
PuppetMaster: Robotic Animation of Marionettes

SIMON ZIMMERMANN, ETH Zurich
ROI PORANNE, ETH Zurich and University of Haifa
JAMES M. BERN, ETH Zurich
STELIAN COROS, ETH Zurich

We present a computational framework for robotic animation of real-world
string puppets. Also known as marionettes, these articulated figures are
typically brought to life by human puppeteers. The puppeteer manipulates
rigid handles that are attached to the puppet from above via strings. The
motions of the marionette are therefore governed largely by gravity, the
pull forces exerted by the strings, and the internal forces arising from me-
chanical articulation constraints. This seemingly simple setup conceals a
very challenging and nuanced control problem, as marionettes are, in fact,
complex coupled pendulum systems. Despite this, in the hands of a master
puppeteer, marionette animation can be nothing short of mesmerizing. Our
goal is to enable autonomous robots to animate marionettes with a level of
skill that approaches that of human puppeteers. To this end, we devise a
predictive control model that accounts for the dynamics of the marionette
and kinematics of the robot puppeteer. The input to our system consists
of a string puppet design and a target motion, and our trajectory planning
algorithm computes robot control actions that lead to the marionette moving
as desired. We validate our methodology through a series of experiments
conducted on an array of marionette designs and target motions. These
experiments are performed both in simulation and using a physical robot,
the human-sized, dual arm ABB YuMi® IRB 14000.

CCS Concepts: • Theory of computation → Nonconvex optimization;
•Computingmethodologies→ Physical simulation; •Computer sys-
tems organization → Robotic control;

Additional Key Words and Phrases: Computer graphics, robotics, puppeteer-
ing, sensitivity analysis

ACM Reference Format:
Simon Zimmermann, Roi Poranne, James M. Bern, and Stelian Coros. 2019.
PuppetMaster: Robotic Animation of Marionettes. ACM Trans. Graph. 38, 4,
Article 103 (July 2019), 11 pages. https://doi.org/10.1145/3306346.3323003

1 INTRODUCTION
Marionettes are articulated, string-actuated puppets that have pro-
vided a medium for animation in performance arts since Ancient
Greece. In the hands of a skilled puppeteer, marionettes produce
motions that are incredibly expressive, fluid and compelling. How-
ever, their deceptively natural movements conceal the fact that
marionettes are very challenging to control. Marionettes are under-
actuated, high-dimensional, highly non-linear coupled pendulum
systems. They are driven by gravity, the tension forces generated

Authors’ addresses: Simon Zimmermann, ETH Zurich; Roi Poranne, ETH Zurich and
University of Haifa; James M. Bern, ETH Zurich; Stelian Coros, ETH Zurich.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART103 $15.00
https://doi.org/10.1145/3306346.3323003

Fig. 1. A robot (ABB YuMi® IRB 14000) controlling a bird-shaped, string-
driven marionette. This type of puppet is notoriously difficult to animate.
Our control framework generates optimal motion trajectories for the robot
puppeteer such that the marionette performs a user-specified motion.

by a small number of cables, and the internal forces arising from
mechanical articulation constraints. As such, the map between the
actions of a puppeteer and the motions performed by the marionette
is notoriously unintuitive, and mastering this unique art form takes
unfaltering dedication and a great deal of practice.
With the long term goal of endowing robots with human-level

dexterity when it comes to manipulating complex physical systems,
we present PuppetMaster – a physics-based motion planning frame-
work for robotic animation of marionettes. As illustrated in Fig. 2,
the input to our computational puppeteering system consists of:
1) a kinematic description of the robot puppeteer (i.e. the hierar-
chical arrangement of actuators and rigid links); 2) the design of
the marionette, which includes the articulated puppet itself, the
control handles that the robot will be manipulating, as well as the
strings that attach the puppet to the handles; and 3) a target motion
that the marionette should aim to reproduce. Our core technical
contribution is a novel trajectory optimization method built upon a
physics simulator using an implicit time-stepping scheme. To com-
pute derivatives of the system’s forward dynamics, we show how
to apply sensitivity analysis techniques to entire motion trajectories,
as well as how to effectively exploit the specific sparsity structure
imposed by the time domain. Our mathematical model forms the

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

https://doi.org/10.1145/3306346.3323003
https://doi.org/10.1145/3306346.3323003

103:2 • Zimmermann, S. et al

basis of a general, unified framework that enables optimization
algorithms to concurrently reason about: the robot puppeteer’s
workspace (i.e. the space of reachable configurations for its end
effectors) and movements; the limited and indirect control provided
by string-based actuation setups; the dynamic motions generated
by the puppet in response to the robot’s actions; and continuous
design parameters such as the lengths of the strings and their points
of attachment on the control handles. The output generated by our
planning framework consists of optimal motion trajectories that are
specified in the configuration space of the robot puppeteer.
To evaluate the efficacy of our robotic puppeteering framework,

we designed a set of experiments of increasing complexity. These
experiments include different types of under-actuated dynamical
systems that we wish a robot to skillfully control, and a varied array
of motion-based task specifications. To assess the degree to which
simulation results carry over to the real world, we further fabricated
several physical prototypes that are puppeteered by an ABB YuMi –
a human-sized, dual-arm robot.

2 RELATED WORK
The study of motion has been a core research topic in computer
graphics since the field’s very beginning. Nevertheless, animation
predates computers by thousands of years: since ancient times, chil-
dren and adults alike have been fascinated by physical systems
– mechanical automatons, animatronic figures, robotic creatures,
puppets and marionettes – that are designed to generate natural
movements. In recent years, these types of physical animation de-
vices have started to receive considerable attention from the com-
puter graphics community. We have witnessed, for example, com-
putational approaches to designing mechanical toys [Coros et al.
2013; Song et al. 2017; Thomaszewski et al. 2014; Zhang et al. 2017],
physical characters that produce motions by virtue of precisely con-
trolled deformations [Bern et al. 2017; Gauge et al. 2014; Megaro
et al. 2017; Skouras et al. 2013; Xu et al. 2018], robotic creatures
that walk [Megaro et al. 2015; Schulz et al. 2017], fly [Du et al.
2016] or even roller blade [Geilinger et al. 2018], etc. Each of these
application domains demands techniques that are tailored to the
unique challenges and characteristics of different types of physical
systems. The problem that we tackle in this work, namely robotic
manipulation of marionettes, is closest to the work of Skouras and
colleagues [Skouras et al. 2013]. However, while they address the
problem of designing quasi-static movements, our goal is to gener-
ate highly dynamic motion trajectories for string-driven physical
systems using dexterous robots as puppeteers.
In the early days of computer graphics, animation techniques

relied largely on interpolation of artist-prescribed key-frames. With
such an approach, the onus is on the animator to manually create
the illusion that a character’s motions obey the laws of physics. The
tedious and error-prone nature of this process led to the sub-field
of physically based character animation, which has generated a
rich body of research over the past three decades. Our work draws
inspiration from techniques that formulate motion synthesis as
optimization problems [Cohen 1992; Witkin and Kass 1988]. In
these formulations, equations of motion based on Newton’s second
law are incorporated as constraints, resulting in motions that look

physically correct. However, in favor of optimization problems that
are easier to solve, these constraints are often treated in a soft
manner, resulting in animations where external fictitious forces are
merely minimized [Barbič et al. 2009; Pan and Manocha 2018; Schulz
et al. 2014]. Given that wewish simulation results to carry over to the
real world, we instead develop a trajectory optimization technique
that guarantees Newton’s second law of motion is always satisfied,
even for intermediate results, up to unavoidable discretization errors
introduced by numerical integration schemes.

Dexterous manipulation of complex physical systems is another
topic of research in computer animation that is relevant to our work.
In particular, the trajectory optimization formulation we introduce
complements recent model-based [Bai et al. 2016; Clegg et al. 2015]
and learning-based [Clegg et al. 2018] techniques developed for ma-
nipulation of cloth and clothing. Our technique leverages derivatives
of the physics simulation which we use to compute a marionette’s
motions. In this respect, we borrow concepts from recent differen-
tiable simulators for rigid bodies [Todorov 2014]. However, in our
formulation, first and second derivatives are computed via sensi-
tivity analysis, and they can be taken with respect to the robot’s
actions, or with respect to continuous parameters that define the
marionette’s design. First order Sensitivity analysis, in both its direct
and adjoint form [McNamara et al. 2004], is often used to compute
gradients for steady-state [Auzinger et al. 2018] or quasi-static prob-
lems that are governed by force equilibrium [Ly et al. 2018; Pérez
et al. 2017]. In this paper, we show how to extend this very useful
optimization technique to second order, for trajectories computed
using forward dynamics simulations, and how to exploit the specific
structure imposed by the time domain to increase the computational
efficiency of the motion optimization process.

For the history and engineering aspects of traditional marionette
design and manipulation, we refer the interested reader to [Chen
et al. 2004], and we note that the challenge of controlling marionette
motions has been studied before. For example, sharing our vision,
Murphey and his collaborators developed dynamic models tailored
to marionettes [Johnson and Murphey 2007]. Building on the tech-
nique described in [Hauser 2002], they also formulated trajectory
optimization as unconstrained problems [Murphey and Johnson
2011; Schultz and Murphey 2012]. This was achieved by defining a
projection operator that takes a candidate, non-physical trajectory
and finds a valid one. The operator is introduced in the optimization
problem as an objective, making constraints redundant. However,
computing the gradient of this new objective demands an optimiza-
tion problem to be solved. Our method on the other hand provides
analytic expressions for both first and second derivatives. Further-
more, while previous work focuses largely on simple motions (e.g.
treating the marionette as a simple suspended mass [Murphey and
Johnson 2011]) or transferring the motions of a human puppeteer
onto a robot [Yamane et al. 2004], we demonstrate a diverse array
of marionette motions that are generated automatically.
It is also worth noting the connection between marionette ani-

mation and the transport of cable-suspended payloads using cranes
[Zameroski et al. 2006] or helicopters [Bernard and Kondak 2009;
Bisgaard et al. 2009]. In this context, the main focus is the handling
of oscillations in high speed, rest-to-rest motions. Trajectory opti-
mization approaches have been proposed to tackle this challenge, as

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

PuppetMaster: Robotic Animation of Marionettes • 103:3

seen for example in [Sreenath et al. 2013] and [Sreenath and Kumar
2013], the latter of which focuses on collaborative transportation
via multi-drone systems. Methods based on reinforcement learning
have also been successfully developed [Crousaz et al. 2014; Faust
et al. 2013; Palunko et al. 2013], and they present an interesting
alternative to the model-based marionette control methodology we
investigate in this paper.

3 OVERVIEW
As illustrated in Fig. 2, our control framework takes as an input a
kinematic description of a robot puppeteer, the design of a string-
driven marionette, and a target motion. We visualize the marionette
as a virtual stick figure, and use two distinct visual styles, as seen
in the figure, to portray the motion of the puppet, represented by a
vector x which encodes the trajectory for each point mass, and the
target motion x̂. Strings are used to attach the marionette to rigid
handles that are directly manipulated by the robot. We refer to the
points of attachment as p, and they control the pull forces applied
to the marionette through each string. The output of our system
consists of choreographed motions for the robot puppeteer, which
we encode using joint angle trajectories q. We refer the reader to
the accompanying video for demonstrations and results.

We solve the robotic puppeteering control problem with a second-
order trajectory optimization method that exploits derivatives of
motions generated by forward dynamics simulation. These deriva-
tives are computed using sensitivity analysis, as described in Section
4. By exploiting the specific structure imposed by the time domain,
we formulate a computationally-efficient trajectory optimization
algorithm. In Section 5 we discuss the simulation model we use
for our marionettes. Finally, in Section 6 we show experimental re-
sults, starting with simple systems such as a pendulum and a double
pendulum, and ending with animal-inspired marionette designs.

4 PRELIMINARIES
The control problem we seek to solve is characterized by two sets of
variables: state variables x, and control variables p, which represent
the motion trajectories of the marionette and of the robot, respec-
tively. The motion of the marionette is governed by the robot’s
actions and by its own non-linear dynamics. Without loss of gener-
ality, we can therefore express x as an implicit function of p. While
x(p) does not have a closed-form expression (we must compute it
through numerical simulation), the dependency between x and p is
captured by the relation

G(x, p) = 0, (1)

which, as we will discuss shortly, encodes Newton’s second law of
motion for entire trajectories. Our control problem can therefore be
formulated as:

min
p

O(x(p), p), (2)

whereO(x(p), p) is an objective function that quantifies, for example,
the degree to which the marionette’s motion matches its target, and
the smoothness of the control actions. This problem formulation is
very generic. For example, if xwas defined as the configuration of an
elastic object, p as the set of parameters that define its rest shape and
G(x, p) as the sum of internal and external forces, then Eq. 2 would

ˆ

l0

s0

Robot puppeteer

Target motion

Handles

Point mass

Attachment
 points

q

Fig. 2. An overview of the main components of our system, which takes
as input a kinematic description of the robot puppeteer, a marionette de-
sign and a target motion. The output of our control framework consists of
precisely choreographed motions for the robot puppeteer.

describe an inverse elastic shape design problem [Ly et al. 2018;
Megaro et al. 2017; Pérez et al. 2017]. First order sensitivity analysis
has become a standard go-to technique for solving such problems,
and it is therefore also suitable for our robotic marionette control
task. Briefly, sensitivity analysis provides an analytic expression
for the Jacobian dx

dp and it therefore enables the use of first order
gradient-based methods (e.g. L-BFGS) to minimize Eq. 2. To provide
some intuition, for our problem setting, this Jacobian encodes the
way in which an entire motion trajectory x changes as a function of
the control actions p.

First Order Sensitivity Analysis. Sensitivity analysis begins by
applying the chain rule on O(x(p), p):

dO
dp
=
∂O

∂x
dx
dp
+
∂O

∂p
, (3)

The analytic expression for the sensitivity term S := dx
dp can be found

using the fact thatG(x, p) is always zero (i.e. we assume that for any
p we can compute x(p) such that Eq. 1 is satisfied), which implies:

dG
dp
=
∂G
∂x

S +
∂G
∂p
= 0. (4)

By rearranging this equation, we get:

S = −

(
∂G
∂x

)−1 ∂G
∂p
, (5)

and plugging into (3), we obtain:

dO
dp
= −
∂O

∂x

(
∂G
∂x

)−1 ∂G
∂p
+
∂O

∂p
. (6)

We note that through a reordering of matrix multiplications, the
well-known adjoint method [Cao et al. 2003] avoids computing dx

dp

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

103:4 • Zimmermann, S. et al

directly as it evaluates dO
dp . This is oftentimes more computationally

efficient. However, as we will show next, we can leverage dx
dp to de-

rive a second-order, generalized Gauss-Newton solver that exhibits
much better convergence properties than first order alternatives.

Second Order Sensitivity Analysis. In our first experiments we
observed that first order optimization, i.e. L-BFGS, converges far too
slowly. As an alternative, Newton’s method requires the Hessian
∂2O
∂p2 , which can be derived using second order sensitivity analysis.
To begin with, we differentiate (3):

d2O
dp2
=

d
dp

dO
dp
=

d
dp

(
∂O

∂x
S
)
+

d
dp
∂O

∂p
. (7)

The formulas above involve third-order tensors, which lead to no-
tation that is slightly cumbersome. To simplify our exposition, we
treat tensors as matrices and assume that contractions are clear
from context. For a conceptually similar but more formal derivation,
we refer the interested reader to [Jackson and Mccormick 1988].
The second term in Eq. 7 is straightforward:

d
dp
∂O

∂p
= ST

∂2O

∂x∂p
+
∂2O

∂p2
, (8)

while the first term evaluates to

d
dp

(
∂O

∂x
S
)
=

(
d
dp
∂O

∂x

)
S +
∂O

∂x

(
d
dp

S
)
, (9)

with
d
dp
∂O

∂x
= ST

∂2O

∂x2
+
∂2O

∂x∂p
. (10)

Here, d
dpS is a third-order tensor, and

∂O
∂x

(
d
dpS

)
stands for

∂O

∂x

(
d
dp

S
)
=
∑
i

∂O

∂xi

(
d2xi
dp2

)
.

The second-order sensitivity term d
dpSmust be further broken down:

d
dp

S =
(
ST
∂

∂x
S +
∂

∂p
S
)
. (11)

The partial derivatives of S can be found by taking the second
derivatives in (4) and rearranging the terms. This results in

∂

∂x
S = −

(
∂G
∂x

)−1 (∂2G
∂x2

S +
∂2G
∂p∂x

)
, (12)

∂

∂p
S = −

(
∂G
∂x

)−1 (∂2G
∂x∂p

S +
∂2G
∂p2

)
, (13)

where once again we assume that the tensor expressions are self-
evident. Combining all of the terms above leads to the following
formula for the Hessian:

d2O
dp2
=
∂O

∂x

(
ST
∂

∂x
S +
∂

∂p
S
)
+ ST

(
∂2O

∂x2
S + 2

∂2O

∂x∂p

)
+
∂2O

∂p2
. (14)

0 200Iteration #

O
bj

ec
tiv

e
V

al
ue L-BFGS

Gauss-Newton
Newton

1.0

0 4Time [s]

0 2Times [s]0 50Iteration #

0.08

O
bj

ec
tiv

e
V

al
ue

L-BFGS
Gauss-Newton

Bird

Pendulum

Fig. 3. Comparison of the generalized Gauss-Newton approximation with
Newton and L-BFGS. The top row shows the number of iterations and
timings for one of the pendulum examples in Fig. 5. Newton’s method
occasionally stalls in non-convex regions, which largely contributes to the
less than satisfactory convergence. Its additional computational cost makes
it impractical for this problem. The bottom row shows the comparison for
the bird example in Fig. 8. In this case, Newton’s method takes an excessive
amount of time and is not shown. In both cases it can be seen that the
generalized Gauss-Newton converges much faster. It is worth noting that
all intermediate results, whether or not the process converged, obey physics
becaues of the trajectory optimization strategy we employ.

Generalized Gauss-Newton. Although Newton’s method generally
converges much faster than L-BFGS or gradient descent, there are
two issues with it. First, evaluating the second-order sensitivity term
takes a non-negligible amount of time. Second, the Hessian is often
indefinite, and needs to be regularized. Both problems can be dealt
with by simply excluding the tensor terms in (14). The result is a
generalized Gauss-Newton approximation for the Hessian:

H = ST
∂2O

∂x2
S + ST

∂2O

∂x∂p
+
∂2O

∂x∂p

T

S +
∂2O

∂p2
. (15)

AlthoughH is not guaranteed to be positive-definite, we note that in
our case, O is a convex function of x, and therefore the first term is
always well-behaved. Furthermore, for our control problem, O does
not explicitly couple x and p, and therefore the mixed derivative
(i.e. the second) term vanishes. The last term can be indefinite, but
we rarely encountered this case in practice.

Sensitivity analysis for motion trajectories. The implicit relation-
ship described by Eq. (1) is very general, and can easily be derived
for different types of dynamical systems and numerical integration
schemes. Here, we illustrate this process for mass spring systems,
since this is how we choose to model marionettes. In this context,
the vector x has dimension 3nT , where n is the number of mass
points, T is the number of time steps, and the constant 3 indicates
that each mass point lives in a 3-dimensional space. We turn di-
rectly to the time-discretized setting and let xi , the i-th 3n block in
x, denote the configuration of the system at time ti . As described
in [Martin et al. 2011], an Implicit Euler time stepping scheme is

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

PuppetMaster: Robotic Animation of Marionettes • 103:5

equivalent to finding xi that minimizes the functional

Ui (xi) =
h2

2
ÜxTi MÜxi +W (xi , pi) + gT xi , (16)

where Üxi = (
xi−2xi−1+xi−2

h2) is the time-discretized acceleration, M
is the system’s mass matrix, h is the step size,W (xi , pi) defines the
internal potential deformation energy stored in strings and trusses,
and the last term accounts for gravity; pi , similar to xi , encodes the
control actions taken at time step i . It is easy to verify that ∇xiUi = 0
(i.e. xi is a minimizer of Ui) is equivalent to Newton’s second law,
MÜxi = F(xi , pi) where F(xi , pi) = −∇xiW (xi , pi), which means
that the equations of motion are satisfied.
Through Eq. 16, computing the motion of the marionette using

forward simulation is straightforward.We start from an input control
trajectory p (the robot standing still is a valid choice for p), and
two fixed configurations, x0 and x−1, which together represent the
starting state of the dynamical system. In order, from i = 1 to T , we
then find xi that minimizesUi using Newton’s method.

In the context of forward dynamics, this standard numerical inte-
gration scheme also reveals the structure of the implicit relationship
described by Eq. (1). In particular, Gi , the i-th 3n block in G, is de-
fined as ∇xiUi . It is therefore clear that for any motion trajectory
computed through physics simulation, G(x, p) = 0, as required for
sensitivity analysis.

We discuss the specifics of our marionette model in the next sec-
tion, but we first highlight two important observations. First, it is
very easy to extend the concepts described above to different nu-
merical integration schemes. For example, the only change required
to use BDF-2 (backward differentiation formula of second order),
which exhibits much less numerical damping than Implicit Euler, is
a different definition of the discretized acceleration. Second, upon
inspection, it is easy to see that the time domain imposes a very
specific structure on the system of equations that must be solved
to compute the Jacobian dx

dp in Eq. 4. This structure is visualized
in Fig. 4, and can be easily exploited to speed up computations. In
particular, since Gi depends explicitly only on xi , xi−1, xi−2 and
pi (i.e. all other partial derivatives are 0), ∂G

∂p has a block diagonal
form, and ∂G

∂x has a banded block diagonal form. This allows us to
solve the resulting system using block forward-substitution, rather
than storing and solving the entire linear system represented by ∂G

∂x .
In our experiments, this results in a 5x speedup. We also note that
the resulting S is block triangular, which correctly indicates that xi
does not depend on pj if j > i , or intuitively, the robot’s actions at
any moment in time only affect future motions of the marionette.

Iterative optimization. Using either d2O
dp2 or its approximation H,

we can minimize (2) using a standard unconstrained optimization
scheme, but we note one key difference: for each candidate p, we
must always compute the corresponding x to ensure that (1) holds
before evaluating any of the derivatives. Once ∂O

∂p and H (or d2O
dp2)

are computed, we find the search direction d by solving

Hd = −
dO
dp
. (17)

S =

−

∂G

∂p

















=

−1
∂G

∂x

−1

−

Fig. 4. The structure of the system can be used to compute S faster by block
forward-substitution.

We use a backtracking line search to find the step sizeα , where again,
x need to be recomputed for each test candidate p = p+αd in order
to evaluate O(x(p), p). We summarize the optimization procedure
in Algorithm 1. Note that in the next section we make a transition
from handle positions p to robot joint angles q, but the algorithm
essentially stays the same.

Algorithm 1: Trajectory optimization
Input: Dynamical system, initial p, initial x0, Ûx0,
Output: Optimal control trajectory p

while criterion not reached do
Compute x(p) using forward simulation
Compute dO

dp (Eq. (3))
Compute H ((14) or (15))
Solve Hd = − dO

dp
Run backtracking line search in d
/* Simulate after every line search iteration */

end

Relation to DDP. A well-known technique for optimal control is
the Differential Dynamic Programming method (DDP). While New-
ton’s method approximates the motion control objective through a
global quadratic function, DDP uses a sequence of local quadratic
models derived for each individual time step. The resulting struc-
ture gives rise to the characteristic backwards/forwards nature of
DDP algorithms. Although both DDP and Newton’s method feature
quadratic convergence, the debate regarding which one performs
best dates back to at least the 80s [Murray and Yakowitz 1984; Pan-
toja 1988] and continues today [Mizutani 2015]. Like Newton’s
method, DDP and its Gauss-Newton approximation, the iterative
Linear Quadratic Regulator (iLQR), rely on a state transition func-
tion xi+1 = f (xi , pi) and its first and second derivatives. In practice,
DDP and iLQR are typically applied in conjunction with explicit in-
tegration schemes, because then f takes on an analytic form, and its
derivatives can be readily computed. Consequently, the techniques
we have described to compute derivatives of implicitly-integrated
forward dynamics simulations open up exciting opportunities for
DDP/iLQR optimal control formulations as well.

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

103:6 • Zimmermann, S. et al

5 ROBOTIC PUPPETEERING

5.1 The puppet model
With the foundations for motion optimization laid out, we now
describe the specifics of the simulation model we employ for mari-
onettes. Traditional marionettes are piece-wise rigid structures. In
our simulation model, we assume mass is concentrated at the joints.
This matches the way we design and fabricate our physical proto-
types, which employ heavy steel balls as joint sockets, and much
lighter 3D printed parts as structural frames (see the inset figure).
Furthermore, since we
are using fully implicit
integration schemes for
forward simulation, we
can model these struc-
tural frames as very stiff
springs without worry-
ing about stability prob-
lems. A mass-spring representation of marionettes is therefore nat-
ural. This simple model has the additional benefit that it is uncon-
strained, and the mathematical formulation derived in the previous
section needs only reason about positions, and not about rotations
as well.
The mass point representing each joint can optionally be con-

nected via strings to rigid control handles held by the robot. Impor-
tant for our control problem is the world location of the attachment
point of string j at time index i . We denote this quantity by pji . Sim-
ilarly, we let xki represent the world position of the k-th mass point
at time index i . Its corresponding target location, which is provided
through the target animation, is represented by x̂ki . We assemble the
positions of all mass points at time index i into a vector xi , and the
positions of all string attachment points at time index i into a vector
pi . Finally, we assemble all xi into x, and all pi into p, forming the
state and control trajectories respectively.

To solve the equations of motion using Eq. (16), we formulate the
potential energy of the system as

W (xi , pi) =Wpuppet(xi) +Wstring(xi , pi). (18)

The energy Wpuppet(xi) measures the energy stored in the stiff
springs we use to model a marionette’s body parts. Let L be the
set of pairs of joints connected by links. Then,

Wpuppet(xi) =
∑

{j1, j2 }∈L

k
(

xj1i − xj2i

 − l
j1 j2
0

)2
, (19)

where k is a spring constant, and l j1 j20 is the rest length defined by
the marionette’s physical design. We use k = 104 for all our experi-
ments, as we found this value sufficient to render the deformations
of the robot’s body parts imperceptible. The energyWstring(xi , pi)
measures the tension energy stored in the strings. Each string con-
nects a marionette joint x j1 to an attachment pointp j2 . We define the
set of joint-attachment point pairs by S , and defineWstring(xi , pi) as

Wstring(xi , pi) =
∑

(j1, j2)∈S

kψ
(

xj1i − pj2i

 − s
j1 j2
0

)
, (20)

where s0j1 j2 is the length of the string, k = 104, and ψ (x) is a
C2 one-sided quadratic function modeling the unilateral nature
of strings [Bern et al. 2017]:

ψ (x) =


1
2x

2 + ϵ
2x +

ϵ 2
6 x ≥ 0

1
6ϵ x

3 + 1
2x

2 + ϵ
2x +

ϵ 2
6 0 > x > −ϵ

0 otherwise

(21)

Here the constant ϵ = 1mm provides for a smooth transition be-
tween the regime where the string is slack (and therefore applies
no force), and where it is taut and applies tension forces, which
can pull but not push. First, second and third derivatives (the latter
required for Eq. 6) with respect to x and p are straightforward to
compute analytically for both energy terms.

5.2 Control
We discussed our control optimization method in Section 4. Here
we describe the different terms that define Eq. 2.

Objectives. The main objective is, of course, to find a marionette
motion that is similar to the user specified trajectory x̂. To this end,
we define a simple quadratic objective that measures the similarity
between the two:

Otraj(x) = ∥x − x̂ ∥22.

We additionally regularize the acceleration of the string attachment
points to promote smooth motions, using the simple objective

Oacc(p) = ∥ Üp∥22,

where the acceleration vector Üp is estimated using finite differences.
Up to this point, the control problem operated directly in the space

of world trajectories for the string’s attachment points. However, we
ultimately need to command the movements of the robot puppeteer,
which will be specified as joint angle trajectories. These could be
computed in post-processing using inverse kinematics (IK). The
pitfall of such a strategy is that it is quite likely that the motion
planner generates trajectories pwhich are not within the workspace
of the robot (i.e. they are not reachable), or they lead to inter-limb
collisions. Following [Duenser et al. 2018], we eliminate this problem
with a simple extension that enables us to directly solve for control
actions specified in the robot’s joint space.

Direct optimization of the robot’s motions. To compute trajectories
for the robot puppeteer’s joint angles, it suffices to express each
string attachment point pj as a kinematic function of the robot’s
joint angles q,

pji = FK(lj , qi), (22)
where FK is a standard forward kinematics function that computes
the world coordinates of a point lj expressed in the local coordi-
nate frame of a robot’s gripper, and qi is a vector that stores the
robot’s joint angles at time index ti . With this definition in place,
we can minimize the objective O(p(q)) directly as a function of q.
The changes introduced by this step are minimal – we only need to
apply the chain rule. For example, the gradient of the objective is
given by

dO
dq
=
∂O

∂p
dp
dq
+
∂O

∂q
,

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

PuppetMaster: Robotic Animation of Marionettes • 103:7

where the Jacobian dp
dq encodes how the world position of the attach-

ment points change with respect to the robot’s joint angles. This
Jacobian is straightforward to compute given the definition of the
forward kinematics map. The second derivative of the objective O
with respect to q can be computed in an analogous manner. Solving
directly for joint angle trajectories ensures that the optimization re-
sult is always feasible, and that it effectively exploits the workspace
of different types of robots. Furthermore, this formulation allows us
to define additional objectives to capture, for example, inter-limb
collisions or limits on joint angles and velocities. These objectives
take on standard forms, so we omit them here for brevity. We refer
the interested reader to [Duenser et al. 2018] for formal definitions.

Finding a convenient starting configuration. In simulation, we can
set the marionette’s starting state (i.e. x0 and x−1) to any arbitrary
values. However, when the robot starts to execute a performance, the
physical marionette must start from exactly the same configuration.
Consequently, x0 and x−1 should correspond to marionette poses
that are easily achievable. The only practical choice is to pick them
such that they represent a statically stable configuration given an
initial robot pose qinit . We find these configurations by setting
the simulated robot in the desired starting pose and then running
forward simulation until the system comes to rest.

6 EXPERIMENTAL RESULTS
In this section we summarize the results we generated with our
system. We begin with a few preliminary results and continue to
more elaborate examples that showcase our system’s capabilities.
Please refer to the accompanying video for a screen capture and
recording of the actual motions. We implemented our algorithm in
C++ using Eigen [Guennebaud et al. 2010], and ran it on a computer
with an Intel Core i7-7709K 4.2Ghz. The average computation time
for each forward simulation step (i.e. computing x(p)) as well as
for computing the search direction d for each individual dynamical
system can be found in Table 1. Acceptable control solutions begin
to emerge after a small number of iterations, and each intermediate
optimization result is valid due to the formulation we employ.

Interactive specification of goals. For small systems, our applica-
tion reacts at interactive rates. We began by testing a simple scenario
involving a pendulum, where the goal is to place the suspended
mass point inside a cup while avoiding a spherical obstacle. For this
example, the robot’s end effector is constrained to move only along
a horizontal line through a dedicated control objective. The user can
interactively position the cup and obstacle, and immediately observe
the result. Fig 5 illustrates two examples that were obtained in this
manner. In one example the robot speeds towards the obstacle in
order to lift the weight above it, and then slows down to let it land in
the cup. In the second example, the robot first moves back and forth
to gain momentum before swinging the weight above the obstacle.
This simple setting highlights the ability of our system to generate
highly dynamic motions that are physically accurate.

We refer the reader to the accompanying video (and Fig. 6), where
we show a similar example, this time involving a double pendulum.
The dynamics of such systems are notorious for their chaotic be-
haviour, but for a reasonable planning horizon, we found we can still

Fig. 5. Interactive positioning of goals and obstacles. The user can reposition
the ball and the cup interactively, and the trajectory is updated in real-time.
See the accompanying video for more detail.

(a) (b)

Fig. 6. Additional motions, also included in the accompanying video. Several
robot poses are overlaid, and the trajectory of the point mass is approxi-
mately traced by a dashed line. (a) A double pendulum, which is known
for its chaotic behaviour, can still be accurately modeled for a short time
horizon. As in Fig. 5, we ask for a trajectory that avoids the obstacle, and
reaches the cup. (b) In this case, the cup is fixed to the top of the handle
and requires an agile motion to swing the point mass into the cup.

model them with adequate accuracy. Finally, we ran an additional
experiment where the cup was fixed to the top of the robot’s end
effector. Our optimization method successfully found a very agile
robot motion that swings the mass point just right so that it lands
in the cup. This example also clearly shows the benefit of modeling
strings as unilateral springs. We note that many of our other results,
both in simulation and using physical prototypes, exploit the fact
that cables can go slack.

Puppet fabrication. We use heavy steel balls to fabricate ball-in-
socket joints, and lightweight 3D printed frame structures for the
marionette’s bodies. The steel balls can be connected by strings to
the control handles, and they are free to slide inside their sockets.
As shown in Fig. 7, hinge joints are also easy to model and fabricate.

Periodic motions. Periodic motions are very common in animation,
and for marionettes in particular. We optimize for periodic motions
by adding an objective that minimizes the difference between the

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

103:8 • Zimmermann, S. et al

Fig. 7. Fabrication of a hinge joint. In simulation, these joint are represented
using a simple frame structure. The black sphere represents a mass point of
negligible weight, which functions to model the behaviour of a hinge joint.

Target motion

Init cycle Periodic motion

Fig. 8. Designing a periodic motion for the Bird puppet. A periodic motion is
normally very dynamic, and there are virtually no points where the puppet
is at rest. However, we require all motions to start in a resting configuration.
To avoid this issue, periodic motions start with an initialization cycle, where
the robot brings the puppet from rest to a specific position and velocity
within the periodic motion. It then switches to the target periodic motion

initial and final positions and velocities of all the components: pup-
pet joints and end effectors. Specifically, we extend the time horizon
by one sample at each end, x0 and xt+1, which are not played back,
and define the objective

OCycPos(x, p) = ∥x1 − xt+1∥2 + ∥x0 − xt ∥2.

As mentioned above, we start all of our motions at a rest pose.
Starting a periodic motion from a rest pose would mean that the
puppet should come to a rest after each cycle. We overcome this by
running an initialization cycle before switching to the cyclic motion
itself. Given a periodic motion, the user can pick a starting point
on the period, and the system will find a motion that matches the
position and velocity of the puppet at that point of the periodic
motion. This is done using an objective for the final position and
velocity. We show an example for the Bird puppet in Fig. 8, where
the user wished to create a flying motion. The entry point into the
periodic motion is at its beginning, when the wings are at the very
top. The velocity at this point is admittedly small, but not vanishing.
We stress that every other entry point works as well.

Naive design Optimized design

Fig. 9. Continuous design optimization for the Dragon puppet. With a naive
handle design, where both handles are linear, the robot cannot reproduce
the target motion to a satisfying degree. The design optimization procedure
suggests to use a triangular handle, which then results in a much more
faithful animation.

Design optimization. Designing appropriate handles and picking
suitable string lengths is not an intuitive task, as these parameters
shape the space of motions a marionette can perform. In some cases,
a quick trial-and-error search suffices to find reasonable parameter
values, but we found it very useful (and easy) to devise an automated
procedure instead. Since all of our objectives are smoothwith respect
to design parameters, we can optimize for these as well, again using
sensitivity analysis. At a conceptual level, it suffices to replace p
by any design parameter in the derivation we presented in the
previous sections. We use this approach to optimize the locations
of the attachment points in local coordinates lj from Eq. 22, and
the string lengths s j1 j20 from Eq. (20). Fig. 9 shows a typical case,
where the motion trajectory generated with a sub-optimal handle
design cannot reproduce the target closely enough. After design
optimization, the resulting motion follows the target much more
closely. In this case, design optimization found that using a triangle-
shaped handle performs better for this specific motion. This would
have been difficult to intuitively predict.
The design problem also involves discrete vari-

ables: the decision regarding which point masses
should be stringed and to which attachment points
plays a crucial role in shaping the space of permissi-
ble motions. We explore various possibilities in Fig.
10 for a simple design of a puppet’s leg. The target
motion appears in the inset. The figure shows dif-
ferent patterns of connectivity of the point masses. As can be seen,
the quality of the resulting motion is influenced by this discrete
design decision. We currently do not have a way of automatically
optimizing this aspect of the design, but we rely on the interactivity
of our system to let the designer experiment with different options.

Physical experiments. To investigate the consequences of mod-
elling approximations and the corresponding sim-to-real gap, we
recorded the motions of some of our physical marionettes using
an Optitrack motion capture system. Fig. 11 summarizes some of
our findings by reporting the mismatch between the simulation
results and the recorded motions for the Chinese Dragon puppet.
While the movements of the robot initially match the simulated
trajectories quite well, drift does accumulate over time. Depending
on the complexity of the underlying dynamical system, this drift
can become problematic. For example, for the Puppy marionette,
we have noticed that after about 10 motion cycles played in an

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

PuppetMaster: Robotic Animation of Marionettes • 103:9

(a) (b) (c)

(d) (e) (f)

Fig. 10. Comparisons of various stringing options. The choice of how to
string a puppet, e.g. where to attach a string to and to which point masses,
can have a great impact on the space of permissible motions. Note that the
handle locations are omitted from this figure for simplicity. The color coding
of the strings indicates attachment to the same handle.

-0.8 X - Position [m]
0.0

1.0

Y
 -

Po
si

tio
n

[m
]

Physical
Simulation

 Sim-vs-real: difference between predicted and captured motions

11Time [s]

x
y

z

1 0
0

0

0.05

0.05

0

0.05

Averaged Error

Po
si

tio
n

[m
]

Fig. 11. Sim-vs-real comparison for the Chinese Dragon example. We
tracked the motions of four markers placed on the marionette using a
motion capture system. The figure on the left shows the measured (in
grey) and predicted (in red) trajectories in the x - y plane, starting with
the initialization step and followed by 10 periodic cycles. The plots on the
right show the position error between simulation predictions and physical
measurements averaged over the four markers along the x, y and z axes.

open-loop fashion, the motions of the physical prototype can get
out of sync and no longer resemble the desired bounding gait. To
overcome problems due to drift, feedback loops should be used to
stabilize the nominal trajectories computed through optimization.

Further results. In addition to the examples shown in the paper,
we show several more results in the accompanying video. The re-
sults show a variety of marionette designs and animations: a fish
swimming, a snake slithering, and a puppy bounding and trotting.
See Fig. 12 and Table 1 for more information on the puppets.

Fig. 12. Several marionettes animated with our system. Please refer to the
accompanying video for motions performed both in simulation and using
physical prototypes.

7 CONCLUSION, LIMITATIONS AND FUTURE WORK
We presented a control framework for robotic animation of mar-
ionettes. As demonstrated through a variety of experiments, the
simulation-based motion optimization technique that we have de-
veloped provides a promising solution for this very challenging
control problem. Nevertheless, our work represents only a first step
in endowing robots with human-level skill, and it highlights excit-
ing opportunities for future investigations. For example, there are
aspects of a marionette’s motion that we are currently not mod-
eling: string collisions, play and friction in the mechanical joints,
deformations of the frame structure, forces generated by clothing
or other aesthetic layers, etc. Fortunately, as long as such charac-
teristics of the dynamical system can be adequately modeled in a
forward dynamics simulation, the control optimization step may
remain unchanged. We believe this decoupling is very powerful, as
it allows different modeling choices to be studied in isolation.

As there are still unmodeled aspects of a marionette’s dynamics,
some mismatches between the results predicted in simulation and
the corresponding real-world motions are unavoidable. Empirically
we have noticed that the sensitivities of a marionette’s motions (i.e.
how much they change due to an external perturbation) can depend
quite strongly on the way in which it is designed. For now, the
number of strings and assignment of attachment points to control
handles is kept fixed in our framework, but in the future we plan to
develop optimization techniques for such discrete design choices.
We also currently play back the robot puppeteer’s movements in an
open-loop manner. Nevertheless, feedback mechanisms that are able
to gracefully recover from perturbations or drift that accumulate
over time are also very important and should be investigated. And
last but not least, we are very excited by the prospect of mathemati-
cally analyzing the stability of a marionette’s motions, and by the
possibility of explicitly incorporating aspects of robust design and
control in our trajectory optimization scheme.

Our long term goal is to enable robots to manipulate various types
of complex physical systems – clothing, soft parcels in warehouses
or stores, flexible sheets and cables in hospitals or on construction
sites, plush toys or bedding in our homes, etc – as skillfully as
humans do. We believe the technical framework we have set up for
robotic puppeteering will also prove useful in beginning to address
this very important grand-challenge.

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

103:10 • Zimmermann, S. et al

Table 1. List of puppets discussed in the paper and video. We list the number of point masses, strings and attachments points, and the duration of the
trajectory. The number of time steps was 40 in all cases. We also provide information regarding the number of iterations applied until a reasonable match of
the target trajectory was reached, as well as the average time per iteration to compute the forward simulation step x(p) and the search direction d. The latter
includes the time required to compute the gradient and the hessian H as well as the solve of the linear system presented in Eq. 17. We note that our code was
not optimized for run time and improvements can be made in order to significantly decrease these numbers.

Puppet # point
masses

strings # attachment
points animation planning

horizon
iterations time x(p) time d

Pendulum 1 1 1 preliminary 1.0s / 1.33s 10 0.0041s 0.0561s
Double Pendulum 2 2 1 preliminary 1.0s / 1.33s 10 0.0043s 0.0585s
Single Leg 3 2 - 4 2 - 4 preliminary 1.0s 11 0.0027s 0.1252s
Chinese Dragon 5 5 5 flying 1.0s 19 0.0069s 0.4464s
Swallow 5 4 4 flying 1.33s 55 0.0065s 0.3216s
Fish 11 7 7 swimming 1.0s 21 0.0220s 2.2532s
Snake 9 9 9 slithering 1.6s 27 0.0102s 2.5396s
Puppy 14 10 10 bounding 1.0s 37 0.0216s 4.6403s
Puppy 14 10 10 trotting 1.0s 25 0.0270s 4.7045s

REFERENCES
Thomas Auzinger, Wolfgang Heidrich, and Bernd Bickel. 2018. Computational design

of nanostructural color for additive manufacturing. ACM Trans. Graph. 37, 4 (2018),
159:1–159:16. https://doi.org/10.1145/3197517.3201376

Yunfei Bai, Wenhao Yu, and C. Karen Liu. 2016. Dexterous Manipulation of Cloth.
Comput. Graph. Forum 35, 2 (2016), 523–532. https://doi.org/10.1111/cgf.12852

Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable Object Animation
Using Reduced Optimal Control. ACM Trans. Graph. 28, 3, Article 53 (July 2009),
9 pages. https://doi.org/10.1145/1531326.1531359

JamesM. Bern, Kai-Hung Chang, and Stelian Coros. 2017. Interactive design of animated
plushies. ACMTrans. Graph. 36, 4 (2017), 80:1–80:11. https://doi.org/10.1145/3072959.
3073700

M. Bernard and K. Kondak. 2009. Generic slung load transportation system using small
size helicopters. In 2009 IEEE International Conference on Robotics and Automation.
3258–3264. https://doi.org/10.1109/ROBOT.2009.5152382

Morten Bisgaard, Jan Bendtsen, and Anders La Cour-Harbo. 2009. Modelling of Generic
Slung Load System. In AIAA Modeling and Simulation Technologies Conference and
Exhibit. American Institute of Aeronautics and Astronautics. https://doi.org/10.
2514/6.2006-6816

Yang Cao, Shengtai Li, Linda Petzold, and Radu Serban. 2003. Adjoint sensitivity analysis
for differential-algebraic equations: The adjoint DAE system and its numerical
solution. SIAM Journal on Scientific Computing 24, 3 (2003), 1076–1089.

I.-Ming Chen, Raymond Tay, Shusong Xing, and Song Huat Yeo. 2004. Marionette: From
Traditional Manipulation to Robotic Manipulation. In International Symposium
on History of Machines and Mechanisms. Springer, Dordrecht, 119–133. https:
//doi.org/10.1007/1-4020-2204-2_10

Alexander Clegg, Jie Tan, Greg Turk, and C. Karen Liu. 2015. Animating human dressing.
ACM Trans. Graph. 34, 4 (2015), 116:1–116:9. https://doi.org/10.1145/2766986

Alexander Clegg, Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. 2018. Learning to
dress: synthesizing human dressing motion via deep reinforcement learning. ACM
Trans. Graph. 37, 6 (2018), 179:1–179:10. https://doi.org/10.1145/3272127.3275048

Michael F. Cohen. 1992. Interactive Spacetime Control for Animation. SIGGRAPH
Comput. Graph. 26, 2 (July 1992), 293–302. https://doi.org/10.1145/142920.134083

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira For-
berg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computa-
tional design of mechanical characters. ACM Trans. Graph. 32, 4 (2013), 83:1–83:12.
https://doi.org/10.1145/2461912.2461953

Cédric De Crousaz, Farbod Farshidian, and Jonas Buchli. 2014. Aggressive optimal
control for agile flight with a slung load. In in IROS 2014 Workshop on Machine
Learning in Planning and Control of Robot Motion.

Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Com-
putational multicopter design. ACM Trans. Graph. 35, 6 (2016), 227:1–227:10.
http://dl.acm.org/citation.cfm?id=2982427

Simon Duenser, James M. Bern, Roi Poranne, and Stelian Coros. 2018. Interactive
Robotic Manipulation of Elastic Objects. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2018, Madrid, Spain, October 1-5, 2018. 3476–
3481. https://doi.org/10.1109/IROS.2018.8594291

A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia. 2013. Learning swing-free tra-
jectories for UAVs with a suspended load. In 2013 IEEE International Conference on
Robotics and Automation. 4902–4909. https://doi.org/10.1109/ICRA.2013.6631277

Damien Gauge, Stelian Coros, Sandro Mani, and Bernhard Thomaszewski. 2014. In-
teractive Design of Modular Tensegrity Characters. In The Eurographics / ACM
SIGGRAPH Symposium on Computer Animation, SCA 2014, Copenhagen, Denmark,
2014. 131–138. https://doi.org/10.2312/sca.20141131

Moritz Geilinger, Roi Poranne, Ruta Desai, Bernhard Thomaszewski, and Stelian Coros.
2018. Skaterbots: Optimization-based Design andMotion Synthesis for Robotic Crea-
tures with Legs and Wheels. In Proceedings of ACM SIGGRAPH, ACM Transactions
on Graphics (TOG) (Ed.), Vol. 37. ACM.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
John Hauser. 2002. A Projection Operator Approach To The Optimization Of Trajectory

Functionals. IFAC Proceedings Volumes 35, 1 (2002), 377 – 382. https://doi.org/10.
3182/20020721-6-ES-1901.00312 15th IFAC World Congress.

Richard H. Jackson and Garth P. Mccormick. 1988. Second-order Sensitivity Analysis
in Factorable Programming: Theory and Applications. Math. Program. 41, 1-3 (May
1988), 1–27. https://doi.org/10.1007/BF01580751

E. Johnson and T. D. Murphey. 2007. Dynamic Modeling and Motion Planning for
Marionettes: Rigid Bodies Articulated by Massless Strings. In Proceedings 2007 IEEE
International Conference on Robotics and Automation. 330–335. https://doi.org/10.
1109/ROBOT.2007.363808

Mickaël Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence
Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. In SIGGRAPH
Asia 2018 Technical Papers (SIGGRAPH Asia ’18). ACM, New York, NY, USA, Article
201, 16 pages. https://doi.org/10.1145/3272127.3275036

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus H. Gross.
2011. Example-based elastic materials. ACM Trans. Graph. 30, 4 (2011), 72:1–72:8.
https://doi.org/10.1145/2010324.1964967

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid Control
Using the Adjoint Method. In ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). ACM,
New York, NY, USA, 449–456. https://doi.org/10.1145/1186562.1015744

Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus H.
Gross, and Stelian Coros. 2015. Interactive design of 3D-printable robotic crea-
tures. ACM Trans. Graph. 34, 6 (2015), 216:1–216:9. https://doi.org/10.1145/2816795.
2818137

Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus H. Gross, and
Bernhard Thomaszewski. 2017. A computational design tool for compliant mecha-
nisms. ACM Trans. Graph. 36, 4 (2017), 82:1–82:12. https://doi.org/10.1145/3072959.
3073636

E. Mizutani. 2015. On Pantoja’s problem allegedly showing a distinction between
differential dynamic programming and stagewise Newton methods. Internat. J.
Control 88, 9 (2015), 1702–1711. https://doi.org/10.1080/00207179.2015.1013063

Todd D Murphey and E. Johnson. 2011. Control aesthetics in software architecture
for robotic marionettes. In American Control Conference (ACC), 2011. IEEE, IEEE,
3825–3830.

D. M. Murray and S. J. Yakowitz. 1984. Differential dynamic programming and Newton’s
method for discrete optimal control problems. Journal of Optimization Theory and
Applications 43, 3 (01 Jul 1984), 395–414. https://doi.org/10.1007/BF00934463

I. Palunko, A. Faust, P. Cruz, L. Tapia, and R. Fierro. 2013. A reinforcement learning
approach towards autonomous suspended load manipulation using aerial robots. In
2013 IEEE International Conference on Robotics and Automation. 4896–4901. https:
//doi.org/10.1109/ICRA.2013.6631276

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

https://doi.org/10.1145/3197517.3201376
https://doi.org/10.1111/cgf.12852
https://doi.org/10.1145/1531326.1531359
https://doi.org/10.1145/3072959.3073700
https://doi.org/10.1145/3072959.3073700
https://doi.org/10.1109/ROBOT.2009.5152382
https://doi.org/10.2514/6.2006-6816
https://doi.org/10.2514/6.2006-6816
https://doi.org/10.1007/1-4020-2204-2_10
https://doi.org/10.1007/1-4020-2204-2_10
https://doi.org/10.1145/2766986
https://doi.org/10.1145/3272127.3275048
https://doi.org/10.1145/142920.134083
https://doi.org/10.1145/2461912.2461953
http://dl.acm.org/citation.cfm?id=2982427
https://doi.org/10.1109/IROS.2018.8594291
https://doi.org/10.1109/ICRA.2013.6631277
https://doi.org/10.2312/sca.20141131
https://doi.org/10.3182/20020721-6-ES-1901.00312
https://doi.org/10.3182/20020721-6-ES-1901.00312
https://doi.org/10.1007/BF01580751
https://doi.org/10.1109/ROBOT.2007.363808
https://doi.org/10.1109/ROBOT.2007.363808
https://doi.org/10.1145/3272127.3275036
https://doi.org/10.1145/2010324.1964967
https://doi.org/10.1145/1186562.1015744
https://doi.org/10.1145/2816795.2818137
https://doi.org/10.1145/2816795.2818137
https://doi.org/10.1145/3072959.3073636
https://doi.org/10.1145/3072959.3073636
https://doi.org/10.1080/00207179.2015.1013063
https://doi.org/10.1007/BF00934463
https://doi.org/10.1109/ICRA.2013.6631276
https://doi.org/10.1109/ICRA.2013.6631276

PuppetMaster: Robotic Animation of Marionettes • 103:11

Zherong Pan and Dinesh Manocha. 2018. Active Animations of Reduced Deformable
Models with Environment Interactions. ACM Trans. Graph. 37, 3, Article 36 (Aug.
2018), 17 pages. https://doi.org/10.1145/3197565

J. F. A. DeO. Pantoja. 1988. Differential dynamic programming andNewton’smethod. In-
ternat. J. Control 47, 5 (1988), 1539–1553. https://doi.org/10.1080/00207178808906114

Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational
design and automated fabrication of kirchhoff-plateau surfaces. ACM Trans. Graph.
36, 4 (2017), 62:1–62:12. https://doi.org/10.1145/3072959.3073695

J. Schultz and T. Murphey. 2012. Trajectory generation for underactuated control of a
suspended mass. In 2012 IEEE International Conference on Robotics and Automation.
123–129. https://doi.org/10.1109/ICRA.2012.6225032

Adriana Schulz, Cynthia R. Sung, Andrew Spielberg, Wei Zhao, Robin Cheng, Eitan
Grinspun, Daniela Rus, and Wojciech Matusik. 2017. Interactive robogami: An
end-to-end system for design of robots with ground locomotion. I. J. Robotics Res.
36, 10 (2017), 1131–1147. https://doi.org/10.1177/0278364917723465

Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt.
2014. Animating Deformable Objects Using Sparse Spacetime Constraints. ACM
Trans. Graph. 33, 4, Article 109 (July 2014), 10 pages. https://doi.org/10.1145/2601097.
2601156

Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus H.
Gross. 2013. Computational design of actuated deformable characters. ACM Trans.
Graph. 32, 4 (2013), 82:1–82:10. https://doi.org/10.1145/2461912.2461979

Peng Song, Xiaofei Wang, Xiao Tang, Chi-Wing Fu, Hongfei Xu, Ligang Liu, and Niloy J.
Mitra. 2017. Computational design of wind-up toys. ACM Trans. Graph. 36, 6 (2017),
238:1–238:13. https://doi.org/10.1145/3130800.3130808

Koushil Sreenath and Vijay Kumar. 2013. Dynamics, Control and Planning for Coop-
erative Manipulation of Payloads Suspended by Cables from Multiple Quadrotor
Robots. https://doi.org/10.15607/RSS.2013.IX.011

K. Sreenath, N. Michael, and V. Kumar. 2013. Trajectory generation and control of
a quadrotor with a cable-suspended load - A differentially-flat hybrid system. In
2013 IEEE International Conference on Robotics and Automation. 4888–4895. https:
//doi.org/10.1109/ICRA.2013.6631275

Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grin-
spun, and Markus H. Gross. 2014. Computational design of linkage-based characters.
ACM Trans. Graph. 33, 4 (2014), 64:1–64:9. https://doi.org/10.1145/2601097.2601143

Emanuel Todorov. 2014. Convex and analytically-invertible dynamics with contacts
and constraints: Theory and implementation in MuJoCo. In 2014 IEEE International
Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 - June
7, 2014. 6054–6061. https://doi.org/10.1109/ICRA.2014.6907751

Andrew Witkin and Michael Kass. 1988. Spacetime Constraints. SIGGRAPH Comput.
Graph. 22, 4 (June 1988), 159–168. https://doi.org/10.1145/378456.378507

Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2018. Bend-it: design and
fabrication of kinetic wire characters. ACM Trans. Graph. 37, 6 (2018), 239:1–239:15.
https://doi.org/10.1145/3272127.3275089

Katsu Yamane, Jessica K. Hodgins, and H. Benjamin Brown. 2004. Controlling a motor-
ized marionette with human motion capture data. International Journal of Humanoid
Robotics 01, 04 (Dec. 2004), 651–669. https://doi.org/10.1142/S0219843604000319

D. Zameroski, G. Starr, J. Wood, and R. Lumia. 2006. Swing-free trajectory generation
for dual cooperative manipulators using dynamic programming. In Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.
1997–2003. https://doi.org/10.1109/ROBOT.2006.1641998

Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel. 2017.
Functionality-aware retargeting of mechanisms to 3D shapes. ACM Trans. Graph.
36, 4 (2017), 81:1–81:13. https://doi.org/10.1145/3072959.3073710

ACM Trans. Graph., Vol. 38, No. 4, Article 103. Publication date: July 2019.

https://doi.org/10.1145/3197565
https://doi.org/10.1080/00207178808906114
https://doi.org/10.1145/3072959.3073695
https://doi.org/10.1109/ICRA.2012.6225032
https://doi.org/10.1177/0278364917723465
https://doi.org/10.1145/2601097.2601156
https://doi.org/10.1145/2601097.2601156
https://doi.org/10.1145/2461912.2461979
https://doi.org/10.1145/3130800.3130808
https://doi.org/10.15607/RSS.2013.IX.011
https://doi.org/10.1109/ICRA.2013.6631275
https://doi.org/10.1109/ICRA.2013.6631275
https://doi.org/10.1145/2601097.2601143
https://doi.org/10.1109/ICRA.2014.6907751
https://doi.org/10.1145/378456.378507
https://doi.org/10.1145/3272127.3275089
https://doi.org/10.1142/S0219843604000319
https://doi.org/10.1109/ROBOT.2006.1641998
https://doi.org/10.1145/3072959.3073710

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Preliminaries
	5 Robotic Puppeteering
	5.1 The puppet model
	5.2 Control

	6 Experimental Results
	7 Conclusion, Limitations and Future Work
	References

