
Assembly-aware Design of Printable Electromechanical
Devices

Ruta Desai
Carnegie Mellon University

Pittsburgh, PA, USA
rutad@cmu.edu

James McCann
Carnegie Mellon University

Pittsburgh, PA, USA
jmccann@cs.cmu.edu

Stelian Coros
ETH

Zurich, Switzerland
scoros@inf.ethz.ch

Figure 1. Our computational design system allows casual users to make complex 3D printed devices with integrated off-the-shelf electromechanical
components. Chirpy – a smart crib monitoring toy made with our system is shown here.

ABSTRACT
From smart toys and household appliances to personal robots,
electromechanical devices play an increasingly important role
in our daily lives. Rather than relying on gadgets that are
mass-produced, our goal is to enable casual users to custom-
design such devices based on their own needs and preferences.
To this end, we present a computational design system that
leverages the power of digital fabrication and the emergence
of affordable electronics such as sensors and microcontrollers.
The input to our system consists of a 3D representation of the
desired device’s shape, and a set of user-preferred off-the-shelf
components. Based on this input, our method generates an
optimized, 3D printable enclosure that can house the required
components. To create these designs automatically, we for-
malize a new spatio-temporal model that captures the entire
assembly process, including the placement of the components
within the device, mounting structures and attachment strate-
gies, the order in which components must be inserted, and
collision-free assembly paths. Using this model as a tech-
nical core, we then leverage engineering design guidelines
and efficient numerical techniques to optimize device designs.
In a user study, which also highlights the challenges of de-
signing such devices, we find our system to be effective in
reducing the entry barriers faced by casual users in creating
such devices. We further demonstrate the versatility of our ap-
proach by designing and fabricating three devices with diverse
functionalities.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UIST’18, October 14–17, 2018, Berlin, Germany

© 2018 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: http://dx.doi.org/10.475/123_4

CCS Concepts
•Applied computing→ Computer-aided design; •Human-
centered computing→ Graphical user interfaces;

Author Keywords
Computational Design; Digital Fabrication; Optimization

INTRODUCTION
The emergence of easy-to-use computer-aided design (CAD)
software, such as SketchUp and Autodesk’s 123D suite, has
enabled the general public to create content for digital fabrica-
tion [5, 2]. The goal of our work is to make equally accessible
the creation of 3D printed devices capable of rich interactions
with the world around them. Our work is inspired by Voxel8,
a recently introduced 3D electronics printer [52]. Voxel8 em-
ploys a print-in-place strategy where external components are
completely encased into 3D printed objects during the fabrica-
tion process. Such embedding of interactive elements during
the printing process have also been explored for optical and
pneumatic 3D printed interactive devices [54, 50]. While very
promising for certain application domains, this approach does
not allow the embedded components to be accessed for repair
or upgrades after the device is created. This limitation high-
lights the importance of assembly-based approaches, more
prevalent in traditional manufacturing wherein complex arti-
facts are designed to be put together, and taken apart as needed.
Inspired by this, we also advocate an assembly-aware design
approach, where off-the-shelf components are mounted within
a 3D printed enclosure as a post process.

To design a physical device according to a desired functional-
ity, one must first choose a suitable set of electromechanical
components. The layout of the components within the device
has to then be generated. For designing functional devices,
the problem of choosing right components for a functional-
ity, and layout design are both important but complementary.

http://dx.doi.org/10.475/123_4

library of
electromechanical

components

+ user input:
 device enclosure,

component selection

manual or automatic design
using spatio-temporal model

 of assembly process

fabricated result

Figure 2. Overview: Given a user-defined device enclosure, and a set of components selected from a library, our system enables an assembly-aware
design of the device (wires not shown for clarity).

Many solutions have started to emerge for the former task.
In particular, Censi proposed an approach to select discrete
robot components, including batteries and actuators, based
on constraints operating on mixed discrete and continuous
variables [10]. Likewise, Ramesh et al. also use constraint
solvers to generate circuit level block diagrams, starting from
user-specified requirements and a library of available compo-
nents [41]. A system to automate component selection given
robot function in natural language has also been proposed [31].
Therefore, we focus on the latter problem of device layout
design in this paper. Layout design for physical devices is a
highly challenging task. The placement of the components
within the enclosure, the configuration of mounting structures
and the assembly process itself (e.g. assembly order, collision-
free assembly paths, attachment strategies, etc) are all highly
coupled and have to be concurrently considered. The difficulty
of this problem led to the emergence of the Design for Assem-
bly (DFA) sub-field of engineering, where product design is
studied from the point of view of ‘ease of assembly’ [8]. How-
ever, within the computer-aided design and manufacturing
community (CAD-CAM), product design is an iterative but
sequential process. A product’s layout design (parts, and their
connections) using DFA guidelines is first created by hand.
For this manually created layout design, automatic assembly
sequence generators [23] and industrial DFA softwares are
used to evaluate the assembly process based on metrics such
as time and cost [8], which allow the input design to be refined.
However, creating an initial design or adapting an existing
one remains a time-consuming, manually intensive task that is
well beyond the capabilities of non-experts.

Overview and contributions
We develop a novel design system that allows users with no
prior computer-aided design (CAD) experience to create phys-
ical devices that cater to their individual needs and preferences.
Our target audience is school students, artists, DIY enthusiasts
wanting to make one-off devices for their needs. In order to
provide ample room for control over the functional and aes-
thetic form of the devices, our system lets the users specify a
virtual object corresponding to the desired physical device, as
well as a list of electromechanical components. Along with
an easy to use user-interface, our system consists of a pow-
erful computational method for automatically optimizing the

integration of components into the final 3D printed device. In
particular, we encode the design and assembly process using
a spatio-temporal model. This model captures the layout of
the components within the device, the paths traveled to reach
their final placement, the support structures that they will be
mounted on, and the relative order in which they are to be
assembled. To the best of our knowledge, our model is the first
to approach the layout and assembly of 3D printable devices
in a coupled manner. By encapsulating domain knowledge,
our model can better serve the needs of CAD novices.

Apart from modeling the spatio-temporal assembly process,
we also develop an efficient algorithm to concurrently optimize
all aspects of this model. The algorithm we propose couples a
Markov Chain Monte Carlo based optimization strategy [19]
with a gradient-based method, while utilizing heuristics that
encode insights from the CAD community. The resulting
scheme handles both continuous and discrete model parame-
ters, and features increased robustness to local minima. We
demonstrate the effectiveness of our computational approach
by designing and fabricating an assortment of electromechani-
cal devices. Our examples are representative of the types of
devices available in online community-driven repositories [21,
48]. Each device features unique form factors and functional
capabilities, and employs standard off-the-shelf electrome-
chanical components embedded into 3D printed enclosure.
We also show that such devices are time consuming and diffi-
cult to design, especially by non-experts, through a user-study.
While many participants failed to design certain devices in 45
minutes, our computational approach created valid designs for
those devices within 4 minutes.

RELATED WORK
Design for fabrication: The research community has con-
tributed heavily to the development of powerful computational
tools that fuel the personal fabrication revolution. Examples
include methods to generate 3D printable objects that are
lightweight yet strong [28, 47], objects whose optimized mass
distribution allows them to stand, spin or float stably [35, 6],
and mechanical automata capable of creating compelling mo-
tions [13, 11]. These tools share the same high-level goal
as ours: empowering casual users in creating complex phys-
ical artifacts without requiring domain specific knowledge.

However, these artifacts are limited by the abilities of 3D print-
ers. To create objects with diverse functionalities, we aim to
develop a computational framework to seamlessly integrates
off-the-shelf components and 3D printed structures.

Combining off-the-shelf components with 3D printed parts
allows us to harness the best of both worlds – traditionally
manufactured parts offer cost-effectiveness, durability, and
advanced functionality while 3D printing allows customiza-
tion. Motivated by this, other researchers have also recently
proposed tools for fabricating 3D printed artifacts with sensors
and motors such as walking creatures [30, 16], and multi-
copters [17]. Our system intends to provide similar ease of
design for making generic smart devices with a wide range of
functional repertoires.

3D printed smart objects: Researchers in the HCI commu-
nity have also been interested in enabling users to build 3D
printed objects with embedded electronics [51, 44, 24, 3].
Savage et al. [44] and Jones et al. [24] present a fabrication
pipeline using tangible means, while Ashbrook et al. [3] use
an augmented fabrication system to enable fabrication of func-
tional and assemblable objects with embedded components.
Tools for tangibly designing laser-cut custom enclosures for
prototyping interactive objects [45], and retrofitting existing
devices with sensors and actuators [40] have also been pro-
posed. Some of these systems also automatically create mount-
ing structures for the components. However, the onus of decid-
ing component layout such that the design is assemblable lies
on the end user in their systems. Our system offloads many
of the decisions requiring engineering knowledge from the
user, while involving them in the creative aspects of the design
process. In a complementary approach, Weichel et al. [53]
propose to design an enclosure that ‘fits’ all the desired com-
ponents. Instead, we assume a fixed, pre-defined enclosure for
applications where the users might care about functionality or
aesthetics, such as an owl-shaped smart toy (Fig. 1).

Layout design and Stochastic optimization: Computational
layout design has been addressed for a wide range of appli-
cations such as webpage and document designs [38], VLSI
design [26], city and architectural layouts [32], furniture lay-
out for interior design [58, 33], and for the design of simulated
worlds [18, 57]. Many of these approaches apply Markov
Chain Monte Carlo (MCMC) based techniques to optimize
the layouts, owing to the highly multimodal nature of the lay-
out cost function. Motivated by their success, we also apply
MCMC based optimization for our problem. We are also in-
spired by other stochastic optimization approaches that utilize
gradient information for efficient sampling such as Hamilto-
nian Monte Carlo (HMC) [36], Latin Complement Sampling
(LCS) [7], and Sequential Monte Carlo mixed with gradient
descent [27]. While HMC and LCS are more suitable for
continuous domains, our cost function has both discrete and
continuous parameters. To handle the additional assembly and
fabrication constraints that our problem poses, we propose an
interleaved optimization strategy.

Assembly planning: Assembly planning is a well-studied
problem in automated manufacturing and robotics [43, 55,
56, 23]. Traditionally, an assembly planner computes all geo-

metrically feasible sequences of assembly operations, given a
known layout. However, a design’s layout and assembly plan
generation are highly coupled. Therefore, our solution concur-
rently optimizes with the help of a new model that captures
spatio-temporal aspects of the assembly process.

DESIGN PROCESS
Our system targets users interested in creating an electrome-
chanical device by mounting off-the-shelf components in a
3D-printed enclosure. To create such a device, users must
make informed decisions about four connected aspects of the
design:

1. Component selection. Which electromechanical compo-
nents to include.

2. Layout design. Where to place the selected components
within the device’s enclosure.

3. Mounting structures. Where to add material to the enclo-
sure so that components can be fastened at their selected
locations.

4. Assembly plan. How to assemble the components onto
their mounting structures.

components palette

workspace windowmenu bar

A.

B. C.

Figure 3. (A) Our user interface is shown here with its three main ele-
ments – components palette, main workspace window, and editing menu
bar. (B) Translation and rotation widgets can be used to manually con-
figure a component. (C) In order to provide guidance to the user, our
system highlights components that lead to infeasible designs in red.

Unfortunately, these four aspects are all intertwined – selec-
tion of components constrains layout, which in turn dictates
mounting, which may end up blocking or complicating assem-
bly. Further, coming up with an assembly plan requires users
to reason not only about component positions, but about how
– and in what order – those components should be moved to
reach their final positions.

Our system (Fig. 2) simplifies the design process by provid-
ing tools to visualize conflicts during manual design, as well
as providing the option to automatically and simultaneously
determine a layout, mounting design, and assembly plan from
a set of components and an enclosure.

USER INTERFACE
Figure 3(A) illustrates our graphical user interface (GUI). It
consists of a workspace window in the center, a palette dis-
playing various electromechanical components on the right,
and a menu bar with various editing options on the left. A
design session typically begins with users dragging a desired
3D enclosure for their device into the workspace (for instance,
a car enclosure in Fig. 3(A)). Users can then add components
of their choice from the palette using drag and drop operations.
Mounting structures and fasteners are automatically added
along with each component, and are updated whenever the
component is moved. The layout of the components within
the device as well as corresponding assembly plan can be
designed using either manual or automatic design modes.

In manual design mode, the user uses translation and rotation
widgets to place each component (Fig. 3(B)); and sets the
assembly plan using options in the menu bar. Our system
provides assistance by highlighting components that lead to
design infeasibility (Fig. 3(C)). Such infeasibility may occur
when components are colliding with each-other, or when a
component or its fasteners’ assembly is blocked by other com-
ponents in the device. In contrast, automatic design mode
determines a valid layout and assembly plan using optimiza-
tion. As it optimizes, our system displays the current best
configuration, and allows users to pause and modify the de-
sign if desired.

Once the device is designed, users can export the enclosure (in-
cluding synthesized mounting structures) for 3D printing, and
the assembly plan can be animated for guidance during fabri-
cation. Figures. 1, 8 show some custom enclosures generated
in this manner. The accompanying video illustrates various
capabilities of our system, along with automatic design.

MODELING ELECTROMECHANICAL DEVICES
Formally, our system represents an electromechanical device
(Fig. 4B) and its assembly plan as an ordered tuple D of parts.
Each part di has a configuration φi = (xi,Ri) consisting of 3D
position xi and a 3D rotation Ri, shape Si at φi, and an assembly
path Pi(t) that defines configuration for the part at every time
t during its assembly:

D≡ (d1, . . . ,dn) ,

di ≡ (Si,φi,Pi(t)) . (1)

Notice that this representation stores both the layout of the
device – each di ends up assembled at configuration φi – and
the assembly plan – start with all components at Pi(0), then
in order from 1 to n move each part i along path Pi to its
final configuration Pi(1) = φi. We therefore call this a spatio-
temporal model of device assembly. Note that assembly plans
represented in this model always assemble parts into their final

Enclosure e

c1

c2

c3

A. B.

Mount m

Fasteners f

Electromechanical
component c

Figure 4. (A) An electromechanical component c is shown with its fas-
teners f and mount m. The configurations of f and m are defined with
respect to c’s local coordinate system. (B) A device D consisting of elec-
tromechanical components c1,c2,c3 bounded within an enclosure e. ci
can be supported by a single or multiple mounts and their unique set of
fasteners attach to ci in a specific manner. ci’s mounts get extended to
rigidly attach to e’s walls.

configuration one at a time as suggested by the Design For As-
sembly (DFA) guidelines [8, 39]. DFA guidelines also suggest
that multiple rotations and complex paths during assembly
can be confusing. Therefore, we only allow piece-wise linear
assembly paths Pi, and translational motions along Pi (Ri is
kept fixed).

Validity
Now that we have given a description of a electromechanical
device, we can explicitly define the notions of a valid layout
and assembly plan.

For a device to have a valid layout, it must be the case that
none of its parts have overlapping shapes in their assembled
positions:

∀i , j : Si ∩ S j = /0. (2)

While for a device to have a valid assembly plan, the volume
swept out by moving a part’s shape along its assembly path
must not intersect any previously-assembled part:

∀i < j : Si ∩ S̃ j = /0. (3)

where the “swept path” S̃ j of a component is the union of
its shape S j over all positions along its assembly path Pj.
(Fig. 5B):

S̃ j =
⋃
Pj

S j. (4)

Parts
The values and degrees of freedom in Si, φi, and Pi are deter-
mined by the type of part being represented:

The enclosure represents the case surrounding the device.
Every device contains exactly one enclosure e. The enclosure
is always configured at world’s origin O with identity rotation
φe = (O, I). It does not move during assembly:

e≡ (Se,φe,0) . (5)

In our system, enclosures are always convex polytopes (Se)
with one or more solid faces and one or more lids (which are
assumed to be assembled last). While our framework is not

B.A.

b1

b2

c

Figure 5. (A) An electromechanical component c is shown with its shape
attribute – a set of bounding boxes (Sc =

⋃
bi). Fasteners are encoded

with capsule shapes (shown by black mesh). These shapes are defined
in the component’s local coordinate frame shown at its center with a
triad. (B) The swept shape S̃c of c along a piecewise linear path P and
that of its fasteners (S̃ f) along their default paths are shown.

limited to work only with convex objects, we make this as-
sumption owing to the off-the-shelf collision detection that we
use within our system. When checking that the layout is valid
(eq. 2), collision checks are performed against the exterior of
the polytope; while when checking for valid assembly paths
(eq. 3) collision checks are performed against only the solid
faces of the polytope.

Components are electromechanical components (e.g., micro-
controllers, sensors, motors, batteries). Every component c
has a shape given by a union of axis-aligned boxes (Fig. 5A),
a configuration φc, and an assembly path Pc:

c≡ (Sc,φc,Pc) ,

Sc ≡
⋃

bi. (6)

Assembly paths Pc are piece-wise linear (as per DFA). In our
implementation, Pc are defined by at most two linear segments
– P1

c and P2
c (see Appendix for mathematical definition). The

second path segment P2
c is only used for components that need

to be slid into mounts or through holes in the enclosure, like
motors (e.g., Fig. 5B). The direction and length of P2

c is set
based on a fixed value stored in the component library, so it
does not contribute any degrees of freedom to the optimization.
For components that do not need to be slid into mounting
structures, Pc is single segmented (P2

c = 0). P1
c is parameterized

by two spherical angles, α,β , and a radius, r:

P1
c ≡ r [cosα · cosβ ,cosα · sinβ ,sinα]T . (7)

This parameterization is used because fixing r to a sufficiently
large value ensures that components always start outside the
enclosure during assembly, leaving only α and β to be opti-
mized over (or set by hand).

Components have associated mounts and fasteners (Fig. 4A),
which are also represented as parts in the device:

Mounts, m, are structures added to the enclosure to give com-
ponents something to attach to. Each mount is associated with
a component c. The mount’s shape Sm and configuration φm
depend on c. Sm is determined by extending a convex polytope

spanning c’s fastener sockets to the closest wall of the enclo-
sure. Because mounts are printed as a part of the enclosure,
their assembly path are the same as that of the enclosure.

m≡ (Sc
m,φ

c
m,0) , (8)

where superscript c shows the dependence on c.

Fasteners (e.g., rivets, screws) are small parts used to affix
components to their mounts. Each fastener f has shape S f
given by a bounding capsule, while its configuration φ f de-
pend on the sockets on c, and can thus be determined using
fixed orientation and position offsets from the orientation and
position of its associated component c (Fig. 4A).

f ≡
(
S f ,φ

c
f ,P

c
f
)

(9)

where superscript c shows the dependence on c. As with
components, the assembly path Pf is set to be sufficiently
long so that the fastener starts outside the enclosure. Unlike
components, however, the path’s direction is fixed based on
sockets on c (Fig. 5B).

Our model does not represent wires or account for their routing
during design. Instead, the availability of wires in desired
lengths, and their flexibility enable users to insert them as per
choice during assembly.

Degrees of Freedom
Components in our model have six layout degrees of freedom
for configuration φ (a 3D position x and a 3D orientation R).
These are the only degrees of freedom (DOF) in the device
– the enclosure is fixed, and the fasteners and mounts are
computed based on the layout of the component. Our interface
also allows the user to further lock particular layout DOF of
components. For example, a range sensor or a light emitting
diode (LED) may need to be fixed to a specific location or in a
plane for aesthetic or functional requirements, and thereby may
expose only two layout DOF. On the other hand, a controller
or a battery that can be configured without restrictions may
expose all six layout DOF. For ease of use, we represent the
exposed layout DOF as pl

i ⊆ φi for each component in a device.
The overall device layout L(D) then becomes:

L(D) =
{

pl
i | ∀ci ∈ D

}
(10)

Components also have two assembly DOF (the spherical an-
gles α and β used to define the assembly path P). Further, all
parts in our model have an assembly order given by their index
in the device tuple (eq. 1). Because mounts and the enclosure
don’t move during assembly, our system always places them
first in the tuple; similarly, fasteners always appear immedi-
ately after their associated components in the assembly order
(see Fig. 6). Thus, the order of the components determines
the overall assembly order of the device. Similar to L(D), we
succinctly define the device assembly plan L(D) as:

A(D) = {i, pa
i | ∀ci ∈ D} . (11)

c1

c2

c3

c4 c5

Figure 6. The assembly of a device with 5 components is shown. Each component ci is assembled one at a time by translating along its assembly path
Pi. The assembly process is parameterized by component’s assembly order (i in D), and the parameters of Pi. After assembly, ci is affixed by assembling
its fasteners. The fasteners need to be assembled along a specific path. There is a strong interplay between the layout of the components, and their
assembly order and paths. This can be seen during the assembly of c4. Owing to its configuration, c4 can only be assembled along P4 before c5.

where pa
i = (αi,βi) are the assembly path parameters, and i is

the index of component ci in the device tuple. (eq. 1)

In summary, when designing a device with C components, our
optimizer must determine values for up to 8C continuous vari-
ables, and select a discrete ordering among the C components.

ASSEMBLY-AWARE DEVICE OPTIMIZATION
Our optimization aims to find a device design D with valid
layout (eq. 2), and a valid assembly plan (eq. 3), by simulta-
neously searching over both layout and assembly degrees of
freedom (eq. 10, 11).

This simultaneous optimization stands in contrast to previ-
ous work which either optimizes layout for applications of
furniture, and virtual world layout design [33, 58, 18] or opti-
mizes assembly given layout for various manufacturing and
engineering design applications [23, 55].

Cost function
We define a cost J for a device D to characterize how assem-
blable it is.

minimize
L(D),A(D)

J(D) ,

J(D)≡ Jc + Jb . (12)

J(D) is the summation of collision penalty Jc, and bounding
penalty Jb defined over all elements di in D. Jc penalizes the
collisions during assembly, while Jb constrains all the elements
to stay within the enclosure. In order to define these penalties,
we need to quantify overlap between shapes, which we do
with a smoothed signed distance overlap cost.

Signed distance measure δ :
A signed distance measure δ between a pair of shape attributes
Si and S j is computed as the shortest distance between their
closest points using Euclidean norm ‖·‖, when they are not
overlapping. Otherwise, we compute δ as the negative of pen-
etration depth (PD), which is a natural extension of Euclidean
distance when the elements di and d j are overlapping. PD is
defined as the minimum translation distance that one of them
undergoes to make the interiors of their shape attributes Si and

S j disjoint [25] (see Fig. 7A). Detailed mathematical equa-
tions are defined in Appendix B. We use a publicly available
implementation based on the Expanding Polytope Algorithm
(EPA) to compute δ [49, 1].

-4 0 4 8 12
0

0.2

(mm)

quadratic 0 cubic

0.4

0.6A. B.

= -

Figure 7. (A) Signed distance measure δ defines distances between over-
lapping and non-overlapping shapes. When two shapes S1 and S2 over-
lap each other, δ is computed using the minimum translational length
that will separate them (called penetration depth (PD)). Otherwise, δ is
calculated as the Euclidean distance between the closest points of S1 and
S2. (B) We use a C2 continuous cost o(δ) to penalize overlapping shapes.

Smooth overlap cost o(δ):
Our signed distance measure δ is not amenable to gradient-
based methods. We therefore define a smooth overlap cost
o(δ) to penalize overlapping elements in D. The overlap cost
o(δ) is a function which is quadratic when distance between
shapes (δ) is less than zero, and is zero when shapes are
sufficiently far from each other (see Fig. 7B, Appendix B).
To ensure smoothness, a cubic function is defined over the
intermediate distance range 0≤ δ < ε , where ε > 0 determines
the minimum separation between the elements in a device. ε

allows us to define a safety distance margin between elements,
which further aids easy assembly. We set it empirically.

Collision and bounding penalties:
Equipped with the concept of overlap cost, we are now able
to define the collision penalty Jc, and the bounding penalty Jb.
Driving these two penalties to zero will result in a valid layout
and assembly plan.

The collision penalty, Jc, penalizes collisions between assem-
bly paths of parts and those parts assembled earlier:

Jc ≡∑
i< j

overlap(Si, S̃ j) (13)

where overlap(Sa,Sb)≡ o(δ (Sa,Sb)) penalizes collisions be-
tween shapes Sa and Sb using the overlap cost o(·) and signed
distance δ (·).
The bounding penalty, Jb, forces component-type parts to
remain inside the enclosure:

Jb ≡∑
c

overlap(Se,Sc) (14)

The bounding penalty only considers component-type parts
in order to save some computational cost – by construction,
both mounts and fasteners will lie within the enclosure if their
associated components are within.

Note that the enclosure shape used in the collision penalty is
the shape without lids (as used in assembly validity), while
the enclosure shape used in the bounding penalty is the shape
with lids (as used in layout validity).

Numerical Optimization
To optimize the cost function J(D) as defined in eq. (12),
we develop an efficient algorithm that combines heuristics
inspired by the CAD design community, and powerful opti-
mization strategies.

Heuristics:
We interviewed an expert with 5 years of CAD experience
in designing mechanical assemblies to understand the design
practices in the community. The expert supported simultane-
ous reasoning for assembly and layout of components during
design. However, the expert highlighted that the expert would
approach such concurrent assembly-layout design in an in-
cremental manner. Instead of adding all components in a
device at once, the expert would add one component at a time
and focus on finding valid layout and assembly for this lat-
est addition, before adding any more components. Similar
incremental approaches have also been applied for automatic
computer-aided design of VLSI [14, 12], architectural floor
plans [15], specifically to deal with high design complexity,
and to improve algorithm run times. Inspired by these, we
adopt an incremental approach to ensure interactivity during
design. Instead of searching for valid configurations (layout
and assembly) of all components at once, we incrementally
create partial device designs by adding and properly config-
uring one component at a time to the device. Incrementally
adding components to the device optimization ensures that the
search space complexity increases gradually, aiding interactiv-
ity. Finally, an additional component may be accommodated
in a partial design with small reconfigurations of its existing
components, if the component makes the best use of available
empty space. We therefore reward the use of empty space
during our incremental optimization.

Choice of optimization strategy:
Our cost function J(D) is highly multimodal. Further it has
a mixture of discrete and continuous optimization variables.
Determining the assembly ordering is a combinatorial prob-
lem while layout optimization is continuous. Markov Chain
Monte Carlo (MCMC) based stochastic optimization meth-
ods have been successfully used in the past for combinatorial
problems [22, 26]. However, standard MCMC methods tend

to get stuck in a single mode while sampling from a multi-
modal probability distribution. Approaches based on multiple
markov chains such as Parallel Tempering have been proposed
to overcome this issue [19, 4]. These approaches however, do
not offer a mechanism to exploit the availability of gradient
information for continuous optimization variables. Recent ap-
proaches have shown the benefit of combining gradient based
optimization with sampling for both continuous and mixed
optimization problems [7, 27]. Using gradient information
increases the efficiency of sampling by ensuring less-random
walks of the markov chains in the parameter space. Inspired by
these approaches, we combine gradient-based methods with
Parallel Tempering (PT) for our problem.

Parallel Tempering (PT):
We briefly summarize PT for sake of clarity. Typical MCMC
methods perform a memoryless, random walk in the space
of parameters θ by simulating a markov chain that generates
samples from a function f (θ). These samples can be generated
using a Boltzmann-like probability distribution such as:

P(θ) =
1
Z

e− f (θ)β , (15)

where Z normalizes the distribution, and β ≤ 1 is known as an
inverse-temperature constant. β controls the amount of explo-
ration, which reduces as temperature decreases (increasing β

values). In PT, independent markov chains are run in parallel
on a set of N distributions (such as in eq. 15) with inverse
temperatures defined as 0≤ βN < βN−1 < · · ·< β1 < β0 = 1.
Periodically, the configurations of these chains are swapped
probabilistically. This allows chains at higher temperature that
tend to explore more, to pass information about better configu-
rations to exploitative chains at lower temperatures, thereby
allowing colder chains to escape local minima. Each chain
propagates over time based on the Metropolis-Hastings (MH)
update procedure, using easy to sample proposal distributions
Q, and the corresponding acceptance probability [34, 20]. The
performance of PT is dependent on the proposal distributions
Q that are used to update the chains’s configurations, and se-
quence of their inverse-temperatures. For exploring the space
of possible layouts and assembly plans effectively, we define
proposal distributions that generate chain configurations by
perturbing the layout and assembly parameters. These pertur-
bations allow local adjustments around the current values of
these parameters as well as create global design changes. We
describe our proposal distributions, and procedure for selection
of chain temperatures in the Appendices C, D respectively.

Interleaving gradient optimization with PT:
Since the cost function J(D) is multimodal, we want the chains
to quickly find modes of J(D) and explore it. To drive the ran-
dom walk of these chains towards regions of high probability
(modes) in the manner of a gradient flow, we utilize gradient
information for the continuous parameters in θ k

t . Keeping the
discrete parameters fixed (assembly ordering), θ k

t is updated
using single step of gradient descent in each iteration t (line
13 in Algorithm 1).

θ
k
t = θ

k
t − γ

∂J(D)
∂θ

∣∣∣
θ=(pl ,pa)∈θ k

t
, (16)

A.

B.

Figure 8. Fabricated devices – (A) Crusher, and (B) Clumsy are shown with their 3D printed enclosures, and their final assembled design. Each
enclosure has custom mounts and fastener geometries created by our system for their components, based on the optimized layout. Our video shows
these robots in action.

where ∂J(D)
∂θ

is a numerically computed gradient, and γ is the
gradient step-size determined by line search. pl and pa are the
continuous layout and assembly DOF respectively (eq. 10, 11).

Incremental interleaved optimization:
Since our approach uses incremental design heuristics and
interleaves gradient optimization with PT, we call it an incre-
mental interleaved optimization. Partial designs are created
incrementally by adding one component at a time based on
their sizes, starting with larger components first. Each partial
design is then optimized with interleaved gradient-PT opti-
mization, before updating the partial design by adding the next
set of components. In order to make better use of available
empty space while adding a component to a partial design, and
to utilize previously found valid design, we formulate a new
initialization procedure for PT chains, as described next.

Starting with a partial design Dpartial , and the current com-
ponent to add (cadd), the initialization algorithm sets up N
chains for our interleaved optimization. Half of the chains (at
lower end of temperature spectrum) are initialized to exploit
the configuration of cadd around the previously configured
components in Dpartial . In order to increase the probability
of adding cadd in the available empty space, we sample 50
configurations (empirically determined) of cadd without chang-
ing previously configured components in Dpartial , and pick the
best one. While there is no guarantee that cadd’s configurations
falls in an empty space in 50 samples (and this probability
goes down with higher number of components and fill ratio), in
practice, just being close to an empty space is helpful enough.
This is because if cadd is initialized near an empty space, the
perturbations during the interleaved optimization will end up
pushing it in the empty space. Such an initialization serves
as a hypothesis for possible configurations of cadd , and the
corresponding chain refines it further as the optimization pro-
ceeds. On the other hand, the chains at higher temperatures
are initialized randomly. They search for completely different

configurations for all components in Dpartial including that of
cadd . They are meant to handle situations that require major
re-configurations of the previous design to accommodate cadd .

The incremental interleaved optimization algorithm is outlined
in Algorithm 1 and is used for adding cadd to Dpartial at each
stage in the design. We begin the PT sampling process at t = 0,
with N chains initialized at β1, . . . ,βN temperatures. The initial
configurations of chains in the parameter space are obtained
using our initialization procedure (line 2-10). Each sample θ k

t
of chain k at time t, consists of {L(D),A(D)}. Lines 11-19
correspond to our interleaved gradient-PT approach. In order
to maximize the influence of hot chains on the colder chains
for faster convergence, we also update the chain temperatures
periodically using a procedure described in Appendix E. The
algorithm converges when any chains’s sample values corre-
spond to a design with J(Dpartial ∪ cadd) < threshold. This
threshold is set so as to ensure a collision-free design.

Such incremental design enables the overall optimization pro-
cess to be much more effective. This is because partial designs
have fewer parameters to optimize (smaller design space), and
a less constrained volume available for layout. Further, when
the optimization is re-run with the next set of components,
partially optimized designs result in more favorable initial
conditions. Interleaved optimization without our heuristics
(incremental design, and use of empty space) lead to much
longer optimization times. For instance, the average design
time for one of our test devices – Clumsy (Fig. 8) comes out
to be 706.7s over 10 runs using only interleaved optimization,
instead of 214.14s with incremental interleaved optimization.

Role of users in design optimization:
When the optimization freezes for more than 5 minutes (em-
pirically decided), our system asks the users to make small
modifications and rerun. Problematic components are high-
lighted in red, and users tend to modify those; helping the
optimization to escape from minimas.

Algorithm 1: Incremental interleaved optimization for layout
and assembly design of electromechanical devices
input :Dpartial , cadd , threshold for convergence
output :Dpartial ∪ cadd | J(Dpartial ∪ cadd)< threshold

1 Initialize N chains with β1, . . . ,βN
2 for chain k do
3 if k < N

2 then
4 θ ′0← Sample 50 configurations for cadd , keeping

Dpartial fixed
5 θ0∗← Pick the best configuration out of θ ′0
6 Intialize chain k at θ0∗
7 else
8 Intialize chain k at random
9 end

10 end
11 while not converged do
12 foreach chain k do
13 gradient step for continuous variables (eq. (16))
14 Metropolis-Hastings(MH) update of chain k
15 if J(D) at θ k

t < threshold then return converged
16 end
17 swap a random pair of adjacent chains
18 update chain’s βk periodically
19 end

RESULTS

Fabricated examples
We designed and fabricated three devices with very different
functionalities to demonstrate the utility of our system – a
four wheeled robot called Crusher, a two wheeled balancing
robot - Clumsy, and a smart crib monitoring toy owl –Chirpy
(shown in Fig. 1, 8). Crusher is a bluetooth controlled recy-
cling robot that can detect and grab soda cans with its gripper
arm. Clumsy balances its way through obstacles, and asks
for help by waving its hands when needed. Chirpy can detect
and soothe a crying baby by flapping its wings and singing
a song. Chirpy also alerts the baby’s parents by sending a
message when the baby starts crying. Each device has a vari-
ety of components and unique enclosures. While our system
is not restricted to any particular type of kit or modules, we
use electromechanical components from Makeblock kits for
our examples [29]. Relevant information about fasteners and
mounts for each component is pre-processed manually, but
one can envision scanning a catalog to gather this information.

To endow devices with a desired functionality, we selected
a set of components for each device. The configurations of
certain components may be limited within an enclosure owing
to the functional and aesthetic requirements of the device.
For example, Crusher’s motors need to be configured so as
to connect to its wheels, while the LEDs for Chirpy should
be placed near its eyes. We therefore pre-specify and lock
the configurations of such components before generating the
assemblable layout of other components using our interleaved
optimization. The optimization process maintains the layout
of locked components, and optimizes for their assembly while

concurrently optimizing the layout and assembly parameters
for all other components. For each layout, our system also
generated mounting structures and integrated them into the
original 3D model of the enclosure using CSG operations.
We fabricated our designs using a Stratasys uPrint SE Plus, a
filament based 3D printer using ABSP430 plastic as the model
material and a dissolvable support material. The fabrication
time varied from a few hours to a day, depending on the
geometric size of the enclosure. In contrast, the average time
to design a device with our system was less than 5 minutes
(more details in Fig. 10), and the assembly time of each device
was less than 15 minutes. Each enclosure also had single or
multiple lids that were printed separately and attached to the
enclosure after assembly, through rivets. Overall, it was easy
to assemble these devices owing to the DFA guidelines and
the assembly animation. However, some parts of devices were
bit cumbersome to handle, since we did not model the space
needed for hands during the assembly.

While all the devices we fabricated appear to be simple with
relatively fewer components, it is worth noting that most de-
signs that casual users make have on average less than 7 com-
ponents. We base this observation on an informal survey of
3D printable devices that we conducted on two such popular
platforms – Instructables and Thingiverse [21, 48]. We found
that these designs used on an average 7 components (averaged
over 70 designs of robots, IoT devices etc). While these de-
signs may not be from ‘casual makers’, they reflect what the
‘maker’ community is interested in building. Further, based on
the findings of our user-study (discussed later), devices with
8 components are already quite difficult and time-consuming
for non-experts to design manually.

Virtual device examples
Chirpy, Crusher and Clumsy, have cuboidal enclosures. How-
ever our system works for any convex-shaped enclosure. Fig. 9
shows devices with a polygonal enclosure, a trapezoidal enclo-
sure with slanted walls, and a bunny-shaped enclosure. Each
device contains arbitrary electronic components of varied sizes
selected randomly. The trapezoidal enclosure has openings
on the top and the bottom, while the polygonal and bunny-
shaped enclosures have one opening on the top, and one on
the sides. While our current implementation only supports
convex-enclosures, our framework will work for concave en-
closures as long as we have a way to compute distances from
the enclosure. Note that manual layout design for devices
such as our trapezoidal and polygonal examples is difficult,
owing to the large number of components, and corresponding
constraints. This increase in design complexity and cost with
increasing number of components prevents non-experts from
using more components in their device designs.

USER STUDY
In order to validate the need and usefulness of our compu-
tational framework, we conducted a user study with 24 paid
participants. The user study had two goals. First, we wanted to
understand and quantify the difficulty that novices face while
manually creating assemblable layouts for electromechanical
devices. Secondly, we wanted to determine if our system
reduces the entry barrier they face in creating such devices.

A. C.

B.

Top view

Bottom view

45 components

34 components 11 components

Figure 9. Devices with differently-shaped enclosures and components –
(A) a polygonal device, (B) a trapezoidal device, and (C) a bunny-shaped
device, each with arbitrary electronic components are shown.

Participants
All participants were undergraduate or 1st year CS graduate
students (7F, 17M). We define a casual user/novice as someone
who may be interested in building devices but does not know
how to use a CAD tool, and is unaware of the assembly pro-
cedures (e.g., accounting for fasteners) required for creating
a feasible design. To ensure that our participants belonged to
our target user group, we asked the participants 2 questions
about their background and interest in building devices in the
user-study survey – 1. Are you interested in building/making
things? (Answers: Yes/No/Maybe), 2. What is your expertise
with CAD tools for 3D design? (Answers: 5-pt Likert scale
with score 1 = no expertise). Only 1/24 participant reported
about not being interested in making things, with 70% reply-
ing with a definite yes. All 24 reported none or slight CAD
expertise (average: 1.5 likert score).

Study structure
Each user-study session lasted 75 minutes, and consisted of
an introduction and training session (25 minutes), followed by
a design task (45 minutes), and concluded with a survey (5
minutes). The design task consisted of creating assemblable
component layouts for one of either Crusher, Clumsy or Chirpy
within 45 minutes using the manual mode of our system. The
introduction and training session were responsible for famil-
iarizing the participants with the user interface and the overall
task. In order to boot-strap the participants into thinking about
the constraints of the design task, the experimenter and the
participant co-designed layout of a set of components within
a box enclosure, during the training session. For the design
task, the participants were explained the functionality of the
device they were creating, and were provided with a list of
components to use according to the device’s functionality. We
also provided them the device enclosure and the configurations

of the components that need to be pre-fixed (such as motors
and LEDs). In other words, the participants were given the
same input as taken by our optimization. We recorded whether
the participants succeeded in creating a valid design in their
alloted time, and the total time taken by the participants to
create such a design in case they succeeded. The survey then
evaluated their perception of the task difficulty and the ca-
pabilities of our system by using ratings on a Likert scale.
The responses provided us with a qualitative understanding of
participants’ design experience.

Qualitative analysis
Participants found our highlighted guidance, automatic mount
creation, and animation features highly useful (Fig. 3). For
instance, a participant P7 reported that “assembly animations
were very useful, without them layout would be hard.". Aided
by these features majority of participants succeeded in creat-
ing device designs (Fig. 10). Inspite of this, all 24 participants
rated the design task to be difficult or very difficult, and sup-
ported the utility of automatic design mode (see Appendix E
for more details on user experience). Participants reported
that they would either do physical mockups with iterations
(4/24), use pen-paper (2/24), attempt to learn CAD (9/24), or
wouldn’t know what to do (9/24); for designing such devices
if not for our tool. While all participants reasoned well about
the space in the device for layout, most of them struggled to
make assembly considerations (e.g., P1: “at first I was only
focusing on layout and only then I realized that I should think
about [assembly] order.").

Quantitative analysis
Figure 10 shows the design time, and success rate measured
during the user-study for each of the devices (orange bars).
These statistics emphasize the difficulty of manual design pro-
cess, inspite of our system features. Even for devices with 8-10
components, manual layout is challenging, especially when
assembly considerations are taken into account. The average
design time increases, and the success rate decreases as the
complexity of devices increased. Chirpy and Clumsy were on
the lowest and highest end of the perceived complexity spec-
trum respectively. In particular, only 3 out of 8 participants
found a valid design for Clumsy in the allotted time. In order
to compare these statistics with that of the automated design
process, we ran our optimization 10 times for each design (re-
sultant statistics shown with gray bars). Each such experiment
was run for 1000 seconds or until the threshold cost of a valid
collision-free design was achieved (see algo. 1). We ran all
experiments on a standard desktop with a 3.6 GHz i7 CPU and
16 GB RAM. Similar to the user study, the success rate for
the optimization indicates whether a collision-free layout and
assembly plan was found in the allotted time. For the cases
where it failed to find a valid design in 1000s, the optimiza-
tion process becomes trapped in local minima. We found our
automated approach to be much faster and successful than the
manual design.

A discussion on device complexity:
Even though Clumsy has the same number of components as
Crusher, there is a significant difference in their complexity,
as evident in the design time and success rate statistics. We

Chirpy Crusher Clumsy

A.

B.

80

60

40

20

Percieved device complexitylow high

CrusherChirpy Clumsy

Success rate (%)

%
 o

f
ex

p
e

ri
m

e
n

ts
 t

h
at

 f
o

u
n

d
 v

al
id

 d
e

si
gn

s

0

0

10

20

30

40

Ti
m

e
 (

m
in

u
te

s)

Average design time
Optimization
Manual

100

Figure 10. (A) The average design time in minutes, and (B) the success
rate for each of our 3 devices are shown. The orange bars represent these
statistics averaged over 8 participants per device during our study, while
the gray bars correspond to those averaged over 10 runs of incremental
interleaved optimization. Error bars indicate standard deviation.

therefore attempt to quantify the approximate complexity of
these devices using a set of features (table 1). In particular, we
use – a) the number of parameters, and b) the fill ratio which
is defined as the relative volume occupied by all components
and mounting structures. The fill ratio is computed for each
valid design. Note that the number of parameters and the fill
ratio capture different aspects of complexity.

Device | C | | F | Avg. # p # p
fill (disc.) (cont.)

Crusher 8 18 30.5% 8 34
Chirpy 10 20 21.9% 10 47
Clumsy 8 19 45.2% 8 33

Table 1. The number of components (| C |), and fasteners (| F |), fill
ratio, and number of discrete and continuous parameters to optimize (#
p) indicate approximate complexity of each design.

While the features in table 1 provide an approximate idea of
device complexity, it is hard to precisely quantify the diffi-
culty of finding an assemblable layouts. This is because the
complexity depends upon not just the number of components,
volume filled, and parameter count, but is also a function of
many other factors. In particular, the shape of the enclosure
dictates possible layouts and assembly paths for the compo-
nents. However, the enclosure shape is not characterized by
its volume. Out of two enclosures with the same volume,
the enclosure with a shape that provides more surface area
to mount the components may be more amenable for layout.
Further, when a component is added to an enclosure, the com-

ponent and its mounts partition the space available for other
components in a non-trivial manner. Fasteners, and configu-
rations of locked components such as LED further shape the
remaining available space. The role of these factors becomes
apparent in the design of Clumsy. Even though Clumsy has
only 8 components, 2 of its components – a battery pack, and
a controller board are very large and can be arranged in only
certain configurations so as to fit within the enclosure. If their
configurations are badly initialized, the smaller components
may block them from achieving these valid configurations (as
reflected in the less than 100% success rate of our optimization
(gray) in Fig. 10).

LIMITATIONS AND FUTURE WORK
We introduced a computational design system that enables
users with no CAD experience to design fabricable and assem-
blable 3D printed devices with embedded electromechanical
components. With the help of a parameterized model that cap-
tures the spatio-temporal aspects of the assembly process, and
an efficient concurrent optimization scheme, our system allows
users to design complex devices within minutes. Our spatio-
temporal model is purely geometric and general. Further, our
system encodes Design for Assembly (DFA) principles that
ensures the resultant designs to be easily assemblable. We
evaluated our system by creating a variety of designs, and with
a user-study. Our system could find valid designs for devices
in less than 5 minutes, while the users took longer than 30
minutes on average with lower success rates. The lack of
CAD experience and resulting design challenges faced by our
participants further confirmed the usefulness of our system.

However, our system is currently limited to devices without
transmission or moving parts. Extending our framework to
account for moving parts that take a range of configurations
once assembled will enable the design of more diverse de-
vices. Including other higher level design requirements (such
as a desired center of mass for Clumsy) while optimizing for
component layout may further increase the space of designs.
We also do not account for strengths of mounts generated.
Our system’s mounts were sufficient for the majority of elec-
tronic components that are lightweight. However, including
structural optimization of mounts within the system will be
important for making robust designs in the future. Explor-
ing design possibilities with flexible mounts, and supporting
novices through the use of device mockups in virtual reality
are other interesting directions for future work.

Finally, we found that it is challenging to quantify design com-
plexity of such devices. As a result, guaranteeing a solution for
any arbitrary device is non-trivial. Further, in our preliminary
scalability experiments (see Appendix F), we found that our
optimization needed much longer time to find valid designs
for devices with more than 15 components, or higher than 50%
fill ratio. The number of components, and fill ratio in devices
made by our target audience of makers and artist is well below
these bounds. However, more research is necessary to enable
our system to support experts, or other target audiences. To
this end, a promising approach entails putting user-in-the loop
during incremental optimization, as well as exploring better
ways to incorporate user intuition during design.

REFERENCES
1. 2015. Bullet Physics Library. http://bulletphysics.org/.

2. 2017. Sketch-up. https://www.sketchup.com/.

3. Daniel Ashbrook, Shitao Stan Guo, and Alan Lambie.
2016. Towards Augmented Fabrication: Combining
Fabricated and Existing Objects. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. ACM, 1510–1518.

4. Yves F Atchadé, Gareth O Roberts, and Jeffrey S
Rosenthal. 2011. Towards optimal scaling of
Metropolis-coupled Markov chain Monte Carlo. Statistics
and Computing 21, 4 (2011), 555–568.

5. Autodesk 2014. Autodesk 123D Design. Autodesk.
http://www.123dapp.com/design.

6. Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga
Sorkine-Hornung. 2014. Spin-it: optimizing moment of
inertia for spinnable objects. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 96.

7. Gaurav Bharaj, David IW Levin, James Tompkin, Yun
Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi
Zheng. 2015. Computational design of metallophone
contact sounds. ACM Transactions on Graphics (TOG)
34, 6 (2015), 223.

8. Geoffrey Boothroyd. 2005. Assembly Automation and
Product Design, Second Edition (Manufacturing
Engineering and Materials Processing). CRC Press, Inc.,
Boca Raton, FL, USA.

9. George Casella and Edward I George. 1992. Explaining
the Gibbs sampler. The American Statistician 46, 3
(1992), 167–174.

10. Andrea Censi. 2017. A Class of Co-Design problems
with cyclic constraints and their solution. IEEE Robotics
and Automation Letters 2, 1 (2017), 96–103.

11. Duygu Ceylan, Wilmot Li, Niloy J Mitra, Maneesh
Agrawala, and Mark Pauly. 2013. Designing and
fabricating mechanical automata from mocap sequences.
ACM Transactions on Graphics (TOG) 32, 6 (2013), 186.

12. Jason Cong and Majid Sarrafzadeh. 2000. Incremental
physical design. In Proceedings of the 2000 international
symposium on Physical design. ACM, 84–92.

13. Stelian Coros, Bernhard Thomaszewski, Gioacchino
Noris, Shinjiro Sueda, Moira Forberg, Robert W Sumner,
Wojciech Matusik, and Bernd Bickel. 2013.
Computational design of mechanical characters. ACM
Transactions on Graphics (TOG) 32, 4 (2013), 83.

14. Olivier Coudert, Jason Cong, Sharad Malik, and Majid
Sarrafzadeh. 2000. Incremental cad. In Proceedings of
the 2000 IEEE/ACM international conference on
Computer-aided design. IEEE Press, 236–244.

15. Jim Crenshaw, Majid Sarrafzadeh, Prithviraj Banerjee,
and Pradeep Prabhakaran. 1999. An incremental
floorplanner. In VLSI, 1999. Proceedings. Ninth Great
Lakes Symposium on. IEEE, 248–251.

16. Ruta Desai, Ye Yuan, and Stelian Coros. 2017.
Computational abstractions for interactive design of
robotic devices. In Robotics and Automation (ICRA),
2017 IEEE International Conference on. IEEE,
1196–1203.

17. Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and
Wojciech Matusik. 2016. Computational multicopter
design. ACM Transactions on Graphics (TOG) 35, 6
(2016), 227.

18. Ran Gal, Lior Shapira, Eyal Ofek, and Pushmeet Kohli.
2014. FLARE: Fast layout for augmented reality
applications. In Mixed and Augmented Reality (ISMAR),
2014 IEEE International Symposium on. IEEE, 207–212.

19. Charles J Geyer. 1991. Markov chain Monte Carlo
maximum likelihood. (1991).

20. W Keith Hastings. 1970. Monte Carlo sampling methods
using Markov chains and their applications. Biometrika
57, 1 (1970), 97–109.

21. Instructables. 2017. Instructables - How to make
anything. https://www.instructables.com/.

22. Mark Jerrum and Alistair Sinclair. 1996. The Markov
chain Monte Carlo method: an approach to approximate
counting and integration. Approximation algorithms for
NP-hard problems (1996), 482–520.

23. Pablo Jiménez. 2013. Survey on assembly sequencing: a
combinatorial and geometrical perspective. Journal of
Intelligent Manufacturing 24, 2 (2013), 235–250.

24. Michael D Jones, Kevin Seppi, and Dan R Olsen. 2016.
What you sculpt is what you get: Modeling physical
interactive devices with clay and 3d printed widgets. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, 876–886.

25. Young J Kim, Miguel A Otaduy, Ming C Lin, and Dinesh
Manocha. 2002. Fast penetration depth computation for
physically-based animation. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer
animation. ACM, 23–31.

26. Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, and
others. 1983. Optimization by simmulated annealing.
science 4598 (1983), 671–680.

27. Dingzeyu Li, David IW Levin, Wojciech Matusik,
Changxi Zheng, Timothy R Langlois, Changxi Zheng,
Doug L James, Gaurav Bharaj, David IW Levin, James
Tompkin, and others. 2016. Acoustic Voxels:
Computational Optimization of Modular Acoustic Filters.
ACM Transactions on Graphics 33 (2016), 2.

28. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan
Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel
Cohen-Or, and Baoquan Chen. 2014. Build-to-last:
strength to weight 3D printed objects. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 97.

29. Makeblock. 2015. Makeblock electronic modules.
Available at http:
//www.makeblock.com/electronic-robot-kit-series-STEM.

http://bulletphysics.org/
https://www.sketchup.com/
http://www.123dapp.com/design
https://www.instructables.com/
http://www.makeblock.com/electronic-robot-kit-series-STEM
http://www.makeblock.com/electronic-robot-kit-series-STEM

30. Vittorio Megaro, Bernhard Thomaszewski, Maurizio
Nitti, Otmar Hilliges, Markus Gross, and Stelian Coros.
2015. Interactive design of 3D-printable robotic creatures.
ACM Transactions on Graphics (TOG) 34, 6 (2015), 216.

31. Ankur M Mehta, Joseph DelPreto, Kai Weng Wong, Scott
Hamill, Hadas Kress-Gazit, and Daniela Rus. 2018.
Robot creation from functional specifications. In Robotics
Research. Springer, 631–648.

32. Paul Merrell, Eric Schkufza, and Vladlen Koltun. 2010.
Computer-generated residential building layouts. In ACM
Transactions on Graphics (TOG), Vol. 29. ACM, 181.

33. Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh
Agrawala, and Vladlen Koltun. 2011. Interactive furniture
layout using interior design guidelines. In ACM
Transactions on Graphics (TOG), Vol. 30. ACM, 87.

34. Nicholas Metropolis, Arianna W Rosenbluth, Marshall N
Rosenbluth, Augusta H Teller, and Edward Teller. 1953.
Equation of state calculations by fast computing
machines. The journal of chemical physics 21, 6 (1953),
1087–1092.

35. Przemyslaw Musialski, Thomas Auzinger, Michael
Birsak, Michael Wimmer, Leif Kobbelt, and TU Wien.
2015. Reduced-order shape optimization using offset
surfaces. ACM Transactions on Graphics (TOG) 34, 4
(2015), 102.

36. Radford M Neal and others. 2011. MCMC using
Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo 2 (2011), 113–162.

37. Jorge Nocedal and Stephen J Wright. 2006. Numerical
optimization. (2006).

38. Peter O’Donovan, Aseem Agarwala, and Aaron
Hertzmann. 2014. Learning layouts for
single-pagegraphic designs. IEEE transactions on
visualization and computer graphics 20, 8 (2014),
1200–1213.

39. Gerhard Pahl and Wolfgang Beitz. 2013. Engineering
design: a systematic approach. Springer Science &
Business Media.

40. Raf Ramakers, Fraser Anderson, Tovi Grossman, and
George Fitzmaurice. 2016. Retrofab: A design tool for
retrofitting physical interfaces using actuators, sensors
and 3d printing. Proc. of SIGCHI. ACM (2016).

41. Rohit Ramesh, Richard Lin, Antonio Iannopollo, Alberto
Sangiovanni-Vincentelli, Björn Hartmann, and Prabal
Dutta. 2017. Turning coders into s: the promise of
embedded design generation. In Proceedings of the 1st
Annual ACM Symposium on Computational Fabrication.
ACM, 4.

42. Gareth O Roberts, Andrew Gelman, Walter R Gilks, and
others. 1997. Weak convergence and optimal scaling of
random walk Metropolis algorithms. The annals of
applied probability 7, 1 (1997), 110–120.

43. Bruce Romney, Cyprien Godard, Michael Goldwasser, G
Ramkumar, and others. 1995. An efficient system for
geometric assembly sequence generation and evaluation.
Computers in Engineering (1995), 699–712.

44. Valkyrie Savage, Sean Follmer, Jingyi Li, and Björn
Hartmann. 2015. Makers’ Marks: Physical markup for
designing and fabricating functional objects. In
Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology. ACM, 103–108.

45. Stefan Schneegass, Alireza Sahami Shirazi, Tanja Döring,
David Schmid, and Albrecht Schmidt. 2014. NatCut: an
interactive tangible editor for physical object fabrication.
In Proceedings of the extended abstracts of the 32nd
annual ACM conference on Human factors in computing
systems. ACM, 1441–1446.

46. A Schug, T Herges, and W Wenzel. 2004. All-atom
folding of the three-helix HIV accessory protein with an
adaptive parallel tempering method. Proteins: Structure,
Function, and Bioinformatics 57, 4 (2004), 792–798.

47. Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr,
and Radomír Měch. 2012. Stress relief: improving
structural strength of 3D printable objects. ACM
Transactions on Graphics (TOG) 31, 4 (2012), 48.

48. Thingiverse. 2017. Thingiverse - Digital Designs for
Physical Objects. https://www.thingiverse.com/.

49. Gino Van Den Bergen. 2001. Proximity queries and
penetration depth computation on 3d game objects. In
Game developers conference, Vol. 170.

50. Marynel Vázquez, Eric Brockmeyer, Ruta Desai, Chris
Harrison, and Scott E Hudson. 2015. 3d printing
pneumatic device controls with variable activation force
capabilities. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems.
ACM, 1295–1304.

51. Nicolas Villar, James Scott, Steve Hodges, Kerry
Hammil, and Colin Miller. 2012. . NET gadgeteer: a
platform for custom devices. In Pervasive Computing.
Springer, 216–233.

52. Voxel8. 2015. Voxel8: 3D Electronics Printing.
http://www.voxel8.co.

53. Christian Weichel, Manfred Lau, and Hans Gellersen.
2013. Enclosed: a component-centric interface for
designing prototype enclosures. In Proceedings of the 7th
International Conference on Tangible, Embedded and
Embodied Interaction. ACM, 215–218.

54. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan
Poupyrev. 2012. Printed optics: 3D printing of embedded
optical elements for interactive devices. In Proceedings of
the 25th annual ACM symposium on User interface
software and technology. ACM, 589–598.

55. Randall H Wilson. 1992. On Geometric Assembly
Planning. Technical Report. DTIC Document.

https://www.thingiverse.com/
http://www.voxel8.co

56. Jan D Wolter. 1991. On the automatic generation of
assembly plans. In Computer-Aided Mechanical
Assembly Planning. Springer, 263–288.

57. Yi-Ting Yeh, Lingfeng Yang, Matthew Watson, Noah D
Goodman, and Pat Hanrahan. 2012. Synthesizing open
worlds with constraints using locally annealed reversible
jump mcmc. ACM Transactions on Graphics (TOG) 31, 4
(2012), 56.

58. Lap Fai Yu, Sai Kit Yeung, Chi Keung Tang, Demetri
Terzopoulos, Tony F Chan, and Stanley J Osher. 2011.
Make it home: automatic optimization of furniture
arrangement. ACM Transactions on Graphics
(TOG)-Proceedings of ACM SIGGRAPH 2011, v. 30, no.
4, July 2011, article no. 86 (2011).

APPENDIX

ASSEMBLY PATH REPRESENTATION
The linear piece-wise assembly paths Pi for components and
fasteners can be precisely represented as functions of time.
The assembly path function for components consisting of two
piecewise linear steps ~x1 and ~x2 and a final position x can be
written as:

Pc(t)≡
{

x−~x2− (1−2t)~x1 if t < 0.5
x− (2−2t)~x2 otherwise (17)

The assembly paths for fasteners are single segmented and
depend upon their associated component’s configuration and
corresponding socket positions. Such an assembly path with
step~x1 is equivalent to:

Pf (t)≡ xc +Rc (x− (1− t)(~x1)) , (18)

where xc and Rc define configurations of the fastener’s associ-
ated component.

SIGNED DISTANCE MEASURE AND SMOOTH OVERLAP
COST
Mathematically, the signed distance measure δ between a pair
of shape attributes Si and S j (as in Fig. 7) is defined as:

δ (Si,S j) =

{
−PD(Si,S j) , if Si∩S j , /0
∆ , otherwise

(19)

where Si and S j are shape attributes. The shortest distance ∆ is
defined as min(‖xi−x j‖, | xi ∈ Si,x j ∈ S j), where ‖·‖ denotes
Euclidean norm. Likewise, penetration depth PD(Si,S j) =
min(∆ | interior(Si +∆)∩S j = /0).

o(δ) =

a1δ 2 +b1δ + c1, if δ < 0
a2δ 3 +b2δ 2 +b1δ + c1, if 0≤ δ < ε

0 , otherwise
(20)

where a1 corresponds to the stiffness of the quadratic cost.
b1 = − a1ε

2 , c1 = a1ε2

6 , a2 = − a1
6ε

, and b2 = a1
2 are constant

weights that are determined such that the resultant overlap cost
function is C2 continuous. a1 and ε are empirically set.

METROPOLIS-HASTINGS UPDATE AND PROPOSAL DIS-
TRIBUTION Q
Generating markov chains corresponding to a distribution P
(as in eq. 15) is generally intractable due to the required com-
putation of the normalization constant Z in eq. 15. Instead,
Metropolis-Hastings approach allows exploring distributions
without computing Z, in the following manner. Starting with
a random configuration in the parameter space θ1, a sample
θ ′ is proposed at each time step, from an easy to sample pro-
posal distribution Q(θ | θt). θ ′ is accepted in the chain with a
probability:

α(θ ′) = min
(

1,
P(θ ′)
P(θt)

Q(θt | θ ′)
Q(θ ′ | θt)

)
, (21)

where α is called the MH acceptance probability. If θ ′ is
accepted, θt+1 = θ ′. We refer to this as the MH-update step
(line 14 in Algorithm 1). The proposal distributions Q that are
used to propose samples for MH-update of each chain typically
use perturbation mechanisms. These mechanism underlying
proposal distributions for layout and assembly parameters are
described below:

Layout perturbation: The layout parameters pl
i of compo-

nents ci ∈ D (as defined in eq. (1)) consisting of 3D position
xi and orientation Ri of c are perturbed in 4 ways:

• xi of each component ci is perturbed by adding a Gaussian
term N (0,σx) to each co-ordinate.
• Ri of each component ci is uniformly sampled from a set

of valid orientations. We found this to work better empir-
ically than perturbing Ri with a Gaussian term N (0,σR).
This also results in more feasible designs since arbitrary
orientations may result in unstable and hard to assemble
configurations.
• Swap positions of 2 randomly selected components.
• Swap orientations of 2 randomly selected components.

The first two perturbations are ‘local’, while the last two per-
turbations allow the markov chains to jump to different parts
of the parameter space. We employ rejection sampling from
N (0,σx) to ensure that the resultant component configura-
tion is within the bounds of the enclosure. σx is auto-tuned
to achieve 23% acceptance rate during MH-updates of each
chain (eq. (21)). This is based on the theoretical evidence that
suggests this rate to be a good general setting [42].

Assembly plan perturbation: Based on our early experi-
ments, we develop a set of heuristics to perturb the assembly
parameters pa

i corresponding to the assembly path, and the
assembly order i (defined in eq. (11)).

• Instead of sampling the assembly path parameters pa
i ac-

cording to a Gaussian distribution, we uniformly sample
these parameters for each component ci ∈ D around a set
of main directions that correspond to removable panels
(lids) of the enclosure. Such biased sampling of assembly
paths allows us to filter out paths that are blocked by
enclosure walls, and speed up computation considerably.

• To perturb assembly order, we adopt a greedy strategy
that allows for occasional exploration. We swap assembly
order i (index in device tuple in eq. 1) of two randomly
selected components with a small probability, or generate
a heuristic ordering otherwise. This strategy is based on
the observation that out of n! assembly orderings for a
set of n components, many orderings have the same out-
come. For example, when a group of small components
is blocked by a larger component, swapping the order
between components in this group is counter-productive.
Therefore, instead of resorting to un-informed sampling
in the assembly order space, our heuristic ordering is gen-
erated by considering the layout parameters. It is decided
based on the distance of components from the main open-
ing of the enclosure, with the farthest component getting
assembled first. This approach of sampling a parameter
given other parameters is similar to Gibbs sampling [9].

Note that our proposal distributions are symmetric (Q(θt |
θ ′) = Q(θ ′ | θt)), which further simplifies eq. 21.

TUNING CHAIN TEMPERATURES β

Inspired by [46], we adapt the temperature of chains during
sampling to achieve this swap rate of 23% amongst each ad-
jacent pair of chains. For this adaptation, we first initialize
inverse-temperatures with a geometric temperature sequence:
β j+i = ρβ j, where ρ is a constant. ρ can be easily determined
given the number of chains N and maximum chain temperature
βN . We use N = 10, and βN = 0.001 for all our experiments
(empirically determined).

USER DESIGN EXPERIENCE

1 2 3 4 5

Please rate the difficulty of the task

Based on your design experience, would you like

to automate layout design for such devices?

Please rate the effort required for the task

For the ar�facts that you would like to build, do you

think component selec�on is harder than layout?

Does this system reduce your entry barrier

in making these devices?

Figure 11. Users feedback about the design task, and our system are
highlighted by their responses to our survey. 1 - strongly disagree/very
low, 3 - neutral, 5 - strongly agree/very high. Error bars indicate stan-
dard deviation.

Fig. 11 shows the responses to our survey on Likert scale.

ADDITIONAL VALIDATION EXPERIMENTS
We perform two additional experiments for validating our
approach. First, we validate the interleaved optimization ap-
proach for our problem, by comparing with other standard
sampling and gradient based methods. Next, we describe a
benchmarking experiment that shows the scalability of our
framework with increasing number of components, and fill
ratio.

Comparison with other optimization approaches
In order to validate the advantage of interleaving gradient op-
timization with Parallel Tempering (PT), we compare against
other possible variants – ‘PT only’, ‘PT followed by gradi-
ent optimization’, and ‘gradient optimization only’. We use
the BFGS quasi-Newton method for gradient optimization
in the last two test conditions [37]. ‘PT only’ has been suc-
cessfully used for layout problems in the past such as for
furniture layout [33], while BFGS is widely used for contin-
uous optimization problems [37]. ‘PT followed by gradient
optimization’ combines stochastic and gradient based opti-
mization in a naive manner. Table 2 shows the comparison
of our interleaved optimization against these variants for the
design of Crusher averaged over 10 runs. Considering that
the interleaved optimization for Crusher design found a valid
solution in 154s on average, we ran PT for 500s or until the
cost threshold of collision-free design was reached, for ‘PT
only’, and ‘PT followed by gradient optimization’ test condi-
tions. This was followed by 100s of gradient optimization for
the latter. In order to replicate the random initializations and
N parallel chains of PT, we execute N = 10 parallel gradient
optimizations, each starting with a random configuration for
the last test condition. Since the gradient optimization cannot
be used to find a discrete assembly ordering, we set the order-
ing based on the initial configuration in a heuristic manner (as
described in Appendix C).

Optimization Avg. time (s) Success rate
Interleaved optimization (ours) 154.7 100%

PT only - 0%
PT followed by BFGS 539.6 80%

BFGS only 493.7 40%
Table 2. Comparing optimization techniques based on how often they
find valid designs, and the time they take to find them.

The success rate of this experiment is an indicator of the prob-
ability of finding an assemblable layout given a fixed ordering.
It reaffirms the need to search for an assembly ordering and
layout concurrently. The interleaved optimization strategy
finds valid designs in lesser time with higher success rate com-
pared to other methods. Combining interleaved optimization
with incremental design reduces the design time even further
(Fig. 10). ‘PT only’ does not manage to find acceptable de-
signs in 500s for any runs.

Scalability experiments
Previously, we described how quantifying complexity of 3D
printable electro-mechanical devices is non-trivial. Neverthe-
less, to study the ability of our proposed algorithm to scale to
complex examples, we focus on two features – fill ratio, and
number of components. We select these features because they
are easy to quantify, and control in an experimental set-up.

For each experiment, a virtual device is created with fill ratio
m, and n cuboidal components of arbitrary sizes. To reduce
the affect of enclosure and component shapes on the device
complexity, we use simple cuboidal enclosure and cuboidal
components, for all our experiments (Fig. 12(A)). Further, we
assume that the enclosure’s size and thereby volume can be

appropriately scaled as needed. Scaling the enclosure in this
manner allows us to easily control a device’s fill ratio for our
test scenario.

A. B.Cuboidal components
of varied sizes

0

0.2

0.4

0.6

0 25 50 75 100

M
ax

. f
ill

 r
at

io
 f

o
r

w
h

ic
h

va
lid

 s
o

lu
ti

o
n

 w
as

 f
o

u
n

d

Number of components (n)

Scalable cuboidal
enclosure

Figure 12. We perform scalability experiments that measure the per-
formance of the algorithm as the number of components, and fill ra-
tio increases. (A) shows an example virtual device with arbitrary sized
cuboidal components that we create for these experiments. A scalable
cuboidal enclosure is used to easily increase the fill ratio during the ex-
periments. (B) gives an intuition about the maximum fill ratio of devices
with n components for which the algorithm was able to find a solution in
the allotted time.

In order to test the scalability of our framework with increas-
ing fill ratio, we keep the number of components n in a device
constant as we change the device’s fill ratio m. Similarly, to
test how the framework scales with increasing number of com-
ponents in a device, we keep the fill ratio fixed as we increase
the number of components in the device. During the course
of first experiment, we gradually scale down the enclosure
volume to increase the fill ratio for a device with n compo-
nents. We run incremental design optimization to find valid
assemblable layout designs, for an hour for each fill ratio. We
continue increasing the fill ratio till the optimization fails to
find a valid device design in an hour, and record the maximum
fill ratio for which the optimization succeeded. For testing
scalability with number of components, we repeat the above
experiment for different values of n (number of components).
Fig. 12(B) shows a plot of maximum fill ratio for which the
optimization found a valid design in the allotted time vs. num-
ber of components for our virtual cuboidal device, calculated
over set of 3 experiments. As the number of components or fill
ratio increases, the optimization needs more time, and hence
finds fewer valid designs in the allotted time.

	Introduction
	Related Work
	Design process
	User Interface
	Modeling Electromechanical Devices
	Validity
	Parts
	Degrees of Freedom

	Assembly-aware device optimization
	Cost function
	Signed distance measure :
	Smooth overlap cost o():
	Collision and bounding penalties:

	Numerical Optimization
	Heuristics:
	Choice of optimization strategy:
	Parallel Tempering (PT):
	Interleaving gradient optimization with PT:
	Incremental interleaved optimization:
	Role of users in design optimization:

	Results
	Fabricated examples
	Virtual device examples

	User study
	Participants
	Study structure
	Qualitative analysis
	Quantitative analysis
	A discussion on device complexity:

	Limitations and Future Work
	References
	Assembly path representation
	Signed distance measure and smooth overlap cost
	Metropolis-Hastings Update and Proposal distribution Q
	Tuning chain temperatures
	User design experience
	Additional validation experiments
	Comparison with other optimization approaches
	Scalability experiments

