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Robotic Systems

Passive Robotic Systems
 No actuators and control

 No energy source necessary

 Potential to save energy and 
components

Engineering  Design + Computing Laboratory

Passive dynamic walking, Mcgeer, T., 1990, International 

Journal of Robotics Research

Active Robotic Systems
 Actuators and feedback control

 High task flexibility possible

 Responsive to environment

 High robustness

https://www.bostondynamics.com/atlas
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Automated Topological Synthesis in Robotics

Active Dynamic Systems
 Evolving topology and control 

together

Engineering  Design + Computing Laboratory

Evolving Virtual Creatures, Karl Sims, 1994

Generative Representations for the Automated Design 

of Modular Physical Robots, G.Hornby, H.Lipson, 2003

This Research: Passive Dynamic Systems
 Forces, masses, … are important

 Do not draw energy from a source

 No feedback control

Kinematic Systems
 Not considering causes of 

motion (forces, masses, … do 
not matter) 

Computational Design of Linkage-Based Characters, Bernhard 

Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, 

Eitan Grinspun, Markus Gross
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CDS of Passive Dynamic Systems - Overview
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Robotic Task

Robot Topology

Multi-Body System

Shape Embodiment

Prototype

Graph Grammar

Rule-Based 

Topology Opt

3D-Printing

Simulation-Driven 

Parametric Opt
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Example Problem: Brachiating
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Prototype

Robotic Task

Robot Topology

Multi-Body System

Graph Grammar

Simulation-Driven 

Parametric Opt

Shape Embodiment

Prototype

Rule-Based 

Topology Opt

3D-Printing

 Brachiating: The swinging locomotion 

of primates moving from one tree 

branch to the next.

A five-link 2D brachiating ape model with life-like zero energy-

cost motions, Mario Gomes, Andi L. Ruina, 2005

 Complex, bio-inspired models of 

passive dynamic brachiating exist:
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More Complex Solutions
 Might require less space

 Test for synthesis method

Motivation for Complex Brachiating Topologies

Engineering  Design + Computing Laboratory

Single Pendulum
 Simplest possible solution
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Simulation-Driven Parametric Optimization
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Prototype

 Multibody simulation 

 Arbitrary 2D systems with revolute joints

 Closed kinematic chains possible

 Parametric Optimization

 Evaluation based on system trajectory

Robotic Task

Robot Topology

Multi-Body System

Graph Grammar

Simulation-Driven 

Parametric Opt

Shape Embodiment

Prototype

Rule-Based 

Topology Opt

3D-Printing



8Fritz Stöckli, Prof. Dr. Kristina Shea

Multi-Body Dynamics
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Equations of motion

(set of ODEs)

Mass matrix

Motion trajectories can be calculated using numeric integreation.

Formulation works for open kinematic chains only.

System coordinates

Forces (gravity, springs, … )

Open kinematic chain

Closed kinematic chain
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Multi-Body Dynamics with Closed Kinematic Chains 
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Equations of motion for systems with closed kinematic chains

(Differential-Algebraic System)

Matrix of generalized force directions (How 

constraining forces act on system 

coordinates)

Set of ODEs

Vector of constraining forces

Vector of Constraints (Same as     in Lecture 3 

“Kinematics of Mechanisms”)

Set of algebraic Eqations
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Multi-Body Dynamics with Closed Kinematic Chains
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Transform into set of ODEs by taking second derivative of 

Initial concitions:

Solve for     

and
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Numerical problems and Stabilization

Engineering  Design + Computing Laboratory

Numeric errors during integration can accumulate 

and break constraints

Baumgarte Stabilization:

Correct these errors during integration by replacing               

by (change      accordingly)
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Body Coordinate Representation (2D)
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For each body 𝑖 glbal coordinates 𝑥𝑖, 𝑦𝑖 , φ𝑖

mass 𝑚𝑖 and moment of inertia 𝐼𝑖

System coordinates:

Forces (here gravity only):

𝑦𝑖

𝑥𝑖

φ𝑖

Center of mass

= (𝑥1, 𝑦1, φ1, … , 𝑥𝑁, 𝑦𝑁, φ𝑁)
𝑇

= 𝑑𝑖𝑎𝑔(𝑚1, 𝑚1, 𝐼1, … , 𝑚𝑁, 𝑚𝑁, 𝐼𝑁 )Mass matrix:

= (0, − 𝑚1𝑔, 0, … ,0, −𝑚𝑁𝑔, 0,)𝑇

Vector of Constraints to model joints: Same as in Lecture 3 
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Robot Topology Design Synthesis
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Prototype

Engineering  Design + Computing Laboratory

 Robot topology represented by graph

 Grammar rules used to automatically 

generate new systems

Robotic Task

Robot Topology

Multi-Body System

Graph Grammar

Simulation-Driven 

Parametric Opt

Shape Embodiment

Prototype

Rule-Based 

Topology Opt

3D-Printing
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Origins of Transformational Grammar Rules in Linguistics

Engineering  Design + Computing Laboratory

 A language is undefinable except for its 

grammar
 proper ways to form valid statements

 Generative Grammars
 Noam Chomsky - 1956

 Rules that collectively define
a language of feasible states

 A rule represents heuristic knowledge
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Graph Grammar(I)
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 Graph rewriting system

 Rules used to change graph
 Application conditions: Where the rule can be applied

 Application procedure: What it does to the graph

 Rules represent heuristic knowledge 

Left hand side of rule: 

Pattern to find in graph

a

Right hand side of rule: 

Replaces left hand side

a
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Graph Grammar(II)

Engineering  Design + Computing Laboratory

Recognize left hand side of rule in graph

a

a

a

a

a

a

a

a
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Graph Grammar(III)
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Choose where to apply rule

a

a

a

a

a

a

a

a
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Example: Gear Box Design

Engineering  Design + Computing Laboratory



19Fritz Stöckli, Prof. Dr. Kristina Shea

Example: Low-pass filters

Engineering  Design + Computing Laboratory

rule #1rule #3 rule #2

rule #1
rule #2 rule #1

rule #3
rule #1

rule #2

rule #3
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Design Rules for Passive Dynamic Systems (I)

Engineering  Design + Computing Laboratory

Graph Representation Multibody System Simulation

𝐵𝐶,1

𝐵𝐿,1
𝐵𝑅,1

𝑙1

𝑙2

𝑙3

𝑙2

𝑙3
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Design Rules for Passive Dynamic Systems (II)

Dynamic Systems
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𝑅𝑢𝑙𝑒
𝐴𝑑𝑑𝐿𝑅𝐵𝑜𝑑𝑦𝑇𝑜𝐿𝑅𝐵𝑜𝑑𝑦
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Symmetry for Brachiating (I)
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Symmetric Graph
 Rules generate symmetric 

configurations only

 Mirror symmetry

Symmetry
 Is required for cyclic 

brachiating 

 Similar as in walking between 
left and right leg

Symmetric Multibody System
 Rules generate symmetric 

geometries only
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Symmetry for Brachiating (II)
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Symmetric Parameterization
 Symmetry is maintained when 

optimization variables are varied

 This is included in the design 
rules

𝐵𝐿,1 𝐵𝑅,1

Δ𝑥𝑗2

Arbitrary Parameterization
 Problem: Symmetry breaks 𝐵𝐿,1 𝐵𝑅,1

Δ𝑥𝑗2
Symmetry breaks
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Evaluation 

Criteria

Cyclic Locomotion
 Number of successful 

swings

Engineering  Design + Computing Laboratory

 Difference in states and 
hand position after first 
and last swing

Complexity
 Measured by the number 

of bodies

Space Requirement
 Lowest coordinate swept 

during the whole motion
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Synthesis and Optimization

Parametric Optimization
 For each topology generated

 Multi-objective genetic 
algorithm (pop size: 200, 
generations: 80) From Matlab 
toolbox 

Engineering  Design + Computing Laboratory

Topological Synthesis
 Multi-objective burst algorithm 

(burst length: 3, max 
iterations: 500)

 Highly non-linear, non-convex 
multi-modal optimization 
landscape

Cyclic locomotion:

blue: good performance

red: poor performance

𝑙2

𝑙3
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Intermediate Solutions after some Generations

Engineering  Design + Computing Laboratory
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Results

Engineering  Design + Computing Laboratory

Space requirement 

of single pendulum

Ideal cyclic locomotion

Number of bodies
Evaluation Plot 

 Final populations of eight 
different topologies

 All do three successful swings

 3 Objectives



28Fritz Stöckli, Prof. Dr. Kristina Shea

Results

Engineering  Design + Computing Laboratory
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Results

Engineering  Design + Computing Laboratory

More space required



30Fritz Stöckli, Prof. Dr. Kristina Shea

Results

Engineering  Design + Computing Laboratory

Less space required

Less space required

Less space required
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Shape Embodiment Design

Engineering  Design + Computing Laboratory

Prototype

 Bodies defined by inertia properties only

 Topology optimization needed to find 

shapes of bodies

Robotic Task

Robot Topology

Multi-Body System

Graph Grammar

Simulation-Driven 

Parametric Opt

Shape Embodiment

Prototype

Rule-Based 

Topology Opt

3D-Printing
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Automated Shape Design for Multi-Body Systems
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Multi-body system representation

Joint

Center of mass

Dynamic properties:

[Mass, moment of inertia, 

center of mass]

Find shape

- Matching dynamic properties

- Connecting all elements

- Avoiding collisions
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Assemble Geometric Primitives

Engineering  Design + Computing Laboratory

𝑅1

𝑅2

𝑥

𝑦

Ellipse

- 5 variables: 𝑥, 𝑦, 𝑅1,𝑅2, 𝛼

- Sometimes no solution 

found

- Compact

Three Circles

- 6 variables: 𝑥, 𝑦, 𝑅1,𝑅2, 𝛼, 𝑙

- Mass and Moment of 

inertia change more 

independently

- Uses more space

𝑅2

𝑥

𝑦
𝑅1

𝑙

Find shape with given dynamic properties
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Assemble Geometric Primitives
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Finite Element Design Space
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𝒎𝑇𝝆 = 𝑚0

𝒄𝑥
𝑇

𝑚0
𝝆 =

𝒄𝑥
𝑇𝝆

𝒎𝑇𝝆
= 𝑐𝑥0

𝑰𝑇𝝆 = 𝐼0

𝒄𝑥
𝑇

𝑚0
𝝆 =

𝒄𝑦
𝑇𝝆

𝒎𝑇𝝆
= 𝑐𝑦0

Feasibility/Satisfiability Problem:

0 ≤ 𝜌𝑚𝑖𝑛 ≤ 𝜌𝑒 ≤ 𝜌𝑚𝑎𝑥

𝜌𝑖 Density of element i /

Material  per 2D element i

𝑚0, 𝐼0, 𝑐𝑥0, 𝑐𝑦0 Desired dynamic properties

𝑨𝝆 = 𝒃
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Finite Element Design Space
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Finite Element Design Space

Engineering  Design + Computing Laboratory
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Fabrication

Engineering  Design + Computing Laboratory

Prototype

 Additive manufacturing  works well for 

complex shapes

 Ball bearings for low friction

Robotic Task

Robot Topology

Multi-Body System

Graph Grammar

Simulation-Driven 

Parametric Opt

Shape Embodiment

Prototype

Rule-Based 

Topology Opt

3D-Printing

Experiment and Optimization based Design of a Passive 

Walking Robot, Fabio Modica, 2016, EDAC master thesis
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Measure static/dynamic 

friction of bearing

Engineering  Design + Computing Laboratory

Arduino Board

Ball bearing

Three pendulums with 

different dynamic properties

Codewheel with 

1024 counts per 

revolution

Optical incremental 

encoder with two 

channel output
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Measurement results
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Fit Measurement to Simulation Model
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ሷ𝜑𝐼 = −𝑚𝑔𝑙𝑠𝑖𝑛 𝜑 − 𝑑𝐹 ሶ𝜑 Friction Torque vellocity proportional (viscous friction): 

Standard in robotics, good properties of ODE and 

control problem
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Fit Measurement to Simulation Model
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ሷ𝜑𝐼 = −𝑚𝑔𝑙𝑠𝑖𝑛 𝜑 − 𝑇𝐹 Combination of viscous friction and 

coulomb friction
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3D-Printed Bearing

Engineering  Design + Computing Laboratory

 Planetary gear bearing 

with clearance adapted 

to our FDM machine
 Very robust gait

 Passive walker built 

using FDM parts only

 Printed in one job
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CDS of Passive Dynamic Systems - Overview

Engineering  Design + Computing Laboratory

Robotic Task

Robot Topology

Multi-Body System

Shape Embodiment

Prototype

Graph Grammar

Rule-Based 

Topology Opt

3D-Printing

Simulation-Driven 

Parametric Opt

Problem specific rules 

generate topologies 

preserving symmetry

Evaluation based on 

system trajectories

Topology optimization 

avoiding collision for 

given trajectories
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Future Work

 Evaluation
 Sensitivity analysis

 Additional joint types, friction, springs, …

 Other robotic tasks

 Prototyping

 Synthesis and optimization
 Different strategies

Engineering  Design + Computing Laboratory


