263-5805-00L **Modeling** Elastic Objects (Finite Element Method)

Moritz Bächer

- Motivation
- Energy, forces, static vs. dynamic analysis
- Numerical time integration (explicit vs. implicit schemes)
- Continuum Mechanics: strain, stress, material models
- Linear vs. nonlinear FEM (Finite Element Method)
- Discretization and assembly

?

Zürich

unoptimized

optimized

[Schennacherterl.a2.02107]8]

- Motivation
- Energy, forces, static vs. dynamic analysis
- Numerical time integration (explicit vs. implicit schemes)
- Continuum mechanics: strain, stress, material models
- Linear vs. nonlinear FEM (Finite Element Method)
- Discretization and assembly

Mass-Spring Systems

- Point masses
- Mass m
- Location \mathbf{x}

- Massless springs
- Stiffness k
- Rest length L

 $E(x) = E_{\rm int}(x) - E_{\rm ext}(x)$ $= \frac{1}{2}k(x-L)^2 - f_{\rm ext}(x-L)$ Work = force x Potential energy displacement

Forces

- Elastic springs
- Linear springs
 - small displacement
 - Hooke's law
- General: non-linear behavior
 - large displacements -

ETH zürich

$\min f_{\text{static}}(x) \quad f_{\text{static}}(x) = E(x)$ $= E_{\rm int}(x) - E_{\rm ext}(x)$

$$\begin{array}{ll} \text{Inimize energy} \\ \min_{x} f_{\text{static}}(x) & f_{\text{static}}(x) = E(x) \\ & = E_{\text{int}}(x) - E_{\text{ext}} \\ \text{Inimum } x^{*} \\ \text{first derivative: zero} & E_{x}(x^{*}) \stackrel{!}{=} 0 \\ \text{second derivative: positive} & E_{xx}(x^{*}) > 0 \end{array}$$

ETH zürich

the energy

$$f_{\text{static}}(x) \quad f_{\text{static}}(x) = E(x)$$

 $= E_{\text{int}}(x) - E_{\text{ext}}$
 $\text{m } x^*$
erivative: zero
 $E_x(x^*) \stackrel{!}{=} 0$
 $E_{xx}(x^*) > 0$

$$\dot{f} = f_{\text{int}}(x^*) - f_{\text{ext}} \stackrel{!}{=} 0$$

ETH zürich

t

ETH zürich

Velocity $\mathrm{d}x(t)$ v(t) $\mathrm{d}t$

► t

ETH zürich

• Velocity

$$v(t) = \frac{dx(t)}{dt}$$
• Acceleration

$$a(t) = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2}$$

t

• Velocity

$$v(t) = \frac{dx(t)}{dt}$$
• Acceleration

$$a(t) = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2}$$
• Newton's 2nd law

$$ma(t) = -f_{int}(t)$$

$$f_{int}(t) = k (x(t) - L)$$

EHzürich

•
$$t$$
 • Velocity
 $v(t) = \frac{dx(t)}{dt}$
• Acceleration
 $a(t) = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2}$
• Newton's 2nd law
 $ma(t) = -f_{int}(t) + f_{ext}(t)$
 $f_{ext} = mg$
 $f_{ext}(t) = mg + \cos(\omega t + \phi)$

ETH zürich

•
$$t$$
 • Velocity
 $v(t) = \frac{dx(t)}{dt}$
• Acceleration
 $a(t) = \frac{dv(t)}{dt} = \frac{d^2x(t)}{dt^2}$
• Newton's 2nd law
 $ma(t) = -f_{int}(t) + f_{ext}(t) - f_{dam}$
 $f_{damp}(t) = \gamma v(t)$

Control damping

$$ma(t) + f_{damp}(t) = -f_{int}(t) + f_{ext}(t)$$

$$\int m\frac{d^2x(t)}{dt^2} + \gamma \frac{dx(t)}{dt} = -f_{int}(t) + f_{ext}(t)$$
2nd order ordinary differential equation (ODE)
$$x(t_0) = x_0 \qquad \frac{dx(t_0)}{dt} = v_0$$

Initial value problem (IVP)

How do we determine motion x(t)?

$$m\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + \gamma \frac{\mathrm{d}x(t)}{\mathrm{d}t} = -f_{\mathrm{int}}(t) + f_{\mathrm{ext}}(t)$$
2nd order ordinary differential equation (ODE)
$$x(t_0) = x_0 \qquad \frac{\mathrm{d}x(t_0)}{\mathrm{d}t} = v_0$$

Initial value problem (IVP)

- Motivation
- Energy, forces, static vs. dynamic analysis
- Numerical time integration (explicit vs. implicit schemes)
- Continuum mechanics: strain, stress, material models
- Linear vs. nonlinear FEM (Finite Element Method)
- Discretization and assembly

• Two coupled 1st order ODEs

$$\frac{\mathrm{d}x(t)}{dt} = v(t) \qquad \frac{\mathrm{d}v(t)}{dt}$$

Dynamic Analysis

• Two coupled 1st order ODEs

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = v(t) \qquad \frac{\mathrm{d}v(t)}{\mathrm{d}t} = \frac{1}{m} \left(-f_{\mathrm{int}}(t) + f_{\mathrm{ext}}(t) - \gamma v(t)\right)$$

• Rewrite as one system of 1st order ODEs

$$\mathbf{y}(t) = \begin{bmatrix} x(t) \\ v(t) \end{bmatrix} \quad \mathbf{y}'(t) = \begin{bmatrix} v(t) \\ \frac{1}{m} \left(-f_{\text{int}}(t) + f_{\text{ext}} - \gamma v(t)\right) \end{bmatrix}$$
$$\mathbf{y}(t_0) = \begin{bmatrix} x(t_0) \\ v(t_0) \end{bmatrix} = \begin{bmatrix} x_0 \\ v_0 \end{bmatrix}$$

Initial value problem (IVP)

Given system of 1st order ODEs with initial conditions, how do we solve for $\mathbf{y}(t)$?

$$\mathbf{y}(t) = \begin{bmatrix} x(t) \\ v(t) \end{bmatrix} \quad \mathbf{y}'(t) = \begin{bmatrix} v(t) \\ \frac{1}{m} \left(-f_{\text{int}}(t) + f_{\text{ext}} - \gamma v(t)\right) \end{bmatrix}$$
$$\mathbf{y}(t_0) = \begin{bmatrix} x(t_0) \\ v(t_0) \end{bmatrix} = \begin{bmatrix} x_0 \\ v_0 \end{bmatrix}$$

Initial value problem (IVP)

Time Integration

- General IVP

- single ODE $y'(t) = f(t, y(t)) \quad y(t_0) = y_0$ - system of ODEs $\mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}(t)) \quad \mathbf{y}(t_0) = \mathbf{y}_0$

Time Integration

- General IVP - single ODE y'(t) = f(t)- system of ODEs $\mathbf{y}'(t) = \mathbf{f}(t)$
- Why time integration?

$$y(t+h) = y(t) + \int_t^{t} dt$$

Solution at time t plus step h

$$\begin{aligned} y(t) & y(t_0) = y_0 \\ y(t) & \mathbf{y}(t_0) = \mathbf{y}_0 \end{aligned}$$

rt+h $y(t_0) = y_0$ f(t, y(t)) dt

Time Integration

- General IVP - single ODE y'(t) = f(t, t)- system of ODEs $\mathbf{y}'(t) = \mathbf{f}(t)$
- Why time integration?

$$y(t+h) = y(t) + \int$$

Solution at time t plus step h

ETH zürich

$$\begin{aligned} y(t) & y(t_0) = y_0 \\ y(t) & \mathbf{y}(t_0) = \mathbf{y}_0 \end{aligned}$$

$\int^{t+h} f(t, y(t)) dt \qquad y(t_0) = y_0$

Solve IVP numerically — numerical (time) integration

Numerical Time Integration

- Notation
 - y(t) analytical solution
 - y_i approximate solution at $t_i = t_0 + ih$
 - *h* time step (constant)
- Problem: given y_n , compute y_{n+1}

Numerical Time Integration

 Fundamental theorem of calculus $y(t+h) = y(t) + \int_{1}^{t+h} f(t, y(t)) dt$

$$y(t+h) \approx y(t) + hf(t, y(t))$$

 Taylor expansion (1st order approximation) "forward" $y(t+h) = y(t) + hy'(t) + O(h^2)$ Euler

How do we get from y(t) to y(t+h)?

left-hand rectangle method

Explicit Euler

$$y_{n+1} = y_n + hf(t_n, y_n)$$

Euler step (1768)

- Iteration scheme: $y_0 \longrightarrow f(x)$

• Idea: start at initial condition and take step into direction of tangent

$$(t_0, y_0) \longrightarrow y_1 \longrightarrow f(t_1, y_1) \longrightarrow$$

. . .

Explicit Euler: Graphically

Explicit Euler: Mass-Spring System

• Set initial conditions: Position x_0

Velocity v_0

Explicit Euler: Mass-Spring System

- Set initial conditions: Position x_0 Velocity v_0
- 1. Evaluate derivatives: Position ----- Velocity

 $x'(t_n) = v(t_n)$ Velocity — Acceleration $v'(t_n) = \frac{1}{m} \left(-f_{\text{int}}(t_n) + f_{\text{ext}}(t_n) - \gamma v(t_n) \right)$

Explicit Euler: Mass-Spring System

- Set initial conditions: Position x_0 Velocity v_0
- 1. Evaluate derivatives: Position -Velocity -

 $v'(t_n) =$

2. Euler step:

Position Velocity

→ Velocity
$$x'(t_n) = v(t_n)$$

→ Acceleration
 $\frac{1}{m} (-f_{int}(t_n) + f_{ext}(t_n) - \gamma v(t_n))$
 $x(t_n + h) = x(t_n) + hx'(t_n)$
 $v(t_n + h) = v(t_n) + hv'(t_n)$

Analysis

How to evaluate integration schemes?

Criteria

- **Convergence:** do approximations converge to true solution, i.e., $h \to 0$ implies $y_i \to y(t_i)$?
- Accuracy: how fast does the error decrease as $\,h
 ightarrow 0\,?$
- Stability: is the solution always bounded, i.e., $|y_n| < \infty$?
- Efficiency: is a given method a good choice for a given problem?

Analysis: Accuracy

Numerical solution exhibits error

$$\left\| \left[y_n + \int_{t_n}^{t_{n+1}} f(t, y(t)) dt \right] - \mathbf{local error} (single step) \right\|$$

- Error depends on the step size h
 - local error is $O(h^{p+1}) \longrightarrow$ global error is $O(h^p)$, method is of order p- explicit Euler makes $O(h^2)$ error per step: order 1

Analysis: Accuracy

- Numerical integration is inaccur
- Error accumulates
- Error can cause instability

$$y(t+h) = y(t) + hy'(t) + O(t)$$

Euler step

How can we reduce error?

- reduce step size
- improve accuracy

Analysis: Higher Accuracy

• Taylor expansion (higher oder) $y(t+h) = y(t) + hy'(t) + \frac{1}{2}h^2y''(t) + O(h^3)$

- Higher order integration schemes
 - *midpoint method*:
 - accuracy: order 2, cost: $2 \times evaluations$ of f- 4th-order Runge-Kutta method (RK4): accuracy: order 4, cost: 4 x evaluations of f

Analysis: Stability

- Analyze

• Solve recursion $y_{n+1} = (1 + h\lambda)^{n+1} y_0$

$$y_{n+1} < \infty$$
 <

- test equation $y' = \lambda y$ y(0) = 1 $\lambda < 0$ $t \ge 0$ - explicit Euler $y_{n+1} = y_n + h\lambda y_n = (1 + h\lambda) y_n$

 $\iff |1 + h\lambda| < 1$ restricted step size (explicit Euler)

Analysis: Stability

- Observations from test equation: explicit Euler
 - requires small time steps for stable integration
 - inefficient since step size is determined by stability, not accuracy requirement
- Problems with this characteristic are termed stiff
- Do not use *explicit* methods for stiff problems, use *implicit* methods instead:
 - explicit methods: y_{n+1} expressed with known quantities (e.g., y_n , $f(t_n, y_n)$) - implicit methods: y_{n+1} expressed with unknown quantities (e.g, $f(t_{n+1}, y_{n+1}))$

Analysis: Implicit Euler

 Fundamental theorem of calculus $y(t+h) = y(t) + \int_{1}^{t+h} f(t, y(t)) dt$

$$y(t+h) \approx y(t) + hf(t+h, y)$$

 Taylor expansion (1st order approximation) $y(t_{n+1} - h) \approx y(t_{n+1}) - hy'$

How do we get from y(t) to y(t+h)?

y(t+h)) Hymnesses y(t+h) rectangle method

$$(t_{n+1}) + O(h^2)$$

"backward" Euler

Analysis: Stability

- Analyze
 - test equation
 - implicit Euler

Solve recursion

$$y' = \lambda y \quad y(0) = 1 \quad \lambda < 0 \quad t \ge 0$$

$$y_{n+1} = y_n + h\lambda y_{n+1} \longrightarrow \quad y_{n+1} = \frac{1}{1 - h\lambda} y_n$$

$$y_{n+1} = \left(\frac{1}{1 - h\lambda}\right)^{n+1} y_0$$

olicit Euler able for all h > 0

- Motivation
- Energy, forces, static vs. dynamic analysis
- Numerical time integration (explicit vs. implicit schemes)
- Assembly: energy, forces, stiffness matrix
- Continuum mechanics: strain, stress, material models
- Linear vs. nonlinear FEM (Finite Element Method)

Static Analysis

Undeformed

Deformed

Static Analysis

ETH zürich

 $= \sum_{i \in \mathbb{N}} \frac{1}{2} k \left(\left\| \mathbf{x}^{i} - \mathbf{x}^{j} \right\| - L \right)^{2} - \sum_{i} \left(\mathbf{f}_{\text{ext}}^{i} \right)^{T} \left(\mathbf{x}^{i} - \mathbf{X}^{i} \right)$

 $= \sum \nabla E_{\text{int}}^{(i,j)}(\mathbf{x}^{i},\mathbf{x}^{j}) - \sum \nabla E_{\text{ext}}^{i}(\mathbf{x}^{i})$

 $\frac{\partial E_{\text{int}}^{(i,j)}(\mathbf{x}^{i},\mathbf{x}^{j})}{\partial \mathbf{x}^{i}} = +k\left(\|\mathbf{x}^{i}-\mathbf{x}^{j}\|-L\right)\frac{\mathbf{x}^{i}-\mathbf{x}^{j}}{\|\mathbf{x}^{i}-\mathbf{x}^{j}\|}$ $\mathbf{x}^{i} \frac{\partial E_{\text{int}}^{(i,j)}(\mathbf{x}^{i}, \mathbf{x}^{j})}{\partial \mathbf{x}^{j}} = -k \left(\|\mathbf{x}^{i} - \mathbf{x}^{j}\| - L \right) \frac{\mathbf{x}^{i} - \mathbf{x}^{j}}{\|\mathbf{x}^{i} - \mathbf{x}^{j}\|}$

 $= \sum \nabla E_{\text{int}}^{(i,j)}(\mathbf{x}^i, \mathbf{x}^j) - \sum \nabla E_{\text{ext}}^i(\mathbf{x}^i)$ i

 $\frac{\partial E_{\text{ext}}^{i}(\mathbf{x}^{i})}{\partial \mathbf{x}^{i}} = \mathbf{f}_{\text{ext}}^{i}$

 \dot{i}

 $= \mathbf{0}$

= 0

= 0

 $= \sum \nabla E_{\text{int}}^{(i,j)}(\mathbf{x}^i, \mathbf{x}^j) - \sum \nabla E_{\text{ext}}^i(\mathbf{x}^i)$

 $+ = \frac{\partial E_{\text{int}}^{(i,j)}(\mathbf{x}^{i},\mathbf{x}^{j})}{\partial \mathbf{v}^{i}}$ $\nabla E(\mathbf{x}) =$

 $= \sum \nabla^2 E_{\text{int}}^{(i,j)}(\mathbf{x}^i, \mathbf{x}^j)$ (i,j)

$\mathbf{O} \quad \mathbf{O} \quad \mathbf{O} \quad \mathbf{O}$ **O O O O** $\nabla^2 E(\mathbf{x}) = \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}$ **O O O O**

Static Analysis

sparse matrix

symmetric matrix

Static Analysis

- Minimize $\min_{\mathbf{x}} f_{\text{sta}}$
- Minimu
 - gradier
 - Hessia
- Static et $\nabla E(\mathbf{x}^*)$

the energy

$$a_{tic}(\mathbf{x}) \quad f_{static}(\mathbf{x}) = E(\mathbf{x})$$

 $= E_{int}(\mathbf{x}) - E_{ext}$
m \mathbf{x}^*
mt: zero $\nabla E(\mathbf{x}^*) \stackrel{!}{=} \mathbf{o}$
an: positive definite
 $\forall \mathbf{p} \neq \mathbf{o} : \mathbf{p}^T \nabla^2 E(\mathbf{x}^*) \mathbf{p} > 0$
equilibrium
 $\mathbf{f} = \mathbf{f}_{int}(\mathbf{x}^*) - \mathbf{f}_{ext} \stackrel{!}{=} \mathbf{o}$

$$m^{i} \frac{d^{2} \mathbf{x}^{i}(t)}{dt^{2}} + \gamma \frac{d \mathbf{x}^{i}(t)}{dt} = -\sum_{j} \mathbf{f}_{int}^{(i,j)}(\mathbf{x}^{i}(t), \mathbf{x}^{j}(t)) + \mathbf{f}_{ext}^{i}$$
2nd order ordinary differential equation (ODE)
$$\mathbf{x}^{i}(t_{0}) = \mathbf{x}_{0}^{i} \quad \frac{d \mathbf{x}^{i}(t_{0})}{dt} = \mathbf{v}_{o}^{i}$$
Initial value problem (IVP)
How do we determine motion $\mathbf{x}^{i}(t)$?
Exercise Research

ETH zürich

• Explicit Euler

$$\mathbf{x}^{i}(t+h) = \mathbf{x}^{i}(t) + h\mathbf{v}^{i}(t)$$

$$\mathbf{v}^{i}(t+h) = \mathbf{v}^{i}(t) + h\mathbf{a}^{i}(t)$$

$$\mathbf{a}^{i}(t) = \frac{1}{m^{i}} \left(-\sum_{j} \mathbf{f}_{int}^{(i,j)} \left(\mathbf{x}^{i}(t), \mathbf{x}^{j} \right) \right)$$

 $(j(t)) + \mathbf{f}_{\text{ext}}^{i} - \gamma \mathbf{v}^{i}(t)$

• Implicit Euler

$$\mathbf{x}^{i}(t+h) = \mathbf{x}^{i}(t) + h\mathbf{v}^{i}(t+h)$$

$$\mathbf{v}^{i}(t+h) = \mathbf{v}^{i}(t) + h\mathbf{a}^{i}(t+h)$$

$$\mathbf{a}^{i}(t+h) = \frac{1}{m^{i}} \left(-\sum_{j} \mathbf{f}_{int}^{(i,j)} \left(\mathbf{x}^{i}(t+h) \right) \right)$$

multiply both sides with m^i

$\begin{array}{l} h \\ h \\ \end{array} \\ (t+h), \mathbf{x}^{j}(t+h) + \mathbf{f}_{\mathrm{ext}}^{i} - \gamma \mathbf{v}^{i}(t+h) \end{array}$

- Implicit Euler $\mathbf{x}^{i}(t+h) = \mathbf{x}^{i}(t) + h\mathbf{v}^{i}(t+h)$ $\mathbf{v}^i(t+h) = \mathbf{v}^i(t) + h\mathbf{a}^i(t+h)$ $m^{i}\mathbf{a}^{i}(t+h) = -\sum_{j} \mathbf{f}_{int}^{(i,j)} \left(\mathbf{x}^{i}(t+h), \mathbf{x}^{j}(t+h) \right) + \mathbf{f}_{ext}^{i} - \gamma \mathbf{v}^{i}(t+h)$ Newton's 2nd law
 - forces to left-hand side

move internal and damping

• Implicit Euler $\mathbf{x}^{i}(t+h) = \mathbf{x}^{i}(t) + h\mathbf{v}^{i}(t+h)$ $\mathbf{v}^i(t+h) = \mathbf{v}^i(t) + h\mathbf{a}^i(t+h)$

 $m^{i}\mathbf{a}^{i}(t+h) + \sum_{j} \mathbf{f}_{int}^{(i,j)} \left(\mathbf{x}^{i}(t+h), \mathbf{x}^{j}(t+h) \right) + \gamma \mathbf{v}^{i}(t+h) = \mathbf{f}_{ext}^{i}$

"dynamic" equilibrium

• Implicit Euler

$$\mathbf{x}(t+h) = \mathbf{x}(t) + h\mathbf{v}(t+h)$$

$$\mathbf{v}(t+h) = \mathbf{v}(t) + h\mathbf{a}(t+h)$$

$$\mathbf{Ma}(t+h) + \nabla E_{int}(\mathbf{x}(t+h)) +$$

$$\begin{bmatrix} \ddots & & \\ & m^{i} & \\ & & m^{i} & \\ & & m^{i} & \\ & & & \ddots \end{bmatrix} \mathbf{x} = \begin{bmatrix} \vdots \\ \mathbf{x}^{i} \\ \vdots \\ \mathbb{R}^{3n \times 3n} \end{bmatrix}$$
ETH zürich

• Implicit Euler

 $\mathbf{x}_n = \mathbf{x}_p + h\mathbf{v}_n$ $\mathbf{v}_n = \mathbf{v}_p + h\mathbf{a}_n$

 $\mathbf{M}\mathbf{a}_n + \nabla E_{\mathrm{int}}(\mathbf{x}_n) + \gamma \mathbf{v}_n = \mathbf{f}_{\mathrm{ext}}$

p previous, known n next, unknown

• Implicit Euler

 $\mathbf{x}_n = \mathbf{x}_p + h\mathbf{v}_n$ $\mathbf{v}_n = \mathbf{v}_p + h\mathbf{a}_n$

 $\mathbf{M}\mathbf{a}_n + \nabla E_{\mathrm{int}}(\mathbf{x}_n) + \gamma \mathbf{v}_n = \mathbf{f}_{\mathrm{ext}}$

$$\mathbf{x}_n = \mathbf{x}_p + h\mathbf{v}_n \longrightarrow \mathbf{v}_n(\mathbf{x}_n) = \frac{\mathbf{x}_n}{\mathbf{v}_n}$$

 $\mathbf{v}_n = \mathbf{v}_p + h\mathbf{a}_n \longrightarrow \mathbf{a}_n(\mathbf{x}_n) = \frac{\mathbf{v}_n}{\mathbf{v}_n}$

ETH zürich

previous, known \mathcal{D} *n* next, *unknown*

• Implicit Euler

$$\mathbf{Ma}_n(\mathbf{x}_n^*) + \nabla E_{\mathrm{int}}(\mathbf{x}_n^*) + \gamma \mathbf{v}_n(\mathbf{x}_n^*) - \mathbf{f}_{\mathrm{ext}} \stackrel{!}{=} \mathbf{o}$$

Find
$$\mathbf{x}_n^*$$
 that fulfills i

$$\mathbf{v}_n(\mathbf{x}_n) = \frac{\mathbf{x}_n - \mathbf{x}_p}{h}$$
$$\mathbf{a}_n(\mathbf{x}_n) = \frac{\mathbf{v}_n(\mathbf{x}_n) - \mathbf{v}_p}{h}$$

this "dynamic" equilibrium.

$$=\frac{\mathbf{v}_n(\mathbf{x}_n)}{h}-\frac{\mathbf{v}_p}{h}=\frac{\mathbf{x}_n-\mathbf{x}_p}{h^2}-\frac{\mathbf{v}_p}{h}$$

• Implicit Euler

$$\begin{split} \min_{\mathbf{x}_n} f_{\text{dynamic}}(\mathbf{x}_n) \\ f_{\text{dynamic}}(\mathbf{x}_n) &= \frac{h^2}{2} \left(\mathbf{a}_n(\mathbf{x}_n) \right)^T \mathbf{M} \mathbf{a}_n(\mathbf{x}_n) \quad \text{"inertia"} \\ &+ E_{\text{int}}(\mathbf{x}_n) \quad \text{internal energy} \\ &+ \frac{h}{2} \gamma \left(\mathbf{v}_n(\mathbf{x}_n) \right)^T \mathbf{v}_n(\mathbf{x}_n) \quad \text{"damping"} \\ &- \mathbf{f}_{\text{ext}}^T(\mathbf{x}_n - \mathbf{X}) \quad \text{external energy} \end{split}$$

- Motivation
- Energy, forces, static vs. dynamic analysis
- Numerical time integration (explicit vs. implicit schemes)
- Assembly: energy, forces, stiffness matrix
- Continuum mechanics: strain, stress, material models
- Linear vs. nonlinear FEM (Finite Element Method)

Elastic Rod

L rest lengthA cross-section

Elastic Rod: Energy rest length L A cross-section

strain energy density $\Psi(x) = \frac{1}{2}E\varepsilon^2(x)$

 $f_{\rm static}(x) = U(x) - W(x)$ $=\Psi(x)V - f_{\rm ext}(x-L)$ volume V = AL

Elastic Rod: Energy L rest length A cross-section

$$= E\varepsilon(x)A - f_{\text{ext}} \stackrel{!}{=} 0$$

static solution
$$x = \frac{f_{\text{ext}}L}{EA} + L$$

Elastic Rod: Energy

Principle of minimum potential energy

A mechanical system in static equilibrium will assume a state of minimum potential energy.

Elastic Rod: Finite Element Discretization

element rest length $L_i = X_{i+1} - X_i$

undeformed configuration

element rest length
$$L_i = X_{i+1} - X_i$$

$$\varepsilon_i = \frac{x_{i+1} - x_i - L_i}{L_i}$$

element rest length
$$L_i = X_{i+1} - X_i$$

element strain
$$\varepsilon_i = \frac{x_{i+1} - x_i - L_i}{L_i}$$

 $f_{\rm st}$

ETH zürich

energy

$$atic(\mathbf{x}) = \sum_{i=1}^{n-1} U_i(\mathbf{x}) - \mathbf{f}_{ext}^T(\mathbf{x} - \mathbf{X})$$

$$V_i(\mathbf{x}) = \Psi_i(\mathbf{x}) V_i = \frac{1}{2} E \varepsilon_i^2(\mathbf{x}) A L_i$$

energy gradient n-1 $\nabla f_{\text{static}}(\mathbf{x}) = \sum \nabla U_i(\mathbf{x}) - \mathbf{f}_{\text{ext}}$ i=1 $\nabla U_{i}(\mathbf{x}) = \begin{vmatrix} \frac{\partial U_{i}}{\partial x_{i}} \\ \frac{\partial U_{i}}{\partial x_{i+1}} \end{vmatrix} = \begin{vmatrix} -E\varepsilon_{i}A \\ E\varepsilon_{i}A \end{vmatrix}$

constant stiffness matrix

 $\frac{\partial^2 U_i}{\partial c}$ $\partial^2 U_i$ $\frac{\partial x_i \partial x_{i+1}}{\partial x_i U_i}$ $\frac{\partial^2 U_i}{\partial x_{i+1}^2}$ $\nabla^2 U_i =$ ∂x_i^2 $\partial^2 U_i$ $\overline{\partial x_{i+1}\partial x_i}$ **ETH** zürich

Elastic Rod: Linear Elasticity

quadratic energy

ETH zürich

 $f_{\text{static}}(\mathbf{x}) = \frac{1}{2} \left(\mathbf{x} - \mathbf{X} \right)^T \mathbf{K} \left(\mathbf{x} - \mathbf{X} \right) - \mathbf{f}_{\text{ext}}^T \left(\mathbf{x} - \mathbf{X} \right)$

Elastic Rod: Linear Elasticity

$$\nabla f_{
m static}(\mathbf{x}^*) = \mathbf{k}$$

ETH zürich

- eigenvalue decomposition of \mathbf{K} : one eigenvalue is zero
- stiffness matrix *not* positive definite: *unstable* equilibrium
- missing *Dirichlet* condition: fix one node (e.g., $x_1 = 0$)

Enforcing Dirichlet Conditions

 $\mathbf{K}\mathbf{u} = \mathbf{f}$

	a			
a	b	C	d	e
	С			
	d			
	e			

$$u_2 = v$$

[source: Peter Kaufmann]

Enforcing Dirichlet Conditions

 $\mathbf{K}\mathbf{u} = \mathbf{f}$

 $u_2 = v$

[source: Peter Kaufmann]

Enforcing Dirichlet Conditions

 $\mathbf{K}\mathbf{u} = \mathbf{f}$

$$u_2 = v$$

[source: Peter Kaufmann]

Elastic Rod: Boundary Conditions

ETH zürich

- Motivation
- Energy, forces, static vs. dynamic analysis
- Numerical time integration (explicit vs. implicit schemes)
- Assembly: energy, forces, stiffness matrix
- Continuum mechanics: strain, stress, material models
- Linear vs. nonlinear FEM (Finite Element Method)

Continuum Mechanics in 3D: Deformation

$$\mathbf{u}(\mathbf{X}) =$$

Continuum Mechanics in 3D: Deformation

- *infinitesimal* vector - undeformed $\mathbf{d}_{\mathbf{X}} = \mathbf{X}_e - \mathbf{X}_s$ - deformed $\mathbf{d}_{\mathbf{x}} = \mathbf{x}_e - \mathbf{x}_s$ $\mathbf{d_x} = \mathbf{x}_e - \mathbf{x}_s$ $= \mathbf{X}_e + \mathbf{u}(\mathbf{X}_e) - \mathbf{X}_s - \mathbf{u}(\mathbf{X}_s)$ $= \mathbf{d}_{\mathbf{X}} + \mathbf{u}(\mathbf{X}_s + \mathbf{d}_{\mathbf{X}}) - \mathbf{u}(\mathbf{X}_s)$ $\approx \mathbf{d}_{\mathbf{X}} + \mathbf{u}(\mathbf{X}_s) + \nabla_{\mathbf{X}}\mathbf{u}(\mathbf{X}_s)\mathbf{d}_{\mathbf{X}} - \mathbf{u}(\mathbf{X}_s)$ $= (\mathbf{I} + \nabla_{\mathbf{X}} \mathbf{u}(\mathbf{X}_s)) \mathbf{d}_{\mathbf{X}}$
- deformation gradient

$\mathbf{F} = \mathbf{I} + \nabla_{\mathbf{X}} \mathbf{u}$

Continuum Mechanics in 3D: Deformation Gradient

• Deformation gradient $\mathbf{F} = \mathbf{I} + \nabla_{\mathbf{X}} \mathbf{u}$ maps undeformed vectors to deformed vectors: $\mathbf{d}_{\mathbf{x}} = \mathbf{F}\mathbf{d}_{\mathbf{X}}$

$$\mathbf{u}(\mathbf{X}) = \begin{bmatrix} u(X, Y, Z) \\ v(X, Y, Z) \\ w(X, Y, Z) \end{bmatrix}$$

• Alternative form:

$$\mathbf{F} = \nabla_{\mathbf{X}} \mathbf{x} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}}$$

 $\mathbf{x} = \mathbf{X} + \mathbf{u}$ $\mathbf{F} = \nabla_{\mathbf{X}} \left(\mathbf{X} + \mathbf{u} \right)$ $= \nabla_{\mathbf{X}} \mathbf{X} + \nabla_{\mathbf{X}} \mathbf{u}$ $\nabla_{\mathbf{X}} \mathbf{X} = \frac{\partial \mathbf{X}}{\partial \mathbf{X}} = \mathbf{I}$ $= \mathbf{I} + \nabla_{\mathbf{X}} \mathbf{u}$

Continuum Mechanics in 3D: Deformation Gradient

Continuum Mechanics in 3D: Nonlinear Strain

- Deformation gradient $\mathbf{F}=\mathbf{I}+\nabla_{\mathbf{X}}\mathbf{u}$ maps undeformed vectors to deformed vectors: $d_{\mathbf{x}}=Fd_{\mathbf{X}}$
- Measure change in length (squared) in all directions: $\|\mathbf{d}_{\mathbf{x}}\|^{2} - \|\mathbf{d}_{\mathbf{X}}\|^{2} = \mathbf{d}_{\mathbf{x}}^{T}\mathbf{d}_{\mathbf{x}} - \mathbf{d}_{\mathbf{X}}^{T}\mathbf{d}_{\mathbf{X}}$ $= \mathbf{d}_{\mathbf{X}}^{T}\mathbf{F}^{T}\mathbf{F}\mathbf{d}_{\mathbf{X}} - \mathbf{d}_{\mathbf{X}}^{T}\mathbf{d}_{\mathbf{X}}$ $= \mathbf{d}_{\mathbf{X}}^{T}\left(\mathbf{F}^{T}\mathbf{F} - \mathbf{I}\right)\mathbf{d}_{\mathbf{X}}$

$$(\mathbf{F}^T\mathbf{F} - \mathbf{I})$$

Continuum Mechanics in 3D: Linear Strain

- Green strain is quadratic in 1st derivatives of displacements $\mathbf{E} = \frac{1}{2} \left(\mathbf{F}^T \mathbf{F} - \mathbf{I} \right) = \frac{1}{2} \left(\nabla_{\mathbf{X}} \mathbf{u} + \nabla_{\mathbf{X}} \mathbf{u}^T + \nabla_{\mathbf{X}} \mathbf{u}^T \nabla_{\mathbf{X}} \mathbf{u} \right)$
- Neglecting quadratic terms leads to linear Cauchy strain

$$\varepsilon = \frac{1}{2} \left(\nabla_{\mathbf{X}} \mathbf{u} + \nabla_{\mathbf{X}} \mathbf{u}^T \right) = \frac{1}{2} \left(\mathbf{F} + \mathbf{F}^T \right) - \mathbf{I}$$

Continuum Mechanics in 3D: Linear Strain

• Linear Cauchy strain

Geometric interpretation (2D)

 $\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_x & \gamma_{xy} & \gamma_{xz} \\ \gamma_{xy} & \varepsilon_y & \gamma_{yz} \\ \gamma_{xz} & \gamma_{yz} & \varepsilon_z \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2\partial_X u & \partial_Y u + \partial_X v & \partial_Z u + \partial_X w \\ \partial_X v + \partial_Y u & 2\partial_Y v & \partial_Z v + \partial_Y w \\ \partial_X w + \partial_Z u & \partial_Y w + \partial_Z v & 2\partial_Z w \end{bmatrix}$

 ε_i : normal strains γ_{ij} : shear strains

Continuum Mechanics in 3D: Cauchy vs. Green Strain

- Polar decomposition $\mathbf{F} = \mathbf{R}\mathbf{U}$ \mathbf{R} : rotation \mathbf{U} : stretch + shear
- Nonlinear Green strain is rotation-invariant
 - $\mathbf{E} = \frac{1}{2} \left(\mathbf{F}^T \mathbf{F} \mathbf{I} \right)$ $= \frac{1}{2} \left(\mathbf{U}^T \mathbf{R}^T \mathbf{R} \mathbf{U} - \mathbf{I} \right) = \frac{1}{2} \left(\mathbf{U}^T \mathbf{U} - \mathbf{I} \right)$ deformation
- Linear **Cauchy strain** is *not* rotation-invariant $\boldsymbol{\varepsilon} = \frac{1}{2} \left(\mathbf{F} + \mathbf{F}^T \right) - \mathbf{I} = \frac{1}{2} \left(\mathbf{R} \mathbf{U} + \mathbf{U}^T \mathbf{R}^T \right) - \mathbf{I}$

ETH zürich

rotation does not cancel out

Continuum Mechanics in 3D: Cauchy vs. Green Strain

[M. Müller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler, Stable Real-Time Deformations, SCA 2002]

Continuum Mechanics in 3D: Material Model

- Material model links strain to energy (and stress)
- Linear isotropic material (generalized Hooke's law)

 - material constants: Lamé parameters $\,\lambda$ and $\,\mu$
- Interpretation
 - $\mathrm{tr}(arepsilon^2) = \|arepsilon\|_F^2$ penalizes all strain components equally - $\mathrm{tr}(arepsilon)^2$ penalizes dilations, i.e., volume changes

- strain energy density $\Psi = \frac{1}{2}\lambda \operatorname{tr}(\varepsilon)^2 + \mu \operatorname{tr}(\varepsilon^2) \quad \left(\operatorname{tr}(\varepsilon) = \sum_i \varepsilon_{ii}\right)^2$

Finite Elements and Deformation Gradient

Interpolate using shape functions

$$\mathbf{X}(\boldsymbol{\xi}) = \sum_{i=1}^{n_e} N_i(\boldsymbol{\xi}) \mathbf{X}_i \quad \mathbf{x}(\boldsymbol{\xi})$$

undeformed configuration

 $\boldsymbol{\xi}$: elemental coordinates

• Deformation gradient

$$\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}} = \frac{\partial \mathbf{x}(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}} \left(\frac{\partial \mathbf{X}(\boldsymbol{\xi})}{\partial \boldsymbol{\xi}} \right)$$

Linear Tetrahedral Elements

- Shape functions $\boldsymbol{\xi}$: elemental coordinates $N_1(\xi) = \xi_1 \quad N_2(\xi) = \xi_2 \quad N_3(\xi) = \xi_3$ $N_4(\boldsymbol{\xi}) = 1 - \xi_1 - \xi_2 - \xi_3$ $\frac{\partial N_1}{\partial \boldsymbol{\xi}} = \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} \quad \frac{\partial N_2}{\partial \boldsymbol{\xi}} = \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix} \quad \frac{\partial N_3}{\partial \boldsymbol{\xi}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \quad \frac{\partial N_3}{\partial \boldsymbol{\xi}} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{vmatrix} \quad \mathbf{X}_1, \mathbf{X}_1$
- Deformation gradient $\partial \mathbf{x} \left(\partial \mathbf{X} \right)^{-1}$ $\partial \boldsymbol{\xi} \setminus \partial \boldsymbol{\xi} /$

$$\frac{\partial \mathbf{X}}{\partial \boldsymbol{\xi}} = \begin{bmatrix} \mathbf{X}_1 - \mathbf{X}_4 & \mathbf{X}_2 - \mathbf{X}_4 & \mathbf{X}_3 - \mathbf{X}_4 \\ \frac{\partial \mathbf{x}}{\partial \boldsymbol{\xi}} = \begin{bmatrix} \mathbf{x}_1 - \mathbf{x}_4 & \mathbf{x}_2 - \mathbf{x}_4 & \mathbf{x}_3 - \mathbf{x}_4 \end{bmatrix}$$

Disnep Research

Linear Elasticity

- 1. Divide input model input *tetrahedra* e
- 2. Form per-element deformation gradient, Cauchy strain, and strain energy density

З.

Integrate per-element strain energy density

$$f_{\text{static}}(\mathbf{x}) = \sum_{e} U^{e}(\mathbf{x}) - \mathbf{f}_{\text{ext}}^{T}(\mathbf{x} - \mathbf{X}) \qquad U^{e}(\mathbf{x}) = \int_{\Omega^{e}} \Psi^{e}(\mathbf{x}) \mathrm{d}\boldsymbol{\xi} = \Psi^{e}(\mathbf{x}) V_{e}(\mathbf{x}) \mathrm{d}\boldsymbol{\xi}$$

Linear Elasticity

- Problem: visible artifacts for large rotations (Cauchy strain)
- Solution: nonlinear elasticity

ETH zürich

$$\nabla^2 f_{\text{static}}(\mathbf{x}) = \mathbf{K}$$

$$\nabla f_{\text{static}}(\mathbf{x}) = \mathbf{K}(\mathbf{x} - \mathbf{X}) - \mathbf{f}_{\text{ext}}$$

1. factorize stiffness matrix \mathbf{K} (e.g., Cholesky decomposition)

2. compute displacement \mathbf{u}^* for external forces $\mathbf{f}_{\mathrm{ext}}$

on
$$\mathbf{x}^* = \mathbf{X} + \mathbf{u}^*$$

Nonlinear Elasticity

- Replace Cauchy strain with Green strain: $\Psi_{\rm StVK} = \frac{1}{2}\lambda tr(\mathbf{E})^2 + \mu tr(\mathbf{E}^2)$
- Stiffness matrix: no longer constant
- Use Newton's method for minimization $\min_{\mathbf{x}} f_{\text{static}}(\mathbf{x}) \quad f_{\text{static}}(\mathbf{x}) = \sum U^{e}(\mathbf{x}) - \mathbf{f}_{\text{ext}}^{T}(\mathbf{x} - \mathbf{X})$

St. Venant-Kirchhoff material model

Nonlinear Elasticity

- 1. Divide input model input tetrahedra e
- strain energy density

$$f_{\text{static}}(\mathbf{x}) = \sum_{e} U^{e}(\mathbf{x}) - \mathbf{f}_{\text{ext}}^{T}(\mathbf{x} - \mathbf{x})$$

element e:

- 1. Internal energy $U^e(\mathbf{x}^e) = V^e \Psi(\mathbf{x}^e)$
- 2. Energy gradient $\nabla_{\mathbf{x}^e} U(\mathbf{x}^e)$
- 3. Energy Hessian $\nabla^2_{\mathbf{x}^e} U(\mathbf{x}^e)$

Use symbolic or automatic differentiation to generate code for a single

ETH zürich

		—	×
?	Search Alt+S	۵	Ŧ
:=		Hie	de
•	i —		^
atrix	whose columns are difference vectors between undeformed vertices. This matrix can be precomputed.		
-inv	ariant.		
spos	se(F_e), F_e)))):		
2_e,	,xx <u>3_e,yy_3_e,zz_3_e,xx_4_e,yy_4_e,zz_4_e]))</u> :		
tion	precision = double, precision = double, deducetypes = false);		
10	$I = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right]$		
2_e; 3_o	$y_{y_{2}} = e_{z_{2}} = 2 [y_{1}]$ $y_{y_{2}} = e_{z_{2}} = 2 [y_{1}]$ $y_{y_{3}} = 2 [z_{3}] = 2 [y_{1}]$		
4_e,	yy_4_e,zz_4_e])):		
1_e;	$yy_1_{e,zz_1_{e]}}$):		
3_е, 4-е	$yy_3_e, zz_3_e])):$		
1 e.	$vv \ l \ e.zz \ l \ e])):$		
2_e, 3_e,	$yy_2[e, zz_2[e])$: $yy_3[e, zz_3[e])$:		
4_e,	yy_4_e,zz_4_e])):		
1_е, 2_е,	yy_1_e,zz_1_e])): yy_2_e,zz_2_e])):		
3_e, 4_e,	$yy_3_e, zz_3_e])):$ $yy_4_e, zz_4_e])):$		
z_2_	_e,xx_3_e,yy_3_e,zz_3_e,xx_4_e,yy_4_e,zz_4_e], [xx_1_e,yy_1_e,zz_1_e,xx_2_e,yy_2_e,zz_2_e,xx_3_e,yy_3_e,zz_3_e,xx_4_e,yy_	<u>4_</u> e,	
meri	ic, functionprecision = double, precision = double, deducetypes = false) :		
			~
	Maple Default Profile D:\PapersAndReports\Summaries\PBS\DeformableSolids Memory: 81.51M Time: 176.87s Zo	oom: 100% Math N	> 1ode

Apply Newton's method to objective $f_{\text{static}}(\mathbf{x})$:

- 1. Write function to evaluate f_{static} at \mathbf{x}
 - For each element e, compute $U^e(\mathbf{x}^e)$
 - Sum up per-element contributions and subtract external work

$$) - \mathbf{f}_{\mathrm{ext}}^T (\mathbf{x} - \mathbf{X})$$

Apply Newton's method to objective $f_{
m static}({f x})$:

- 2. Write function to evaluate $\nabla_{\mathbf{x}} f_{\text{static}}$ at \mathbf{x}
 - Set gradient to zero $\nabla_{\mathbf{x}} f_{\text{static}} := \mathbf{0}$
 - For each element e, compute $\nabla_{\mathbf{x}^e} U^e(\mathbf{x}^e)$ and add 4 3-vectors to gradient
 - Subtract external forces $f_{\rm ext}$
 - Set entries corresponding to constrained vertices to zero

Nonlinear Elasticity: Implementation

Apply Newton's method to objective $f_{\text{static}}(\mathbf{x})$:

- 3. Write function to evaluate $\nabla_{\mathbf{x}}^2 f_{\text{static}}$ at \mathbf{x}
 - Set Hessian to zero $\nabla^2_{\mathbf{x}} f_{\text{static}} := \mathbf{O}$
 - For each element e, compute $\nabla^2_{\mathbf{x}^e} U^e(\mathbf{x}^e)$ and add the 16 3x3-matrices to Hessian
 - Set rows and columns corresponding to constrained vertices to zero, then corresponding diagonal elements to 1

Dynamics

$$\mathbf{Ma}_n(\mathbf{x}_n^*) + \nabla U(\mathbf{x}_n^*) - \mathbf{f}_{\mathrm{ext}} \stackrel{!}{=} \mathbf{o}$$

Find
$$\mathbf{x}_n^*$$
 that fulfills i

$$\mathbf{v}_n(\mathbf{x}_n) = \frac{\mathbf{x}_n - \mathbf{x}_p}{h}$$
$$\mathbf{a}_n(\mathbf{x}_n) = \frac{\mathbf{v}_n(\mathbf{x}_n) - \mathbf{v}_p}{h}$$

p previous, *known*

this "dynamic" equilibrium.

$$\frac{\mathbf{v}_n(\mathbf{x}_n)}{h} - \frac{\mathbf{v}_p}{h} = \frac{\mathbf{x}_n - \mathbf{x}_p}{h^2} - \frac{\mathbf{v}_p}{h}$$

n next, unknown

Dynamics

$$\begin{split} \min_{\mathbf{x}_n} f_{\text{dynamic}}(\mathbf{x}_n) \\ f_{\text{dynamic}}(\mathbf{x}_n) &= \frac{h^2}{2} \left(\mathbf{a}_n + U(\mathbf{x}_n) \right) \\ &\quad - \mathbf{f}_{\text{ext}}^T(\mathbf{x}_n) \end{split}$$

$(\mathbf{x}_n)^T \mathbf{M} \mathbf{a}_n(\mathbf{x}_n)$ "inertia" () internal energy $(\mathbf{x}_n - \mathbf{X})$ external energy

Dynamics Lumped Masses

- 1. Initialize diagonal matrix $\mathbf{M} \in \mathbb{R}^{3n \times 3n}$ with zero elements
- 2. For each tetrahedron e:
 - compute the element volume and mass $V^{e} = \frac{1}{6} \det \left(\begin{bmatrix} \mathbf{X}_{1}^{e} - \mathbf{X}_{4}^{e} & \mathbf{X}_{2}^{e} - \mathbf{X}_{4}^{e} & \mathbf{X}_{3}^{e} - \mathbf{X}_{4}^{e} \end{bmatrix} \right)$ $m^e = V^e \rho$ ρ volumetric mass density
 - add a fourth of m^e to the 12 diagonal elements of \mathbf{M} corresponding to 4 element nodes

 \mathbf{X}_2^e

References

Sifakis and Barbič 2012

Witkin and Baraff 1997

FEM Simulation of 3D Deformable Solids: A Practitioner's Guide to Theory, **Discretization and Model Reduction, Part 1,** SIGGRAPH Courses, 2012 Eftychios Sifakis, Jernej Barbič http://www.femdefo.org/

Physically Based Modeling: Principles and Practice, SIGGRAPH Course, 1997 Andrew Witkin, David Baraff https://www.cs.cmu.edu/~baraff/sigcourse/

Skouras et al. 2013

Zehnder et al. 2017

Computational Design of Actuated Deformable Characters, SIGGRAPH 2013 M. Skouras, B. Thomaszewski, S. Coros, B. Bickel, M. Gross

MetaSilicone: Design and Fabrication of Composite Silicone with **Desired Mechanical Properties,** SIGGRAPH 2017 J. Zehnder, E. Knoop, M. Bächer, B. Thomaszewski

Schumacher et al. 2018

Set-In-Stone: Worst-Case Optimization of Structures Weak in Tension, SIGGRAPH 2018 C. Schumacher, J. Zehnder, M. Bächer

