appear when multiple robots are transporting the same

object simultaneously. Our formulation should therefore not

be interpreted as a relaxation of the corresponding mixed

integer problem where the weights are binary.
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Fig. 4: The association weights for a manipulator moving two

objects. The solutions are obtained before and after adding

fa(p1) and fa(p2) to the objective function.

F. Nonlinear program

We transform (5) into a nonlinear program in order to

solve it numerically. We model the trajectories using cubic

Hermite splines on the N − 1 segments that are defined by

N time points. For wij and rdj we use piece wise constant

functions defined on N−1 segments. Finally we convert the

constrained nonlinear program to an unconstrained problem

by applying quadratic and cubic penalty functions to the

equality and inequality constraints respectively and solve

it using the Gauss-Newton method. We use CHOLMOD

[26] for solving the emerging linear system and [25] for

collision avoidance. The position and velocity constraints

(3)(4) are evaluated at the end points as well as the midpoint

of every segment, and the collision constraints at 11 equally

spaced points on each segment in order to provide sufficient

coverage.

The benefit of the continuous association weights detailed

in IV can be demonstrated experimentally. Consider a setup

containing two objects that need to be picked up and placed

in a different position on the floor, and one manipulator

capable of moving the objects. Solving the optimization

problem results in a schedule for moving the blocks.

Next we add two additional terms to the objec-

tive that captures the acceleration of the objects. We

continue the optimization with the updated objective

Ĵ := J + fa(p1) + fa(p2). The resulting schedule is

shown in Fig. 4 with a trajectory length of 9 segments.

As can be seen, the new terms influence the length of the

time windows during which the objects are moving. This

shows that the emerging schedule is directly affected by the

objective function.

V. RESULTS

We evaluate the formulation (5) by applying it to a number

of scenarios in a simulated environment. The experiments

were implemented in C++ and executed on a desktop com-

puter equipped with an 16-core AMD Ryzen 5950X 3.4 GHz

CPU and 32 GB of RAM. All tasks are designed such that

they can be solved by the robots in the scene. The association

weights wij are initialized to 0.5 unless stated otherwise.

1.4 s 2 s 7 s

1.4 s 5 s 7 s

Fig. 5: When the manipulators are separated by a wall the

robots must cooperate in order to move the block from the

start to the goal pose (outlined in green and red). When the

wall is removed the block can be moved from the start to

the goal pose by a single robot.

A. Environmental influence

This experiment demonstrates how the allocation of ob-

jects to manipulators is affected by obstacles in the environ-

ment. The scene consists of one fixed UR5 and a Kinova

mounted on an omnidirectional wheeled platform. We use

a trajectory consisting of 9 segments, i.e. 10 discrete time

points where the joint values of the manipulators and root

position of the Kinova platform are initialized to a resting

state. The trajectory of the block is initialized such that the

final state corresponds to the goal pose while all other states

are initialized to the starting pose.

Fig. 5 shows key points of the emerging trajectories.

The wall, when present, is placed such that it prevents the

Kinova platform from directly reaching for the package and

transporting it to the goal position. The robots may thus

cooperate, and in the resulting trajectory the block is first

lifted by the UR5 and handed over to the Kinova platform,

which brings the block to the goal position. When the wall

is absent (all other parameters being equal) the task is

completed by only the Kinova platform.

B. Multiple moving objects

This experiment consists of three blocks that need to

be moved, and four stationary manipulators arranged in a

rectangular pattern between the start and goal positions of

the blocks. In this experiment we use a trajectory consisting

of 13 segments.

The initialization is created by linearly interpolating the

trajectories of the blocks and distributing them over time. An

illustration of the heuristic schedule is shown in Fig. 6. We

then execute ten iterations of the Gauss-Newton solver while

keeping the trajectories of the blocks fixed. The resulting

manipulator trajectories are then used for initializing the

actual optimization where the trajectories of the blocks are

included. The solution is captured in Fig. 7. Noteworthy is

that the solution contains a segment where one of the blocks

is placed to rest on the ground before being picked up again

and transported to the goal position. The association weights
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Fig. 6: Tasks involving multiple objects benefit from initial-

ization. We construct the initialization by linearly interpolat-

ing the poses of the movable objects within non-overlapping

time windows.

3.5 s 7 s

Fig. 7: The second experiment requires multiple handovers

for successful completion.

for the blocks are visualized in Fig. 8, showing one block

being at rest at time 3-4 s.

C. Including interactive objects

In the previous experiments the starting pose of the blocks

are directly reachable by one or more manipulators. However,

oftentimes the object of interest can be reached only after

manipulating the environment, such as by opening a drawer.

Interactive objects can be directly included into (5) as agents

subject to appropriate constraints.

We include a drawer by treating it simultaneously as an

object that can be moved and as a manipulator equipped with

an end effector that can hold objects. The drawer is thus

subject to a velocity constraint which allows it to move only

when actuated by another manipulator, and a corresponding

pose constraint attached to the handle of the drawer (see (4)

and (3)). The start pose of the block is inside of the closed

drawer while the goal pose is on the table next to the robot as

shown in Fig. 9. We initialize the trajectory of the block by

linearly interpolating between the start and the goal poses.

The trajectory of the drawer is initialized to the resting pose,

i.e. closed, while the trajectory of the UR5 is initialized to
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Fig. 8: Association weights between the manipulators and

the blocks as a function of time. At time 3-4 s the middle

block is placed on the ground before being picked up again.

2 s 6.5 s

Fig. 9: The formulation also supports interactive objects.

Here the drawer needs to be opened before the block can

be retrieved.

the rest state. The association weight between the drawer and

the block is initialized to 1. The resulting trajectory features

the UR5 opening the drawer before reaching for the block

and placing it on the table.

D. Extension for multiple grasping orientations

The the formulation in IV provides some flexibility in

choosing the grasp pose through the longitudinal offset δij
and the angle θij , but the grasping orientation is still fixed

around the two remaining axes of the object. However, the

blocks used in the previous examples allow four distinct

grasping orientations around the longitudinal axis. In this

section we show how the formulation in IV can be extended

in order to enable all of these orientations.

We introduce the functions γijk : [0, T ] → [0, 1] that

denote the association of a particular grasping orientation

k between an object j and a manipulator i. The position

constraints (3) can now be replaced with

γijk(t)wij(t) (fi(mi)− ĝk(pj ,yij)) = 0,

where ĝk is the target grasp pose after applying

the offset corresponding to index k. By also setting
∑

k γijk(t) = 1 ∀ i ∈ M we can ensure that at least one

alternative will be active.

The updated formulation can be used to solve e.g. reori-

entation problems. In Fig. 10, two manipulators are tasked

to reorient a block such that the face that is initially facing

upwards will be facing towards the ground at the end. The

values of γijk are shown in Fig. 11. The reorientation of

the block could in this case be completed with only one

handover, however, the obtained solution is a local minimum

featuring four handovers. In this experiment the trajectory

of the block has been initialized to a linearly interpolated

trajectory between the start and the goal pose while the

manipulator trajectories are initialized to the rest pose.

E. Weight derivative limit

As discussed in IV-E, the formulation enables multiple

robots to seamlessly transport a single package. We can

induce this behavior by introducing an additional constraint

that limits the rate of change of the association weights wij .

This constraint is of the form

C∆+
w

:= ẇij ≤ ∆+
w

C∆−

w

:= ẇij ≥ ∆−
w



2 s 7.0 s

Time (s)
0 1 2 3 4 5 6 7 8 9

W
ei

g
h

t 
(1

)

0

1
Manip. 1

Manip. 2

Fig. 10: Here two robots are reorienting a block such that the

face that is initially facing upwards will be facing towards

the ground.
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Fig. 11: The orientation weights γijk(t) as a function of

time. Manipulator 1 is grasping the block from two different

directions while manipulator 2 is using three different ones.

The constraint becomes active when both γijk(t) and wij(t)
are greater than zero.

where ∆+
w and ∆−

w denote the upper and lower limit of the

derivatives.

This constraint causes the pick-up and release phases to

be extended. The weights now need 1
∆+

w

time units to switch

from 0 to 1, which can be useful e.g. in order to provide

enough time for the grippers to open and close during a

pick-up or a handover. As discussed in IV-E, the velocity

can be non-zero only when the weights of one object sum

up to one, and therefore the velocity of both the end effector

and the object will be zero when the object is picked up and

dropped on the ground. During a handover the object may

still move as long as the weights sum up to 1. An experiment

with two UR5s where the upper and lower derivative limits

are set to 1
2 and − 1

2 respectively is shown in Fig. 12.

F. Optimization runtime

Finally we study how increasing the number of manip-

ulators impacts the optimization. In this experiment we

assemble UR5s on a line with the task of moving a block
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Fig. 12: Two UR5s performing a handover where the switch-

ing time is constrained. During time segments 1-2 s and 7-8

s, the sum of the association weights is less than 1, and as

discussed in IV-E, the velocity constraint (4) then ensures

that the object stays in place.
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Fig. 13: The objective value as a function of the iteration

number with different numbers of manipulators.

from the start of the line to the end. Adding manipulators

increases the number of iterations needed for convergence,

as shown in Fig. 13. The five manipulator setup is shown in

Fig. 1. The runtime and the number of variables for each

experiment is shown in I. The table must be interpreted

carefully as the exact task description has a significant impact

on the optimization landscape and thus also the number

of iterations needed for convergence. The measurements

reported in I also include rendering and are intended as rough

estimates only.

VI. DISCUSSION AND CONCLUSION

The results in V show that decisions regarding high

level actions such as pick, place and open can be obtained

implicitly by solving a nonlinear optimization problem. The

actions emerge automatically as part of the solution without

the need to manually specify which manipulator should be

working, or even when.



TABLE I: Number of variables and average runtime for

different number of manipulators. The reported runtime is

the average of four measurements.

Manipulators 1 2 3 4 5

Wall time (s) 9.2 20.3 28.5 36.5 46.3
Number of variables 305 436 567 698 829

Trajectory optimization involving collision avoidance is in

general a non-convex problem. Gradient based methods use

only local information and may therefore struggle in finding

new trajectories that lie far away from the initial guess. This

can be demonstrated by constructing a variant of the drawer

experiment from V-C where the goal position of the block

is placed on top of the drawer which did not converge to

any reasonable solution in our experiments. This problem

has also been identified in [20]. Finding the global optimum

of the problem requires more sophisticated optimization

algorithms that are capable of exploring the optimization

space efficiently. Existing TAMP algorithms may in some

cases be able to work around this problem by including the

actions themselves into the problem formulation, turning the

actions into conditions for solving the optimization problem.

Additionally it is not entirely clear how the formulation

could be extended to support objects with inherently discrete

states, e.g. light switches, while still being continuous. Our

formulation also does not have any notion of temporal

precedence, i.e. objects may arrive at the goal position in

an arbitrary order. This can, however, be mitigated to some

extent by careful initialization.

We believe that the formulation presented here can be

useful, especially as part of a larger TAMP algorithm. Even

when combined with existing TAMP algorithms, by finding

some actions implicitly it would be possible to reduce

the number of actions that must be considered during the

sequencing. As the optimization method used in this work

might have difficulties in highly non-convex problems we

would additionally like to investigate the use of sampling

based methods for handling the end effector constraints.
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