Numerical Optimization

- a brief review -

What is optimization, and why should we care about it?

A parameterized design/template/problem

Optimized for speed

Optimized for efficiency

What is this optimized for?!?

Optimized for beauty

Optimized for beauty?!?

What is an optimization problem, and why should we care about it?

Ingredients:

- a parameterized template/design/problem
- an objective that measures how "good" arbitrary points in parameter space are
- quite possibly some constraints

Optimization problems are EVERYWHERE

In nature...
engineering...

Optimization

Optimization

Optimization problems are EVERYWHERE

In nature...
engineering...
physics-based modeling...
architecture...
manufacturing...
robotics...
machine learning...

Knowing how to solve optimization problems is very, very useful!

Continuous vs. Discrete Optimization

DISCRETE:

- domain is a discrete set (e.g. integers)
- Example: knapsack problem, which cities to visit on a trip
 - Basic strategy? Try all combinations! (exponential)
 - sometimes clever strategy (e.g., MST)
 - can sometimes turn discrete variables into continuous ones
 - more often, NP-hard (e.g., TSP)

CONTINUOUS:

- domain is not discrete (e.g., real numbers)
- still many (NP-)hard problems, but also large classes of "easy" problems (e.g., convex)
- Gradient information, if available, can be very useful

Optimization Problem in Standard Form

 Can formulate most continuous optimization problems this way:

"objective": how much does solution x cost? $(f_i:\mathbb{R}^n\to\mathbb{R},\ i=0,\dots,m)$ often (but not always) continuous, differentiable, ... $x\in\mathbb{R}^n$

"constraints": what must be true about x? ("x is feasible")

- Optimal solution x* has smallest value of f₀ among all feasible x
- Q: What if we want to maximize something instead?
- A: Just flip the sign of the objective!
- Q: What if we want equality constraints, rather than inequalities?
- A: Can include two constraints: $g(x) \le c$ and $g(x) \le -c$

Local vs. Global Minima

- Global minimum is absolute best among all possibilities
- Local minimum is best "among immediate neighbors"

Philosophical question: does a local minimum "solve" the problem? Depends on the problem! (E.g., evolution)

But sometimes, local minima can be really bad...

Existence & Uniqueness of Minimizers

- Already saw that (global) minimizer is not unique.
- Does it always exist? Why?
- Just consider all possibilities and take the smallest one, right?

Not all objectives are bounded from below.

Existence & Uniqueness of Minimizers, cont.

Even being bounded from below is not enough:

- No matter how big x is, we never achieve the lower bound (0)
- So when does a solution exist? Two sufficient conditions:
- Extreme value theorem: continuous objective & compact domain
- Coercivity: objective goes to +∞ as we travel (far) in any direction

Characterization of Minimizers

- Ok, so we have some sense of when a minimizer might exist
- But how do we know a given point x is a minimizer?

- Checking if a point is a global minimizer is (generally) hard
- But we can certainly test if a point is a local minimum (ideas?)
- (Note: a global minimum is also a local minimum!)

Characterization of Local Minima

- Consider an objective f_0 : $R \rightarrow R$. How do you find a minimum?
- (Hint: you may have memorized this formula in high school!)

- Also need to check second derivative (how?)
- Make sure it's positive
- Ok, but what does this all mean for more general functions fo?

Optimality Conditions (higher dimensions)

- In general, our objective is $f0: \mathbb{R}^n \rightarrow \mathbb{R}$
- How do we test for a local minimum?
- 1st derivative becomes gradient; 2nd derivative becomes Hessian

$$\nabla f := \begin{bmatrix} \partial f/\partial x_1 \\ \vdots \\ \partial f/\partial x_n \end{bmatrix} \qquad \nabla^2 f := \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial f}{\partial x_n^2} \end{bmatrix}$$
(measures "slope")
HESSIAN

HESSIAN (measures "curvature")

Optimality conditions?

$$abla f_0(x^*) = 0$$
1st order

positive semidefinite (PSD) (u^TAu ≥ 0 for all u)

$$abla^2 f_0(x^*) \succeq 0$$
2nd order

Gradient

 Given a multivariate function, its gradient assigns a vector at each point

Hessian

Jacobian of the gradient (matrix of second derivatives)

$$\nabla^2 f := \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

Recall Taylor series

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \cdots$$

- Gradient gives best linear approximation
- Hessian gives us best quadratic approximation

Hessian and Optimality conditions

Optimality conditions for multivariate optimization?

$$abla f_0(x^*) = 0$$
1st order

positive semidefinite (PSD)
$$(\mathbf{u}^{\mathsf{T}}\mathbf{A}\mathbf{u} \ge \mathbf{0} \text{ for all } \mathbf{u})$$

$$\nabla^2 f_0(x^*) \succeq 0$$
2nd order

Gradients of Matrix-Valued Expressions

EXTREMELY useful to be able to differentiate matrix-valued expressions!

For any two vectors \mathbf{x} , $\mathbf{y} \in \mathbb{R}^n$ and symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$:

Matrix Derivative	Looks Like
$\nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{y}) = \mathbf{y}$	$\frac{d}{dx}xy=y$
$\nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{x}) = 2\mathbf{x}$	$\frac{d}{dx}x^2 = 2x$
$\nabla_{\mathbf{x}}(\mathbf{x}^T A \mathbf{y}) = A \mathbf{y}$	$\frac{d}{dx}axy = ay$
$\nabla_{\mathbf{x}}(\mathbf{x}^T A \mathbf{x}) = 2A\mathbf{x}$	$\frac{d}{dx}ax^2 = 2ax$
• • •	• • •

Excellent resource: Petersen & Pedersen, "The Matrix Cookbook"

- At least once in your life, work these out meticulously in coordinates!
- After that, use http://www.matrixcalculus.org/

Convex Optimization

- Special class of problems that are almost always "easy" to solve (polynomial-time!)
- Problem is convex if it has a convex domain and convex objective

- Why care about convex problems?
 - can make guarantees about solution (always the best)
 - doesn't depend on initialization (strong convexity)
 - often quite efficient

Convex Quadratic Objectives & Linear Systems

- Very important example: convex quadratic objective
- Can be expressed via positive-semidefinite (PSD) matrix:

$$f_0(x) = \frac{1}{2}x^T A x - x^T b, \ A \succeq 0$$

- Q: 1st-order optimality condition?
- Q: 2nd-order optimality condition?

just solve a linear system! Ax = b satisfied by $A \succeq 0$ definition

Sadly, life is not usually that easy.

How do we solve optimization problems in general?

Descent Methods

An idea as old as the hills:

Gradient Descent (1D)

- Basic idea: follow the gradient "downhill" until it's zero
- (Zero gradient was our 1st-order optimality condition)

- Do we always end up at a (global) minimum?
- How do we implement gradient descent in practice?

Gradient Descent Algorithm (1D)

Simple update rule (go in direction that decreases

objective):

$$x_{k+1} = x_k - \tau f_0'(x_k)$$

- If we're not careful, we'll be zipping all over the place!
- Basic idea: use "step control" to determine step size based on value of objective & derivatives.
- A careful strategy (e.g., Armijo-Wolfe) can guarantee convergence at least to a *local* minimum.
- Oftentimes, a very simple strategy is used: make τ really small!

How do we go about optimizing a function of multiple variables?

Directional Derivative

- Suppose we have a function f(x1, x2)
 - Take a slice through this function along some direction
 - Then apply the usual derivative concept!
 - This is called the directional derivative
 - Which direction should we slice the function along?

Directional Derivative

Starting from Taylor's series

$$f(x_0 + \Delta x) \approx f(x_0) + \Delta x^T \nabla f(x_0) + \frac{1}{2} \Delta x^T \nabla^2 f(x_0) \Delta x$$

easy to see that

$$\begin{aligned} & \underset{\varepsilon \to 0}{\text{take a small}} \\ & D_{\mathbf{u}} f(\mathbf{x}_0) := \\ & \lim_{\varepsilon \to 0} \frac{f(\mathbf{x}_0 + \varepsilon \mathbf{u}) - f(\mathbf{x}_0)}{\varepsilon} = \frac{f(x_0) + \varepsilon \mathbf{u}^t \nabla f(\mathbf{x}_0) - f(x_0)}{\varepsilon} \end{aligned}$$

$$D_{\boldsymbol{u}}f = \boldsymbol{u}^T \nabla f$$

Q: What does this mean?

Directional Derivative and the Gradient

- Given a multivariate function f(x), gradient assigns a vector $\nabla f(x)$ at each point
- Inner product between gradient and any unit vector gives directional derivative "along that direction"
- Out of all possible unit vectors, what is the one along which the function changes most?

Gradient points in direction of steepest ascent

Function value

- gets largest if we move in direction of gradient
- doesn't change if we move orthogonally (gradient is perpendicular to isolines)

decreases fastest if we move exactly in opposite direction

Gradient in coordinates

Most familiar definition: list of partial derivatives

$$f(\mathbf{x}) := x_1^2 + x_2^2$$

$$\frac{\partial f}{\partial x_1} = \frac{\partial}{\partial x_1} x_1^2 + \frac{\partial}{\partial x_1} x_2^2 = 2x_1 + 0$$

$$\frac{\partial f}{\partial x_2} = \frac{\partial}{\partial x_2} x_1^2 + \frac{\partial}{\partial x_2} x_2^2 = 0 + 2x_2$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = 2\mathbf{x}$$

$$\nabla f(\mathbf{x})$$

Gradient Descent Algorithm (nD)

Q: What's the corresponding update in higher dimensions?

$$x_{k+1} = x_k - \tau \nabla f_0(x_k)$$

- Basic challenge in nD:
 - solution can "oscillate"
 - takes many, many small steps
 - very slow to converge

Higher Order Descent

- General idea: apply a coordinate transformation so that the local energy landscape looks more like a "round bowl"
- Gradient now points directly toward nearby minimizer
- Most basic strategy: Newton's method:

$$x_{k+1} = x_k - \tau (\nabla^2 f_0(x_k))^{-1} \nabla f_0(x_k)$$
 Hessian inverse

 x_0

■ Another way to think about it: "pretend" the function is quadratic, solve and repeat... f(x)

Newton's method and beyond...

- Great for convex problems (even proofs about # of steps!)
- For nonconvex problems, need to be more careful
- In general, nonconvex optimization is a BLACK ART
- That you should try to master...

An example: Optimization-based inverse kinematics

An example: optimization-based IK

- Basic idea behind IK algorithm:
 - write down distance between final point and "target" and set up an objective
 - compute gradient with respect to angles
 - apply gradient descent
- Objective?

$$f_0(\theta) = \frac{1}{2} (x(\theta) - \widetilde{x})^T (x(\theta) - \widetilde{x})$$

- Constraints?
 - We could limit joint angles