

Computational Design Synthesis of Passive Dynamic Systems

Fritz Stöckli
Prof. Dr. Kristina Shea
Engineering Design + Computing Laboratory
Department of Mechanical and Process Engineering
ETH Zürich
May 8 2019

Swiss Federal Institute of Technology Zurich

Robotic Systems

Active Robotic Systems

- Actuators and feedback control
- High task flexibility possible
- Responsive to environment
- High robustness

https://www.bostondynamics.com/atlas

Passive Robotic Systems

- No actuators and control
- No energy source necessary
- Potential to save energy and components

Passive dynamic walking, Mcgeer, T., 1990, International Journal of Robotics Research

Automated Topological Synthesis in Robotics

Active Dynamic Systems

Evolving topology and control together

Generative Representations for the Automated Design of Modular Physical Robots, G.Hornby, H.Lipson, 2003

Kinematic Systems

 Not considering causes of motion (forces, masses, ... do not matter)

Computational Design of Linkage-Based Characters, Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grinspun, Markus Gross

This Research: Passive Dynamic Systems

- Forces, masses, ... are important
- Do not draw energy from a source
- No feedback control

CDS of Passive Dynamic Systems - Overview

Example Problem: Brachiating

 Brachiating: The swinging locomotion of primates moving from one tree branch to the next.

 Complex, bio-inspired models of passive dynamic brachiating exist:

A five-link 2D brachiating ape model with life-like zero energy-cost motions, Mario Gomes, Andi L. Ruina, 2005

Motivation for Complex Brachiating Topologies

Single Pendulum

Simplest possible solution

More Complex Solutions

- Might require less space
- Test for synthesis method

Simulation-Driven Parametric Optimization

Swiss Federal Institute of Technology Zurich

Multi-Body Dynamics

Equations of motion (set of ODEs)

$$M(q,t)\ddot{q} - h(q,\dot{q},t) = 0$$

M Mass matrix

q System coordinates

 $m{h}$ Forces (gravity, springs, ...)

Motion trajectories can be calculated using numeric integreation. Formulation works for open kinematic chains only.

Swiss Federal Institute of Technology Zurich

Multi-Body Dynamics with Closed Kinematic Chains

Equations of motion for systems with closed kinematic chains (Differential-Algebraic System)

$$m{M}(m{q},t)\ddot{m{q}}-m{h}(m{q},\dot{m{q}},t)-m{W}(m{q},t)m{\lambda}=0$$
 Set of ODEs $m{g}(m{q},t)=0$ Set of algebraic Eqations

- g Vector of Constraints (Same as C in Lecture 3 "Kinematics of Mechanisms")
- \(\lambda\) Vector of constraining forces

$$m{W}(m{q},t) = rac{\partial m{g}(m{q},t)}{\partial m{q}}$$
 Matrix of generalized force directions (How constraining forces act on system coordinates)

Multi-Body Dynamics with Closed Kinematic Chains

Transform into set of ODEs by taking second derivative of g

Swiss Federal Institute of Technology Zurich

Numerical problems and Stabilization

$$\ddot{q} = M^{-1}(h + W\lambda)$$
$$g(q_0, t_0) = 0$$
$$\dot{g}(q_0, \dot{q}_0, t_0) = 0$$

Numeric errors during integration can accumulate and break constraints

Baumgarte Stabilization:

Correct these errors during integration by replacing $\ddot{g}=0$ by $\ddot{q} + 2\gamma \dot{q} + \gamma^2 q = 0$ (change ζ accordingly)

Body Coordinate Representation (2D)

For each body i glbal coordinates x_i , y_i , φ_i mass m_i and moment of inertia I_i

System coordinates: $\mathbf{q} = (x_1, y_1, \varphi_1, \dots, x_N, y_N, \varphi_N)^T$

Mass matrix: $M = diag(m_1, m_1, I_1, ..., m_N, m_N, I_N)$

Forces (here gravity only): $\mathbf{h} = (0, -m_1 g, 0, \dots, 0, -m_N g, 0,)^T$

Vector of Constraints to model joints: Same as in Lecture 3

Robot Topology Design Synthesis

- Robot topology represented by graph
- Grammar rules used to automatically generate new systems

Origins of Transformational Grammar Rules in Linguistics

- A language is undefinable except for its grammar
 - proper ways to form valid statements
- Generative Grammars
 - Noam Chomsky 1956
 - Rules that collectively define a language of feasible states
- A rule represents heuristic knowledge

Graph Grammar(I)

- Graph rewriting system
- Rules used to change graph
 - Application conditions: Where the rule can be applied
 - Application procedure: What it does to the graph
- Rules represent heuristic knowledge

Left hand side of rule: Pattern to find in graph

Right hand side of rule: Replaces left hand side

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ED ENGINEERING DESIGN +C AND COMPUTING

Graph Grammar(II)

Recognize left hand side of rule in graph

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ENGINEERING DESIGN AND COMPUTING

Graph Grammar(III)

Choose where to apply rule

Swiss Federal Institute of Technology Zurich

Example: Gear Box Design

Topologic Rules

1 - Create a new Shaft

2 - Delete a Shaft

3 - Create a new Gear Pair

4 - Delete a Gear Pair

5 - Replace a Gear Pair

Parametric Rules

6 - Relocate Gear Pair along the Shafts

7 - Change Diameters of Gears

8 - Reposition a Shaft

9 - Shorten a Shaft

10 - Lengthen a Shaft

Legend

Shaft (side view) Gear (side view)

Example graph representation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Example: Low-pass filters

Design Rules for Passive Dynamic Systems (I)

Graph Representation

Multibody System

Simulation

Rule
ReplaceCBodyByLRBody

Design Rules for Passive Dynamic Systems (II)

Rule
AddLRBodyToLRBody

Symmetry for Brachiating (I)

Symmetry

- Is required for cyclic brachiating
- Similar as in walking between left and right leg

Symmetric Graph

- Rules generate symmetric configurations only
- Mirror symmetry

Symmetric Multibody System

Rules generate symmetric geometries only

Symmetry for Brachiating (II)

Arbitrary Parameterization

Problem: Symmetry breaks

Symmetric Parameterization

- Symmetry is maintained when optimization variables are varied
- This is included in the design rules

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Evaluation Criteria

Cyclic Locomotion

- Number of successful swings
- Difference in states and hand position after first and last swing

Space Requirement

 Lowest coordinate swept during the whole motion

Measured by the number of bodies

$$f_{4a} = -n_{sw}$$

$$f_{4b} = \Delta_{pos}(t_1)a_1 + \Delta_{vel}(t_1)a_2 + \Delta_{hand}(t_1)a_3 + \Delta_{hand}(t_{end})a_4$$

$$f_5 = -y_{min}$$

$$f_6 = -n$$

Synthesis and Optimization

Parametric Optimization

- For each topology generated
- Multi-objective genetic algorithm (pop size: 200, generations: 80) From Matlab toolbox
- Highly non-linear, non-convex multi-modal optimization landscape

Topological Synthesis

 Multi-objective burst algorithm (burst length: 3, max iterations: 500)

Cyclic locomotion:
blue: good performance
red: poor performance

Intermediate Solutions after some Generations

Swiss Federal Institute of Technology Zurich

Results

Evaluation Plot

- Final populations of eight different topologies
- All do three successful swings
- 3 Objectives

Space requirement of single pendulum

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Shape Embodiment Design

- Bodies defined by inertia properties only
- Topology optimization needed to find shapes of bodies

Automated Shape Design for Multi-Body Systems

Multi-body system representation

OJoint

Center of mass

0

Dynamic properties: [Mass, moment of inertia, center of mass]

Find shape

- Matching dynamic properties
- Connecting all elements
- Avoiding collisions

Assemble Geometric Primitives

Find shape with given dynamic properties

Ellipse

- 5 variables: x, y, R_1, R_2, α
- Sometimes no solution found
- Compact

Three Circles

- 6 variables: $x, y, R_1, R_2, \alpha, l$
- Mass and Moment of inertia change more independently
- Uses more space

Assemble Geometric Primitives

Finite Element Design Space

 ρ_i Density of element i / Material per 2D element i

 m_0 , I_0 , c_{x0} , c_{y0} Desired dynamic properties

$$m^T \rho = m_0$$
 $I^T \rho = I_0$
 $\frac{c_x^T \rho}{m^T \rho} = c_{x0}$
 $\frac{c_y^T \rho}{m^T \rho} = c_{y0}$

$$0 \le \rho_{min} \le \rho_e \le \rho_{max}$$

Swiss Federal Institute of Technology Zurich

Finite Element Design Space

Finite Element Design Space

Fabrication

- Additive manufacturing works well for complex shapes
- Ball bearings for low friction

Experiment and Optimization based Design of a Passive Walking Robot, Fabio Modica, 2016, EDAC master thesis

Measurement results

Friction force

Fit Measurement to Simulation Model

$$\ddot{\varphi}I = -mglsin(\varphi) - d_F \dot{\varphi}$$

Friction Torque vellocity proportional (viscous friction): Standard in robotics, good properties of ODE and control problem

Fit Measurement to Simulation Model

 $\ddot{\varphi}I = -mglsin(\varphi) - T_F$

Combination of viscous friction and coulomb friction

3D-Printed Bearing

- Passive walker built using FDM parts only
- Printed in one job

 Planetary gear bearing with clearance adapted to our FDM machine

Very robust gait

CDS of Passive Dynamic Systems - Overview

Swiss Federal Institute of Technology Zurich

Future Work

- Sensitivity analysis
- Additional joint types, friction, springs, ...
- Other robotic tasks
- Prototyping
- Synthesis and optimization
 - Different strategies

