

Computational Design Synthesis of Virtual Locomotive Soft Robots

Merel van Diepen and Prof. Dr. Kristina Shea

Engineering Design + Computing Laboratory ETH Zürich

Introduction to Soft Robotic Systems

- Compliant materials
- Large number of degrees of freedom
- No joints sensitive to contamination

- Manual-design of soft locomotion robots is challenging
- Locomotion is essential to most robotic tasks
- → Computation Design Synthesis (CDS) of virtual, soft locomotion robots

(Modular pneumatic toolkit, Du Pasquier, 2017)

(Multigait Soft Robot, Shepherd et al., 2011)

Overview

Computational Design Synthesis (CDS) of virtual, soft locomotion robots

Evaluation

Simulation of Soft robots

Characteristics of soft robots simulation:

- Highly non-linear materials
- Large displacements
- Collision, self-collision

Methods:

- Finite Elements Analysis Unstable, computationally expensive
- Forced-based Soft-body Dynamics
- Position-based Soft-body Dynamics (too) unstable (for optimization)

(M. Dreyer, ED+C, ETH Zürich, 2016)

Simulation Method

Rigid body approximation

- Bodies connected by springs
- Activate by changing
 - Springs rest-length
 - Body sizes
- Dynamic simulation
- Stable rigid body collision
- Self-collision handled as normal collision
- Using Bullet Physics Library

Generation

Background: Generation Methods for Soft Robots

Indirect encoding of designs:

• L-System-like

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

- Gaussian mixture points
- Composition Pattern Producing Networks

(Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding, Cheney et al., 2013)

(Growing and Evolving Soft Robots, Rieffel et al., 2013)

(Evolving Amorphous Robots, Hiller and Lipson, 2010)

Merel van Diepen

Generation

Why Spatial Grammar

Drawbacks of these methods:

- Black box
- No way to guide the generation towards desired designs

Spatial Grammar:

- Generate desired types of designs (e.g. limbs or not)
- Exclude infeasible designs
- Take into account fabrication (constrain to building blocks)
- General requirements and constraints in the generation method instead of checking during evaluation

Generation Implementation

- Design-space of 15x15x15 empty locations
- Each location can be occupied by a ball
- Balls have
 - A spring-stiffness for connection springs
 - Fixed or no activation pattern for spring rest-length and ball size

Rows of cells form bending actuators

Activated with negative pattern

Spatial Grammar Rules

Goal: generate crawling, hopping and walking

- Rules with useful sub-assemblies
- Rule parameters:
 - Location of application
 - Orientation
 - Connecting spring stiffness
 - Activation pattern
 - Activation positive or negative
- Entire grammar can be used with plane symmetry

Rule sub-assemblies live

Generation

Generation

Generation Example

Example of 3 rules application with plane symmetry.

Rule: Extension Y (2) Material: Stiff Activation: None Offset : 3 in Y-direction

Rule: Spiderleg (5) Material: Soft Activation: Pattern 1 Offset : None Activation Direction: + Back

Rule: Spiderleg (5) Material: Soft Activation: Pattern 1 Offset : None Activation Direction: + Front

- Rules are picked randomly
- Undo used to limit design size

Optimization

Optimization Problem

The unconstrained optimization problem is given by:

$$\begin{aligned} & \underset{\mathcal{D}}{\text{maximize}} \left(\min_{i} |\mathbf{x}_{i}^{t_{0}} - \mathbf{x}_{i}^{t_{end}}| \right), \ i = \dots, N \end{aligned} \tag{1} \\ & \underset{\mathcal{D}}{\text{minimize}} \left(\max\left(\frac{1}{N} \sum_{i=1}^{N} (y_{i}^{t_{0}} - y_{i}^{t_{end}}), 0 \right) \right) \end{aligned} \tag{2}$$

Rewritten as a weighted sum **maximization** problem:

$$f(\mathcal{D}) = \min_{i} |\mathbf{x}_{i}^{t_{0}} - \mathbf{x}_{i}^{t_{end}}| - \max\left(\frac{1}{N}\sum_{i=1}^{N} y_{i}^{t_{0}} - y_{i}^{t_{end}}, 0\right)$$

Optimization Method

Simulated Annealing

- Stochastic search method
- Accept inferior solutions \rightarrow escape local minimum
- Probability of acceptance depends on temperature T
- Cauchy temperature schedule

Results

Resulting Designs

Resulting Designs

Merel van Diepen

Optimization Result

- 150 iterations, 50 moves
- Mean and standard deviation of 24 runs

- Large standard deviation
- Converge to local minima

Reheating

Results

Why Poor Convergence

- Many local minima
- Coarse rule-set
 - Large design changes
 - Large objective function value changes

Move number	59
Objective value	-5.3 MM

CDS run

 Tuning of the cooling schedule: escaping a local minimum is not the same for different design sizes.

Few rule applications to change behavior

Many rule applications to change behavior

Results

Spatial Grammar Rule Performance

- Short-term effect of a rule application
- Long-term effect of a rule application
- Anticipated behavior of subassemblies

Occurrence in accepted designsUndo is used for size control

Rule	Occurrence %
Extension z	9.99
Undo	56.28
Gate	8.62
Extension y	7.28
Spider Leg	8.59
Extension x	9.23

Results

Design Sizes for this Grammar+Simulation

Use Undo-rule to limit design size

• What sizes result in good performance?

Lower bound:

• At least 3 additive rule applications needed

Higher bound:

- Ratio of mass to actuator strength
- More difficult to escaping local minima

Alternative Spatial Grammar

- Older version of the presented grammar
- Largest difference: breaking up the subassemblies

- Increasingly non-homogeneous
- Left-overs possible

Discussion

Conclusion CDS with Fixed Control

- Generates a large variety of gaits
- Guides the generation process towards feasible designs
- Sufficiently accurate for conceptual design
- Grammar, simulation and optimization methods are highly intertwined

Fixed control is a limiting factor.

Good morphology but only with the right control: Worm

Outlook: Adding Control to the Loop

Reinforcement Learning

First step:

- Take result from CDS with fixed control
- Learn a better control for it

