
Numerical Optimization

- a brief review -
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What is optimization, and why 
should we care about it?

Finding the best solution among all 

possibilities (subject to certain constraints)
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Find the best solution among all possibilities 

(subject to certain constraints)

A parameterized design/template/problem
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Find the best solution among all possibilities 

(subject to certain constraints)

Optimized for speed

Optimized for efficiency
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Find the best solution among all possibilities 

(subject to certain constraints)

What is this optimized for?!?
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Find the best solution among all possibilities 

(subject to certain constraints)

Optimized for beauty Optimized for beauty?!?
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What is an optimization problem, 
and why should we care about it?

Ingredients:

- a parameterized template/design/problem

- an objective that measures how “good” 

arbitrary points in parameter space are

- quite possibly some constraints
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Optimization problems are EVERYWHERE

In nature…

engineering…



Optimization



Optimization
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Optimization problems are EVERYWHERE

In nature…

engineering…

physics-based modeling…

architecture…

manufacturing…

robotics…

machine learning…

Knowing how to solve optimization 

problems is very, very useful!



Continuous vs. Discrete Optimization

DISCRETE:

- domain is a discrete set (e.g. integers)

- Example: knapsack problem, which cities to visit on a trip

- Basic strategy? Try all combinations! (exponential)

- sometimes clever strategy (e.g., MST)

- can sometimes turn discrete variables into continuous ones

- more often, NP-hard (e.g., TSP)

CONTINUOUS:

- domain is not discrete (e.g., real numbers)

- still many (NP-)hard problems, but also large classes of “easy” 
problems (e.g., convex)

- Gradient information, if available, can be very useful

file://///Users/keenan/Desktop/soup.svg


Optimization Problem in Standard Form

Can formulate most continuous optimization 
problems this way:

“objective”: how much does solution x cost?

“constraints”: what must be true about x? (“x is feasible”)

Optimal solution x* has smallest value of f0 among all feasible x

Q: What if we want to maximize something instead?

A: Just flip the sign of the objective!

Q: What if we want equality constraints, rather than inequalities?

A: Can include two constraints: g(x) ≤ c and g(x) ≤ -c

often (but not always) continuous, differentiable, ...



Local vs. Global Minima

Global minimum is absolute best among all possibilities

Local minimum is best “among immediate neighbors”

Philosophical question: does a local minimum “solve” the problem?

Depends on the problem! (E.g., evolution)

But sometimes, local minima can be really bad…

global minimum

local minima



Existence & Uniqueness of Minimizers

Already saw that (global) minimizer is not unique.

Does it always exist?  Why?

Just consider all possibilities and take the smallest one, 
right?

perfectly reasonable 
optimization problem

clearly has no solution
(can always pick smaller x)

Not all objectives are bounded from below.



Existence & Uniqueness of Minimizers, cont.

Even being bounded from below is not enough:

No matter how big x is, we never achieve the lower bound (0)

So when does a solution exist?  Two sufficient conditions:

Extreme value theorem: continuous objective & compact domain

Coercivity: objective goes to +∞ as we travel (far) in any direction



Characterization of Minimizers

Ok, so we have some sense of when a minimizer 
might exist

But how do we know a given point x is a minimizer?

global minimum

local minima

Checking if a point is a global minimizer is (generally) hard

But we can certainly test if a point is a local minimum (ideas?)

(Note: a global minimum is also a local minimum!)



...but what about this point?
find points where

Characterization of Local Minima
Consider an objective f0: R → R.  How do you find a 
minimum?

(Hint: you may have memorized this formula in high 
school!)

Also need to check second derivative (how?)
Make sure it’s positive
Ok, but what does this all mean for more general functions f0?

must also satisfy



Optimality Conditions (higher dimensions)

In general, our objective is f0: Rn → R

How do we test for a local minimum?

1st derivative becomes gradient; 2nd derivative becomes Hessian

GRADIENT
(measures “slope”)

HESSIAN
(measures “curvature”)

Optimality conditions? positive semidefinite (PSD)
(uTAu ≥ 0 for all u)

1st order 2nd order



Gradient

Given a multivariate function, its gradient assigns a 
vector at each point



Hessian

Jacobian of the gradient (matrix of second derivatives)

Recall Taylor series

Gradient gives best linear approximation

Hessian gives us best quadratic approximation



Hessian and Optimality conditions

Optimality conditions for multivariate optimization?

positive semidefinite (PSD)
(uTAu ≥ 0 for all u)

1st order 2nd order



Gradients of Matrix-Valued Expressions

EXTREMELY useful to be able to differentiate 
matrix-valued expressions!

At least once in your life, work these out 
meticulously in coordinates!

After that, use http://www.matrixcalculus.org/



Convex Optimization

Special class of problems that are almost always “easy” to solve 
(polynomial-time!)

Problem is convex if it has a convex domain and convex objective

Why care about convex problems?
- can make guarantees about solution (always the best)
- doesn’t depend on initialization (strong convexity)
- often quite efficient

convex objective

nonconvex objective
noconvex domain

convex domain



Convex Quadratic Objectives & Linear Systems

Very important example: convex quadratic objective

Can be expressed via positive-semidefinite (PSD) matrix:

Q: 1st-order optimality 
condition?
Q: 2nd-order optimality 
condition?

just solve a linear system!

satisfied by 
definition
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Sadly, life is not usually that easy.

How do we solve optimization 
problems in general?



Descent Methods

An idea as old as the hills:



Gradient Descent (1D)

Basic idea: follow the gradient “downhill” until it’s zero

(Zero gradient was our 1st-order optimality condition)

Do we always end up at a (global) minimum?

How do we implement gradient descent in practice?



Gradient Descent Algorithm (1D)
Simple update rule (go in direction that decreases 
objective):

Q: How far should we go in 
that direction?

If we’re not careful, we’ll be zipping all over the place!

Basic idea: use “step control” to determine step size 
based on value of objective & derivatives.

A careful strategy (e.g., Armijo-Wolfe) can guarantee 
convergence at least to a local minimum.

Oftentimes, a very simple strategy is used: make τ 
really small!



How do we go about optimizing a 
function of multiple variables?



Directional Derivative

Suppose we have a function f(x1, x2)

- Take a slice through this function along some direction

- Then apply the usual derivative concept!

- This is called the directional derivative

- Which direction should we slice the function along?



Directional Derivative

Starting from Taylor’s series

easy to see that

Q: What does this mean? 

𝑓 𝑥0 + Δ𝑥 ≈ 𝑓 𝑥0 + Δ𝑥𝑇∇f x0 +
1

2
Δ𝑥𝑇∇2f x0 Δ𝑥

=
𝑓 𝑥0 + 𝜀𝒖𝑡∇𝑓 x0 − 𝑓 𝑥0

𝜀

𝐷𝒖𝑓 = 𝒖𝑇∇𝑓



Directional Derivative and the Gradient

Given a multivariate function 𝑓 𝒙 , gradient assigns a vector 
𝛻𝑓 𝒙 at each point

Inner product between gradient and any unit vector gives 
directional derivative “along that direction”

Out of all possible unit vectors, what is the one along which the 
function changes most?



Gradient points in direction of steepest ascent

Function value 

- gets largest if we move in direction of gradient 

- doesn’t change if we move orthogonally (gradient is 
perpendicular to isolines)

- decreases fastest if we move exactly in opposite 
direction



Gradient in coordinates

Most familiar definition: list of partial derivatives



Gradient Descent Algorithm (nD)

Q: What’s the corresponding update in higher dimensions?

Basic challenge in nD:

- solution can “oscillate”

- takes many, many small steps

- very slow to converge



Higher Order Descent

General idea: apply a coordinate transformation so that 
the local energy landscape looks more like a “round bowl”

Gradient now points directly toward nearby minimizer

Most basic strategy: Newton’s method:

Another way to think about it: “pretend” the function is 
quadratic, solve and repeat…

Hessian inverse

gradient



Newton’s method and beyond…

Great for convex problems (even proofs about # of steps!)

For nonconvex problems, need to be more careful

In general, nonconvex optimization is a BLACK ART

That you should try to master…



An example: Optimization-based inverse 
kinematics



An example: optimization-based IK

Basic idea behind IK algorithm:

- write down distance between final point and 
“target” and set up an objective

- compute gradient with respect to angles

- apply gradient descent

Objective?

Constraints?

- We could limit joint angles

𝒇𝟎 𝜽 =
𝟏

𝟐
𝒙 𝜽 − ෥𝒙 𝑻 𝒙 𝜽 − ෥𝒙


