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Many flexible structures are characterized by a small number of compliant
modes, i.e., large deformation paths that can be traversed with little mechani-
cal effort, whereas resistance to other deformations is much stiffer. Predicting
the compliant modes for a given flexible structure, however, is challeng-
ing. While linear eigenmodes capture the small-deformation behavior, they
quickly divert into states of unrealistically high energy for larger displace-
ments. Moreover, they are inherently unable to predict nonlinear phenomena
such as buckling, stiffening, multistability, and contact. To address this lim-
itation, we propose Nonlinear Compliant Modes—a physically-principled
extension of linear eigenmodes for large-deformation analysis. Instead of
constraining the entire structure to deform along a given eigenmode, our
method only prescribes the projection of the system’s state onto the linear
modewhile all other degrees of freedom follow through energyminimization.
We evaluate the potential of our method on a diverse set of flexible struc-
tures, ranging from compliant mechanisms to topology-optimized joints
and structured materials. As validated through experiments on physical
prototypes, our method correctly predicts a broad range of nonlinear effects
that linear eigenanalysis fails to capture.
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1 INTRODUCTION
Understanding and designing flexible structures that undergo large
deformations is a challenging problem. For small displacements,
linear eigenanalysis offers a succinct description of a mechanical
system through a set of eigenmodes that characterize its behavior in
a physically meaningful way. This linearity assumption is warranted
in engineering problems for which preventing large deformations is
a central goal. Flexible metamaterials, compliant mechanisms, and
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Fig. 1. Designing a compliant switch. While linear eigenanalysis identifies
switch activation as a compliant direction for an initial design (top row),
it is inherently unable to predict nonlinear effects such as bistability. Our
method computes nonlinear continuations of the linear eigenmodes for the
entire range of motion of the switch, revealing that the initial design does
not exhibit a second equilibrium state (top row, green curve). An improved
design (bottom row) with marginally larger travel for the center flexure
maintains lateral stiffness (red curve) while achieving the desired bistability
(green curve).

elastic joints, however, are examples that undergo large deforma-
tions by design. In this finite-deformation setting, linear eigenmodes
rapidly become inadequate as they predict deformations with un-
realistically high energy. Furthermore, linear modes are inherently
unable to capture nonlinear effects such as stiffening, buckling, and
multistability, all of which are phenomena frequently encountered
in flexible structures.
While the problem of nonlinear characterization and modeling

of local material properties is well studied, there is no formal frame-
work for analyzing the global interplay between geometry, material,
and mechanics. Nonlinear finite element solvers are able to predict
the compliant behavior in principle, but defining the right forc-
ing functions is very challenging, in particular for geometrically
complex models, and requires expert knowledge.
To address this problem, we propose a formulation that extends

linear eigenmodes to the nonlinear regime of large deformations in
a natural and physically principled way: instead of constraining the
entire structure to deform along a given eigenmode, our method
only prescribes the projection of the system’s state onto the linear
eigenmode—all other degrees of freedom follow through energy
minimization in the orthogonal subspace. The resulting nonlinear
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compliant modes coincide with the linear eigenstructure at the
origin while extending it in an energetically optimal way for larger
deformations. The variational viewpoint we present directly leads
to a constrained optimization problem, allowing us to leverage
well established numerical solution methods. We thus arrive at an
effective and robust algorithm for computing nonlinear compliant
modes characterized by buckling, stiffening, multistability, and other
forms of nonlinearity.
We analyze our method on a diverse set of flexible structures

ranging from compliant mechanisms to topology-optimized joints
and structured materials. We additionally validate our simulation
results through experiments on physical prototypes. Our findings
indicate that our method is able to correctly predict a broad range
of nonlinear effects that linear eigenanalysis fails to capture.

2 RELATED WORK
Designing for Flexibility. The graphics community has in recent

years seen an increasing interest in computational design tools for
flexible structures [Guseinov et al. 2017; Megaro et al. 2017; Panetta
et al. 2017; Pérez et al. 2017; Skouras et al. 2014] and materials
[Malomo et al. 2018; Martínez et al. 2016, 2019; Panetta et al. 2015;
Schumacher et al. 2018]. Like our research, many of these efforts tar-
get designs that exhibit large elastic deformations. However, while
each of them solves a specific design problem for a well-defined
parameter space and known inputs, we address the fundamental
and general question of how to characterize the finite-deformation
behavior of flexible structures from shape and material descriptions.

Despite their limitation for large deformations, linear eigenmodes
have proven useful for several applications in the field of computa-
tional fabrication. One line of work leverages resonance simulation
or eigenmode optimization for designing physical artifacts with
desired sound properties [Bharaj et al. 2015; Musialski et al. 2016;
Umetani et al. 2010, 2016]. Another application is for analyzing and
optimizing the stability of designs 3D-printed withmaterials that fail
beyond the small-deformation regime [Zhou et al. 2013]. In a similar
spirit, Zehnder et al. [2016] detect unwanted structural flexibility in
ornamental curve networks using sparse linear eigenanalysis.
While the above methods target the small-deformation regime,

an exception to this rule is the recent work by Tang et al. [2020] for
designing nonlinear elastic systems with large-amplitude oscilla-
tions. However, while Tang et al. focus on dynamic, periodic motion,
our goal is to find large deformations in static equilibrium.

Subspaces for Physics-Based Modeling & Simulation. Although our
goal is not to create subspaces, our method shares some concepts
that have proven useful for reduced simulation. An approach that is
widely used in engineering for vibration problems is linear modal
analysis (LMA) [Shabana 1990]. In essence, LMA computes a low-
dimensional linear basis by solving a generalized eigenvalue prob-
lem involving energy Hessian and mass matrix of a discrete elastic
system and discarding eigenvectors beyond the spectrum of interest.
While this approach is efficient and effective for small deformations,
the limitations of truncated linear eigenbases for larger deforma-
tions are well known and documented; see, e.g., [Hildebrandt et al.
2011] for a discussion.

Many different strategies have been suggested in order to mitigate
the limitations of linear eigenmodes in the finite-deformation regime
while preserving their predictive power for small deformations. No-
table examples include the addition of eigenmode derivatives [Barbič
and James 2005], modal deformations [von Tycowicz et al. 2013], or
higher-order descent directions [Hildebrandt et al. 2011], adaptive
replacement of eigenvectors [Hahn et al. 2014; Kim and James 2009],
and correction of linearization artefacts [Barbič et al. 2012; Pan
et al. 2015]. As one particular example, Choi and Ko [2005] propose
modal warping as a means to alleviate artifacts of linear modes due
to rotations. With a similar motivation, Huang et al. [2011] propose
rotation strain extrapolation to reduce linearization artifacts. While
offering improvements in visual quality for animation purposes, nei-
ther modal warping nor rotation-strain extrapolation are physically
accurate since they rely on geometry-reconstruction steps that are
not physically motivated.

While most works aim at constructing efficient linear subspaces, a
notable exception is the recent work by Fulton et al. [2019] who infer
nonlinear subspaces from full-space simulation data using machine
learning. Holden et al. [2019] follow a similar idea but learn nonlin-
ear corrections for linearized cloth deformations. As a conceptual
link, our nonlinear eigenmodes can likewise be considered non-
linear corrections to their linear counterparts. However, whereas
Holden et al. approximate corrections based on data, they emerge
as the solution to a constrained energy minimization problem in
our formulation.

As a core component of our approach, the concept of defining non-
linear motion by minimizing energy orthogonal to a given subspace
has also been used successfully in animation, e.g., for augmenting
artist-created animations with simulation-based secondary motion
within [Hahn et al. 2012] or orthogonal to [Zhang et al. 2020] a
given rig-space, or for example-based simulation of elastic materials
[Martin et al. 2011].

Nonlinear Normal Modes. The study of vibrations is a central
problem in many engineering disciplines. But whereas the linear
theory for small deformations is well understood, the generalization
to the nonlinear setting is far from obvious and there are many
different concepts that can collectively be referred to as nonlinear
normal modes. While an exhaustive review of this field is beyond
the scope of this work, we mention here two main directions on
which much of the existing literature builds: Rosenberg’s princi-
ple of synchronous oscillation [1966], and the concept of invariant
manifolds due to Shaw and Pierre [1991; 1993]. While our problem
setting (statics vs. dynamics) and formulation (implicit definition
vs. explicit approximation) are very different, we draw inspiration
from the core idea of Shaw and Pierre: we obtain nonlinear com-
pliant modes by parameterizing our flexible structures by a single
generalized coordinate—all remaining degrees of freedom follow
from the governing principle of energy minimization.

3 THEORY
To set the stage for nonlinear compliant modes, we start by review-
ing linear eigenmodes in the small deformation setting (Sec. 3.1).
We then introduce a variational view on eigenmodes (Sec. 3.2) that
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Fig. 2. Left : Comparison between the first three linear modes (red) and our nonlinear compliant modes (blue) on a thin sheet. Middle: energy as a function of
displacement projected along the eigenmode for the first three modes (solid, dashed and dotted lines, in order) . Right : additional modes with increasing
stiffness.

serves as the basis for our nonlinear formulation, which we develop
in Sec. 3.3.

3.1 Linear Eigenmodes
Consider a discrete mechanical system represented through 𝑛 nodes,
with x ∈ R3𝑛 and X ∈ R3𝑛 describing its current and reference
configurations, respectively. Let 𝐸 (x;X) denote the discrete elastic
energy, f = −∇𝐸 the corresponding internal forces, and H = ∇2𝐸
its Hessian. For later use, we also introduce the displacement vector
u = x − X. The linear eigenspace of H is a set of 3𝑛 eigenvectors
e𝑖 ∈ R3𝑛 with corresponding eigenvalues 𝜎𝑖 that are obtained by
solving the symmetric eigenvalue problem1

He𝑖 = 𝜎𝑖e𝑖 , eT𝑖 e𝑗 = 𝛿𝑖 𝑗 . (1)

A physical interpretation of this eigenstructure can be obtained
using a quadratic expansion of the energy. For sufficiently small
displacements u around the origin, we have

𝐸 (X + u) = 𝐸 (X) − f (X)Tu + 1
2
uTHu =

1
2
uTHu , (2)

and, consequently, f (X + u) = −Hu. In particular, when choos-
ing a displacement u(𝑡) = 𝑡e𝑖 along an eigenvector, we see that
Hu(𝑡) = 𝑡𝜎𝑖e𝑖 describes a force collinear with the displacement
from which it stems. While this force-displacement collinearity
along eigenmodes is a charateristic property for small displace-
ments, it cannot be expected to hold for nonlinear forces and finite
displacements. However, a reformulation of this condition provides
opportunities for generalization.

3.2 Variational View
Consider the constrained optimization problem

min
u

𝐸 (X + u) s.t. eT𝑖 u = 𝑡 , (3)

for an arbitrary but fixed displacement magnitude 𝑡 and a given
eigenmode e𝑖 . The corresponding Lagrangian is

L = 𝐸 (X + u) − 𝜆(eT𝑖 u − 𝑡) (4)

1To simplify the exposition, we focus on the eigenvectors of H with orthogonality
conditions based on the canonical Euclidean metric. In practice, however, we enforce
mass-orthogonality among eigenvectors to achieve resolution-independent weighting
of individual nodes, leading to generalized eigenvectors computed through a generalized
eigenvalue problem.

where 𝜆 is a Lagrange multiplier. The first-order optimality condi-
tions are

∇uL = ∇𝐸 (X + u) − 𝜆e𝑖 = −f (X + u) − 𝜆e𝑖 = 0 , (5)

∇𝜆L = 𝑡 − eT𝑖 u = 0 . (6)

For small displacements we have −f (X + u) = Hu and, since H is
positive definite at the origin, the above optimization problem is
a convex quadratic program with a unique solution u = 𝑡e𝑖 . Con-
sequently, we see that linear modes u𝑖 (𝑡) = 𝑡e𝑖 are minimizers of
elastic energy subject to modal displacement constraints. This obser-
vation provides a direct opportunity for nonlinear generalization.

3.3 Nonlinear Compliant Modes
Motivated by the variational view on linear eigenmodes expressed
through (3–6), we define nonlinear compliant modes as

n𝑖 (𝑡) = X + argmin
u

𝐸 (X + u) s.t. eT𝑖 u = 𝑡 . (7)

This formulation ensures that nonlinear compliant modes corre-
spond to linear eigenmodes at the origin while extending them
in an energetically optimal way for larger deformations. Another
perspective is obtained when rewriting (7) as

n𝑖 (𝑡) = l𝑖 (𝑡) + argmin
y

𝐸 (l𝑖 (𝑡) + y) s.t. eT𝑖 y = 0 , (8)

where l𝑖 (𝑡) = X + 𝑡e𝑖 denotes displacement along the linear eigen-
mode. This shows that nonlinear compliant modes follow a pre-
scribed displacement along their corresponding linear eigenmode
while minimizing the elastic energy in the space orthogonal to it.
The displacement y = n𝑖 − l𝑖 can be interpreted as a nonlinear
correction to the linear eigenmode.

Unlike for small displacements, convexity cannot be guaranteed
for finite deformations due to the nonlinearity of 𝐸. As explained
below, we deal with potential indefiniteness by requiring that points
along n𝑖 always correspond to true minimizers, not merely saddle
points. The reasoning behind this strategy is that, whereas con-
strained minimizers are locally stable configurations, saddle points
correspond to unstable equilibria that are unlikely to occur in phys-
ical reality.

3.4 Algorithm
We compute nonlinear compliant mode 𝑖 by solving (7) for discrete
values of 𝑡 = 𝑡 𝑗 ∈ R, 𝑡 𝑗 ∈ [0, 𝑡1, . . . , 𝑡max] with 𝑡 𝑗+1 > 𝑡 𝑗 , yielding
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a set of samples n𝑖, 𝑗 . To this end, we employ Newton’s method in
conjunction with standard line-search. Using (5) and (6) we can
directly find the first-order (necessary) conditions for (7), i.e.,

∇𝐸 (n𝑖 (𝑡)) − 𝜆(𝑡) e𝑖 = 0 , (9)

eT𝑖 (n𝑖 (𝑡) − X) − 𝑡 = 0 . (10)

Here we stress the dependence of the Lagrange multiplier on the
mode parameter, i.e. 𝜆 = 𝜆(𝑡). For any time step 𝑡 𝑗 we find the
pair (n𝑖, 𝑗 , 𝜆 𝑗 ) through Newton’s method. For each iteration 𝑘 , we
first compute a search direction by solving the linearized first-order
optimality conditions,[

H(n𝑘
𝑖,𝑗
) −e𝑖

−eT
𝑖

0

] [
Δn𝑘

Δ𝜆𝑘

]
=

[
−∇𝐸 (n𝑘

𝑖,𝑗
) + 𝜆𝑘

𝑗
e𝑖

eT
𝑖
(n𝑘

𝑖,𝑗
− X) − 𝑡

]
. (11)

We then use a backtracking line-search to find a configuration
n𝑘+1
𝑖, 𝑗

= n𝑘
𝑖,𝑗

+ 𝛽Δn𝑘 for 0 < 𝛽 < 1 that yields a sufficient decrease in
the merit function

𝜙 (x; 𝜇) = 𝐸 (x) + 𝜇 |eT𝑖 (x − X) − 𝑡 | . (12)

Likewise, the Lagrange multiplier 𝜆𝑘+1
𝑗

is updated with 𝛽 Δ𝜆𝑘 . To
determine the constraint coefficient 𝜇, we first compute

𝜇𝑘 =
∇𝐸𝑘Δn𝑘 + 1

2Δn
𝑘TH𝑘Δn𝑘

0.5 |eT
𝑖
(n𝑘 − X) − 𝑡 |

, (13)

and then set 𝜇 = max(𝜇𝑘−1, 𝜇𝑘 ); see [Nocedal and Wright 2006], Eq.
(18.36). If necessary, we re-solve system (11) with exponentially in-
creasing diagonal regularization on H until Δn𝑘T HΔn𝑘 > 0, which
ensures that Δn𝑘 is a descent direction for 𝜙 [Nocedal and Wright
2006].

Discrete Steps. To compute a nonlinear mode we solve system
(9-10) for a sequence of discrete steps 𝑡 𝑗 with uniform step size. The
main consideration in choosing the step size is to achieve sufficient
resolution to interpret the resulting force- and stiffness plots, or
examine the corresponding motion of the object. When solving for
n𝑖 (𝑡 𝑗 ) we initialize the algorithm with the previous step n𝑖 (𝑡 𝑗−1),
which speeds up computation if the two configurations are close.
It should further be noted that the eigenvectors e𝑖 are not unique,
but only defined up to the sign. To explore both cases, one can
equivalently use a sequence of 𝑡 𝑗 < 0.

Excluding Rigid Motion. If no boundary conditions are imposed,
H(X) has a six-dimensional null-space corresponding to rigid body
transformations. This is a direct consequence of the elastic energy’s
invariance to translation and rotation. Away from the origin, how-
ever, the null-space only consists of translations, since non-zero
forces are not invariant under rotations. To remove all potential
singularities due to rigid motion, we ask that

∑
𝑙 Δ𝑛

𝑘
𝑙

= 0 and∑
𝑙

(
𝑋𝑙 × Δ𝑛𝑘

𝑙

)
= 0, where Δ𝑛𝑘

𝑙
, 𝑋𝑙 ∈ R3 are segments of Δn𝑘 and X

that correspond to node 𝑙 . These conditions are enforced by adding
the corresponding constraint gradients to system (11).

Mass Orthogonality & Normalization. To minimize the depen-
dence of eigenmodes on the specific choice of discretization, we
replace the canonical dot product in (1) with a corresponding mass-
orthogonality condition, eT

𝑖
Me𝑗 = 𝛿𝑖 𝑗 , using a diagonalized mass

matrix M. We then solve the generalized symmetric eigenvalue
problem He = 𝜎Me as described in Sec. 4.7. The diagonal elements
of M represent the lumped mass of the node corresponding to each
degree of freedom, whereby the total mass of the structure is nor-
malized to one. Accordingly, also the inner product of the linear
constraint in (7) is weighted and becomes eT

𝑖
Mu = 𝑡 , such that 𝑡

can be seen as an average displacement of the structure along the
normalized eigenmode. We will refer to this measure as the projected
displacement.

Local Restriction. Although prescribing displacement along a lin-
ear eigenmode l(𝑡) removes only one degree of freedom from the
system, it generally affects all nodes in the mesh. In practice, how-
ever, it can be desirable to restrict locations at which displacement
can be prescribed to specific active regions such as the boundary
of the mesh. By enforcing the displacement constraint only for spe-
cific components of the linear eigenmode, our formulation can be
extended to support this localization in a straightforward manner;
see Appendix A.

3.5 Discussion
Invariant Manifolds. As is evident from (7), our formulation pre-

scribes the system’s state along one generalized coordinate—a linear
eigenmode—while the remaining degrees of freedom follow from
the governing physical principles. This concept is similar to, and
indeed inspired by, the seminal work by Shaw and Pierre [1991]
on nonlinear normal modes, who construct their modes by local
approximation of invariant manifolds arising from the equations of
motion. In contrast to this and other approaches using localized
invariant manifolds for characterizing dynamic systems (see e.g.
[Jain and Haller 2022]), we investigate quasi-static systems. Further-
more, through minimization of energy each individual point on our
nonlinear compliant modes is defined implicitly, enabling efficient
global computation. Global computation of invariant manifolds of
dynamic systems, on the other hand, remains a major challenge for
high-dimensional systems [Jain and Haller 2022], in part because
they generally do not offer such an implicit definition and must be
evolved from a known starting point [Krauskopf et al. 2005].

Physical Interpretation. An important benefit of the proposed
nonlinear modes lies within the intuitive physical interpretation
they offer. The first-order optimality condition (9) can be viewed
as the equilibrium condition for an elastic system subject to an
external force fext (𝑡) = 𝜆(𝑡)e𝑖 . This observation suggests that a
configuration n𝑖 (𝑡) can be reached simply by applying a force with
direction e𝑖 and magnitude 𝜆(𝑡) to the system. We call this a modal
force . However, to obtain a full picture of the physical behaviour
of an elastic system, it is indispensable to also consider stability. It
is easy to verify that the first-order optimality conditions (9) are
shared with a similar, but unconstrained system defined by the
potential energy 𝐸 (x) + xTfext. The well established conditions
for stable equilibrium in this case are H(x) ≻ 0, i.e., the Hessian
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must be positive definite [Eriksson and Nordmark 2019]—which is
simply the second-order optimality condition for the unconstrained
minimization problem

min
x

𝐸 (x) + xTfext . (14)

In comparison, the second-order optimality condition for (7) can be
expressed as

pT H(x) p ≥ 0 ∀p ∈ R3𝑛, ∥p∥ > 0, eT𝑖 p = 0 , (15)

see, e.g., [Nocedal and Wright 2006]. This more relaxed condition
stipulates convexity for 𝐸 (x), and thus stability of the system, on
the subspace orthogonal to the generalized coordinate e𝑖 . Along e𝑖 ,
however, it permits negative curvature in the energy. For sufficiently
small deviations around the rest pose, H(x) ≻ 0 will hold in any
case such that any n𝑖 (𝑡) represents an equilibrium state for the load
f𝑒𝑥𝑡 (𝑡). For larger deformations, on the other hand, the loaded sys-
tem might be unstable on n𝑖 (x), but limited to only one direction, e𝑖 .
Being slightly less restrictive regarding the second-order condition
is a crucial aspect of our formulation, as it ensures continuity of
n𝑖 (𝑡) for cases with non-monotonic force magnitude. Two exam-
ples for this are presented in Fig. 4 and discussed in Sec. 4.2. The
bi-stable switch (left) and the flexible truss (right) both exhibit a
decrease in force magnitude along the shown modes, implying neg-
ative stiffness (regions highlighted red). Hence, the corresponding
part of the trajectory would not belong to the solution space of (14),
as it is not a stable equilibrium state of the unconstrained system.
Nonetheless, it carries physical meaning: it represents the path the
quasi-static system would travel if it were pushed past the point
where H becomes indefinite.

Modal Forcing. As long as 𝐸 (x) remains convex, our formulation
can be interpreted as follows: for any given parameter 𝑡 , the state of
the system must be such that the internal elastic forces are collinear
with the corresponding eigenmode. Consequently, any point along
a nonlinear compliant mode corresponds to a static equilibrium
configuration for an externally applied modal force of some magni-
tude. Interestingly, the idea of modal forcing has already been used
by Sifakis and Barbic [2012] to define modal derivatives at the ori-
gin. While they did not attempt to compute nonlinear modes, they
define a trajectory through a simple force equilibrium condition,
whereby the force direction is given through a linear combination
of several eigenvectors. For the particular choice of using only one
eigenvector as basis of the force direction, this defines a function
for displacement u = u(𝜆) through the condition

∇𝐸 (X + u(𝜆))) − 𝜆e𝑖 = 0. (16)

For sufficiently small deviations with H(X + u) ⪰ 0, our formula-
tion could also be interpreted as a reparameterization of this curve,
using the directional displacement 𝑡 instead of the force magnitude.
However, when H(X + u) becomes indefinite, the picture changes.

Relying only on equilibrium conditions leaves physically unstable
configurations as part of the solution space. We illustrate this point
on a slender beam (Fig. 3), for which we find that the 13th eigenmode
corresponds to axial compression. With increasing load, the beam
will ultimately buckle, and our formulation correctly captures this
behavior (Fig. 3, bottom right). On the other hand, when neglecting
second-order optimality conditions, equation (16) permits solutions

characterized by pure compression of the beam (top right)—which
is neither energetically favourable, nor physically feasible.

0 0.02
0

8 10 3

Fig. 3. Slender beam under axial compression. Unstable equilibrium config-
uration (top right) and the stable equilibrium resulting from our formulation
(bottom right) obtained at a projected displacement of 𝑡 = 0.0068. Left:
Force plot for trajectories leading up to the configurations. The dashed line
represents an unstable path.

Alternatively, physically stable equilibrium states for a system
with gradually increasing external load can be computed through a
conventional nonlinear FEM analysis. However, the mapping u(𝜆)
is not guaranteed to be unique. Fig. 4 demonstrates two cases where
the force magnitude does not increase monotonically with increas-
ing deformation, leading to a discontinuity in u(𝜆) when the load
is gradually increased. This issue is of course not limited to modal
forces, but occurs with any choice of force direction. In our approach,
the problem is effectively eliminated by using the directional dis-
placement for parameterization. We will comment on this in more
detail in Sec. 4.2.

4 RESULTS
We evaluated our method for computing nonlinear compliant modes
on a set of examples that we describe in this section. We begin with
a simple case that highlights qualitative and quantitative differences
between linear eigenmodes and our nonlinear compliant modes.
Besides visual results for simulation runs and physical experiments,
we also show plots of energy, force, and stiffness as a function
of projected displacement, i.e., a generalized displacement measure
equivalent to the compliant mode parameter 𝑡 = eT

𝑖
Mu.

4.1 Comparison to Linear Eigenmodes
We start our analysis by comparing linear eigenmodes and nonlinear
compliant modes for a thin sheet, modeled using discrete shells
[Grinspun et al. 2003]. The comparisons shown in Fig. 2 illustrate
that our nonlinear compliant modes differ substantially from their
linear counterparts on both qualitative and quantitative levels.
The nonlinear modes generally exhibit large bending deforma-

tions where linear modes are dominated by in-plane deformation.
As a notable qualitative difference, the uniaxial bending mode that
our method produces is clearly not predicted by the linear eigen-
structure; see Fig. 2, column 3. A closer investigation shows that the
corresponding linear mode induces a saddle-shaped bending defor-
mation, i.e., a state of non-zero Gaussian curvature with a mix of
in-plane stretching and compression. These compressions manifest
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as negative eigenvalues in H, indicating the vicinity of a bifurcation.
Instead of tracking this unstable equilibrium path, our method auto-
matically follows the branch leading to stable constrained minima
in the form of quasi-isometric uniaxial bending.

On a quantitative level, as shown in Fig. 2 (column 4), the elastic
energy along linear eigenmodes is generally significantly higher
than for their nonlinear counterparts, and differences grow rapidly
with increasing parameter value. The reason for this discrepancy
is that, instead of inducing bending, linear modes create in-plane
deformations even if they are orthogonal to stretching at the origin.

4.2 Comparison to Gradual Loading: Modal Forcing
In Section 3.5 we have discussed the connections and distinctions
between our formulation and variations of modal forcing. Here we
showcase the practical implications on two examples. To this end,
we compare our method to nonlinear FEM analysis, which amounts
to computing the response of an elastic object to an external load
by solving the unconstrained minimization problem (14). In a tra-
ditional workflow, a load fext (𝑡) would be specified manually by
an expert user. While for some applications the forces acting on
a structure are known a priori, in other cases load scenarios are
more difficult to obtain. In particular, when the goal is to discover
the nonlinear motion paths a structure can undergo easily, and con-
versely, which deformations it resists, determining appropriate loads
manually can quickly become impractical. In such situations, linear
eigenmodes are a useful and convenient way of defining meaning-
ful force directions for deformation analysis. This idea is shared
between our formulation and modal forcing. In the examples shown
in Fig. 4 we set fext (𝑡) = 𝜆(𝑡)e𝑖 to allow for a direct comparisons,
though it is important to note that the following observations apply
equally to any choice of fext (𝑡).

The nonlinear compliant modes presented in Fig. 4 (bottom, blue
lines) exhibit a non-monotonic force magnitude. Analyzing the same
load scenario using (14) with the particular choice of 𝜆(𝑡) = 𝑐𝑡, 𝑐 ∈
R, 𝑐 > 0, i.e. applying a gradually increasing force, yields identical
results initially (red crosses), for as far as 𝐸 (x) remains convex. Past
that point, however, the system response exhibits a jump, and in-
termediate states cannot be easily examined. This notably includes
the second equilibrium state of the bistable switch (left). A more
elaborate choice of 𝜆(𝑡) could allow to analyze further portions
of the motion, e.g., by gradually decreasing the load again. How-
ever, certain regions of the deformation path cannot be reached
either way: the red shading in the plots in Fig. 4 marks regions
where the system Hessian is indefinite, i.e., the energy 𝐸 (x) is non-
convex, as indicated by the negative slope of the force magnitude.
The configurations in those regions are not solutions of the uncon-
strained minimization problem (14), but can be analyzed using the
constrained optimization problem (7) we propose.

Having investigated the properties of nonlinear compliant modes
relative to linear eigenmodes and conventional FEM simulation, we
now evaluate the potential of our method for analysis and design of
real-world flexible structures.
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Fig. 4. Conventional nonlinear simulation with incremental loading com-
pared to nonlinear compliant modes for cases with non-convex energy. Left:
bistable switch, right: flexible truss with fixed boundary at the base and local
restriction of the load to the tip on the far right (red nodes). The force direc-
tions are given by the linear eigenmodes, matching an activation motion
for the switch and a gravitational load for the truss. Gradually increasing
the force leads to a disconnected path (red crosses represent discrete steps),
while the linear constraint in our formulation reveals the entire deformation
path (blue line). Red shading indicates regions where the configurations
exhibit an indefinite Hessian, and can thus not be reached with the uncon-
strained problem (14), irrespective of the loading strategy.

4.3 Prismatic Flexures
Thanks to their high precision, low wear, and scaling capacity, com-
pliant mechanisms are becoming an increasingly interesting replace-
ment for their rigidly articulated counterparts. Since nonlinearity is
a crucial aspect of functionality for compliant mechanisms, linear
analysis is often inaccurate or even misleading.
As a case in point, we study the design of a prismatic flexure

element that was recently proposed as a building block for modular
compliant mechanisms [Rommers et al. 2021]. This element, shown
in Fig. 5, is designed to allow bending of its axial wall, while the
two other walls offer increased rigidity to lateral bending and twist-
ing. Linear eigenanalysis seems to confirm this design intent, with
the first non-rigid mode indicating a compliant direction for axial
bending while the second mode, corresponding to lateral bending,
is several times stiffer. Our nonlinear analysis, however, shows that
the second mode (Fig. 5, dashed red curve) exhibits a drop in stiff-
ness for larger deformations due to buckling of its axial wall. This
decrease in lateral stiffness, completely missed by linear analysis,
can translate into unexpected failure when using this element in
larger assemblies.

Based on this observation, we create a modified design with two
smaller prisms that provide additional support in the middle of
the axial wall. While this modification does not prevent buckling
altogether, it effectively shifts the instability to higher, energetically
less favorable frequencies. Our nonlinear analysis shows that the
first compliant mode remains largely unchanged (Fig. 5, blue curve),
whereas the second mode shows largely improved load-bearing
capacity (red curve). This prediction is confirmed by our experiments
on 3D-printed prototypes.

Spherical Joint. As an extension of the previous example, we study
a compliant spherical joint design by Rommers et al. [2021], consist-
ing of a quasi-rigid end effector and a set of prismatic flexures; see
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Fig. 5. Two designs for a prismatic flexure. Top: Rest state (grey) and pre-
dicted deformations for the first linear eigenmode (red) and nonlinear com-
pliant mode (blue) for a given applied load. The plot shows stiffness for the
compliant modes corresponding to axial bending (blue) and lateral bending
(red) for Design A (dashed) and Design B (solid), respectively. Bottom: load
bearing tests on physical prototypes.

Fig. 6. Our nonlinear analysis identifies two compliant modes that
correspond to lateral rotations of the end-effector. Comparisons with
a physical prototype show good agreement between our predictions
and the real-world behavior through a large range motion.

As can be seen from the stiffness plot in Fig. 6, the next compliant
mode, corresponding to translation along the axis of the end effector,
is roughly five times stiffer initially (yellow curve). For larger de-
formations, however, the plot shows a highly asymmetric behavior
with slowly increasing stiffness for pulling (positive displacement)
but a sudden drop for pushing (negative displacement). A closer
investigation reveals that this softening occurs when the structure
escapes the pushing forces by switching into one of the rotation
modes. Both softening and asymmetry are phenomena that are
beyond the limits of linear analysis.

4.4 Topology-optimized Joints
Topology optimization is a powerful tool for generating designs in
which material is distributed in mechanically optimal ways. While
the goal is typically to maximize the stiffness to weight ratio, topol-
ogy optimization can also be used to maximize rigidity for some
deformations while achieving flexibility for other directions. We

study applications of our method in this context on two compli-
ant joint designs recently proposed by Koppen et al. [2022]. Both
designs, shown in Fig. 7, were generated using the SIMP method
[Bendsøe and Kikuchi 1988] based on linear elasticity. The intent
of Design A (Fig. 7, top row) is to emulate a traditional universal
joint by offering flexibility for lateral rotations (i.e., bending) while
strongly resisting axial rotations (i.e., twisting). In contrast, Design
B (Fig. 7, bottom row) is meant to enable twisting while strongly
resisting bending. Linear analysis shows that the optimized designs
fulfill these objectives for small deformations. Our nonlinear analy-
sis partly confirms this prediction for larger displacements but also
indicates some important limitations. While the first two compliant
modes forDesign A produce large bending deformations as expected,
the third mode resists twisting only up to a certain angle where the
buckling of a strut leads to a complete loss of stiffness. For Design
B, our analysis shows a nonlinear increase in stiffness for twisting,
ultimately limiting the feasible range of motion for this design.

4.5 Multistability
Multistability is a nonlinear phenomenon that can be exploited to
create flexible structures with multiple discrete states. Here we in-
vestigate a basic implementation of this concept in the form of a
bistable switch meant to exhibit two distinct equilibrium states. An-
alyzing the initial design shown in Fig. 1 (top left) with our method
identifies switch activation as the first compliant mode. As can be
seen from the force-displacement plot, the second compliant mode,
corresponding to twisting of the lever, is already several times stiffer.
More importantly, however, the force-displacement plot reveals that
the initial design of the switch is dysfunctional: instead of exhibiting
a second equilibrium point, the force along the activation mode is
monotonically increasing. We argue that this design flaw, which is
confirmed by the physical prototype (Fig. 1, top right), is difficult to
detect a priori as it is not visible in the linear analysis. Our method
allows us to identify such problems before any prototype is built.
We use the insight gained from our nonlinear compliant modes to
create an improved design in which a steeper rest angle allows for
more vertical travel of the center flexure (Fig. 1, bottom right). As can
be seen in the force plot, this second design iteration now exhibits
the desired second equilibrium point, translating into a working
prototype with the intended bistable behavior.

4.6 Structured Materials
Through precisely architected microstructures, mechanical metama-
terials enable local control over their macro-mechanical properties.
Besides this local influence, however, material structure can also
shape the global deformation behavior in complex ways. We inves-
tigate the potential of our method for analysis and design in this
context on two examples.

We first study the deformation behavior of a laser-sintered cylin-
der whose quasi-rigid end caps are connected by a set of axial rods2.
Our analysis reveals three compliant modes that are orders of mag-
nitude softer than the next stiffer mode. Two of these modes corre-
spond to shearing deformation between top and bottom faces (Fig. 8,

2The radial rods are not physically connected to the axial ones and omitted in our
simulation for simplicity
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Fig. 6. A compliant mechanism emulating a conventional spherical joint. Our nonlinear analysis identifies two compliant modes corresponding to lateral
rotations of the end-effector in orthogonal directions (left and middle). Right : stiffness plot for rotation modes (blue and red) and a third mode (yellow)
corresponding to axial translation along the end-effector.

top row), whereas the third mode describes a nonlinear twist (bottom
row). Fig. 8 shows that there are significant differences between our
nonlinear compliant modes (middle column) and the corresponding
linear eigenmodes (right column), with the linear modes showing un-
realistic axial stretch for shearing and radial expansion for twisting.
The nonlinear compliant modes, by contrast, are in good agreement
with the experimental observations.

In a second example of structured materials, we investigate two
beams with regularly-spaced incision patterns. The incisions are
placed orthogonal to the beam axes and rotated by 180 degrees
and 90 degrees for Design A and Design B, respectively. To account
for contact between neighboring lamella during deformation, we
create a tetrahedral mesh for the bounding box that conforms to the
gaps. For each gap element we set up a penalty term that strongly
resists compression beyond a threshold value of 98% of the initial
volume. We also use this example to investigate our extension for
locally-restricted modes (see Appendix A) and allow forces to be
applied only at the two ends of the beam.
For both designs, our method identifies two compliant modes

corresponding to low-frequency bending. As can be expected from
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Fig. 7. Topology-optimized compliant joints. Design A (top row) is meant
to be rigid for twisting but flexible for bending. Design B (bottom row) is
intended to be flexible for twisting but rigid for bending. Top right : stiffness
plots for compliant modes corresponding to bending (blue) and twisting
(red). Bottom right : stiffness plots for compliant modes corresponding to
twisting (blue) and axial compression (red).

Fig. 8. Structured cylinder. Physical prototype (left), nonlinear compliant
mode (middle), and linear eigenmode (right) for shearing (top) and axial
twist (bottom) modes.

their incision patterns, Design A exhibits anisotropic bending resis-
tance whereas Design B behaves isotropically. Interestingly, both
designs exhibit strong rigidity to twisting.
As can be seen in Fig. 9, column 3, the bending modes initially

show low rigidity but suddenly stiffen noticeably. Investigation
of the simulation results shows that this stiffening occurs once a
complete chain of contact between lamellas has formed (column 1
and 2)—a clearly nonlinear phenomenon that is captured faithfully
by our method.
Besides the differences in bending behavior induced by the dif-

ferent incision patterns, Design B also leads to significantly higher
stresses for larger bending deformations; see Fig. 9, column 4. For
our 3D printed prototypes, these stress concentrations led Design
B to break during manipulation whereas Design A remained intact.
It should be emphasized that neither the contact-induced stiffen-
ing nor the difference in peak stresses are predicted by the linear
eigenmodes.
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Fig. 9. Elastic beams structured with subsequent incisions rotated by 180 degrees for Design A (top) and 90 degrees for Design B (bottom) around the long
axis. Nonlinear compliant modes for bending (column 1) and corresponding prototype behavior (column 2). Vertices with active displacement constraints are
indicated in red. Plots showing stiffness (column 3) and von-Mises stress (column 4) for Design A (blue) and Design B (red). The dashed line indicates the yield
threshold for the PLA material used for 3D-printing.

4.7 Implementation & Statistics
Except for the initial thin sheet example simulated using discrete
shells, we used a standard finite element implementation based on
linear tetrahedra with a Neo-Hookean material model for all other
examples. Constitutive parameters were set according to specifica-
tions from the material manufacturer. We used polyamide 12 for the
laser-sintered cylinder, TPU for the 3D-printed prismatic flexures,
the bistable switch, and the topology-optimized joints, and ASA for
the 3D-printed spherical joint and structured beams.
We use the Intel MKL Pardiso library to solve the linear system

via sparse direct square-root-free Cholesky factorization; eigenvec-
tors are computed using the shift-and-invert mode of the Spectra
library, which operates on sparse matrices. Otherwise we rely on the
Eigen library for linear algebra and matrix manipulation. As can be
seen from Table 1, computing one configuration along a nonlinear
compliant mode takes in the order of 1 second most cases, and about
6 seconds for the cylinder, which is by far the most complex of our
examples. The number of steps we used for computing each compli-
ant mode ranges from 13 (cylinder) to 124 (topology optimized joints).
Computation times for each step are comparable to the time it takes
to solve a static equilibrium problem. Our Newton solver required
around 5 iterations on average. Solving the linear system is the most
costly operation, accounting for about half of the computation time
in all cases.

5 CONCLUSIONS
We presented nonlinear compliant modes as a new approach for
analyzing the finite-deformation behavior of flexible structures. Our
formulation coincides with the linear eigenmodes for small defor-
mations while naturally extending them to the nonlinear setting
using energy minimization principles. While we believe that our
results indicate the potential of nonlinear compliant modes, our
method currently has several limitations that indicate opportunities
for future research.

5.1 Limitations & Future Work
As for linear eigenvectors, our nonlinear modes are not independent
of discretization and, in particular, coarse meshes can induce bias.
While the dependence on mesh structure is, to a large extent, inher-
ent to the specific discrete elasticity operators, spectral coarsening

Table 1. Statistics and timings for the different examples. The number of
steps used for computing the compliant modes ranges from 13 (cylinder) to
124 (topology optimized joints).

Degrees of
Freedom Step Size Time per Step

average (s)
Prismatic Flexure A 15 597 2.5e-4 0.59
Prismatic Flexure B 17 322 2.5e-4 0.64
Spherical Joint 33 162 5.0e-4 1.35
Topology-opt. Joint A 17 796 5.0e-5 0.61
Topology-opt. Joint B 33 090 5.0e-5 1.18
Bistable Switch A 15 783 2.5e-4 0.72
Bistable Switch B 16 326 2.5e-4 0.99
Cylinder 86 076 1.0e-3 6.12
Beam A 10 080 2.5e-4 1.21
Beam B 11 760 2.5e-4 1.77
Truss 12 096 1.0e-3 0.52

[Liu et al. 2019] could be a viable approach for reducing artefacts
due to mesh resolution.
Our experiments indicate that nonlinear compliant modes are a

promising tool for characterizing the large-deformation behavior of
flexible structures. While our approach already enables simulation-
based forward design, extending our formulation to inverse design
modes—i.e., finding parameters that give rise to desired nonlinear
modes—is an exciting research avenue for material design.
Our method requires the computation of eigenvectors. Fortu-

nately, since we are only interested in a small number of low-energy
modes (corresponding to the smallest eigenvalues), we can leverage
sparse methods based on Arnoldi Iterations. While eigenmode com-
putation with Spectra was not a limiting factor in our experiments,
the method described by Yang et al. [2015] could be an interesting
option if further acceleration was required.
Using the eigenvectors evaluated at the rest pose has proved

to be a fruitful approach for defining the generalized coordinate
for our nonlinear modes. For very large deformations, however,
it can eventually lose its alignment with directions of low-energy
deformation. For example, as rotations locally approach 90 degrees,
stretching may eventually prevail over bending and twisting.
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We have focused on static deformations with the goal of explor-
ing and characterizing the intrinsic behavior of elastic structures
undergoing large deformation. Nevertheless, extending our method
to the dynamic setting is an interesting direction for future work.
One promising option would be to build on the invariant manifolds
concept by Shaw and Pierre [1991]: the system is reduced to two
generalized coordinates for displacement and velocity along a given
linear eigenvector, the remaining degrees of freedom are determined
implicitly through dynamic equilibrium conditions. We believe that
this approach presents an opportunity for applying our formulation
in combination with optimization-based time stepping methods.

A MODE LOCALIZATION
To support locally-restricted modes in our formulation, we assign
all nodes to either the active setA or the passive set P and compute
localized linear eigenmodes l𝑖 by asking that nodes x𝑝 ∈ P must
have vanishing forces, i.e.,[

HAA HAP
HPA HPP

] [
l𝑎
l𝑝

]
=

[
𝜎l𝑎
0

]
, (17)

After block substitution, we obtain the system(
HAA − HAPH−1

PPHPA
)
l𝑎 = 𝜎l𝑎 , (18)

fromwhich we compute the localized eigenvector using dense eigen-
value decomposition. We note that, unlike the sparse eigenvalue
decompositions that we use for computing global eigenvectors, the
cost of this dense operation rapidly increases with the size of the
system, implying that the number of active vertices x𝑎 ∈ A must
remain moderate.
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