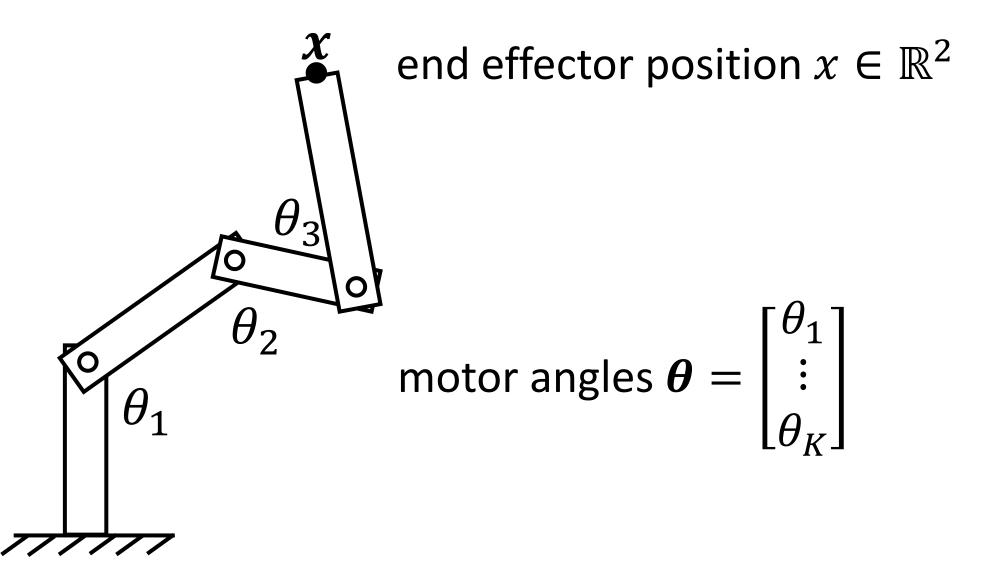
derivatives for design and control with Jim and Simon

review: serial manipulator



forward kinematics (FK)

what is $x(\theta)$?

i.e., given joint angles θ , what is the corresponding tip position x?

 \rightarrow something like $x(\theta) = T_K R_K \cdots T_1 R_1 O$ // some big analytic

// expression with a bunch // of $sin(\theta_i)$'s and $cos(\theta_i)$'s

inverse kinematics (IK)

what is $\boldsymbol{\theta}^*(\widetilde{\boldsymbol{x}})$?

i.e., given joint target tip position \tilde{x} , what is <u>an optimal choice</u> of joint angles θ^* ?

option 0: solve analytically

option 1: use optimization

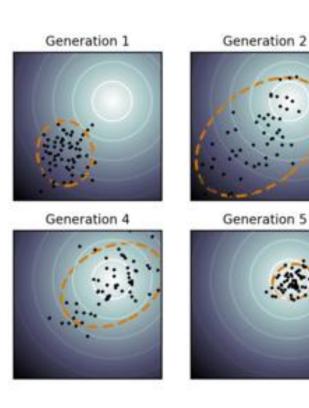
minimize a suitable objective

$$f_0(\boldsymbol{\theta}) = \frac{1}{2} (\boldsymbol{x}(\boldsymbol{\theta}) - \widetilde{\boldsymbol{x}})^T (\boldsymbol{x}(\boldsymbol{\theta}) - \widetilde{\boldsymbol{x}})$$

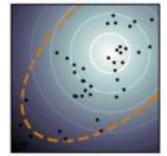
option 1a: derivative-free optimization

requires no derivatives

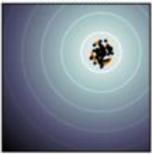
- when in doubt just use CMA-ES



Generation 3



Generation 6



option 1b: derivative-based optimization

may require 1 derivative (gradient)...

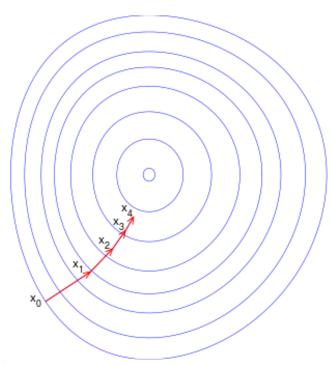
gradient descent

may require 2 derivatives (gradient and Hessian)...

Newton's method

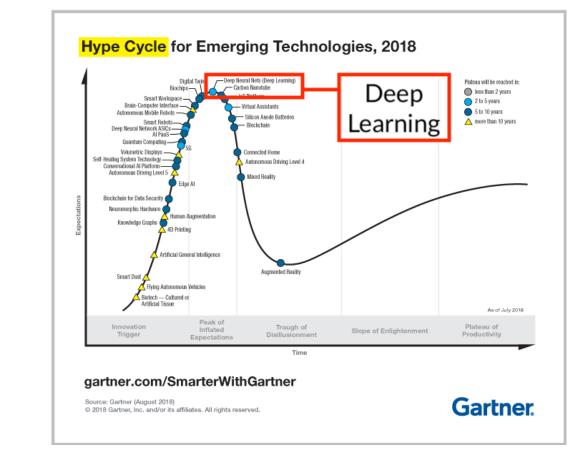
or be somewhere in the middle...

Gauss-Newton, L-BFGS



option 2: learn it

build a large set of training data $\{(\theta_i, x_i)\}_{i=1}^N$ using forward kinematics, then train a deep net using tensor flow, and evaluate the deep net at θ



option 3: invert kinematics using the *real world*



option 1b: derivative-based optimization

Say the objective is
$$f(x(p)) = \frac{1}{2}(x(p) - \tilde{x})^T(x(p) - \tilde{x})$$

gradient is $\frac{df}{dp} = \frac{\partial f}{\partial x}\frac{dx}{dp}$ // chain rule
 $\frac{\partial f}{\partial x} = (x(p) - \tilde{x})$ is trivial to compute
and for a serial manipulator, $\frac{dx}{dp}$ can be computed analytically

But what if x(p) does not have an analytic expression?

For example, static equilibrium of a finite element mesh:

$$\boldsymbol{x}(\boldsymbol{p}) = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} E(\boldsymbol{x}, \boldsymbol{p})$$

Still want to solve optimization problems of this form:

$$\min_{\boldsymbol{p}} f(\boldsymbol{x}(\boldsymbol{p}))$$

An example: topology optimization

Modeling continuous Relation between Parameters and State

- Observation: when we set parameters *p*, we observe the state *x* as the result of simulation.
- Although *x* are problem variables, they are not real DOFs they are functions of the parameters, i.e.,

x = x(p)

• Map from parameters to state is

x = simulate(p)

• For design, we need derivatives of x(p),

$$\frac{\partial f}{\partial p} = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}p}$$

But how to compute these derivatives,

$$\frac{dx}{dp} = \frac{d\text{simulation}}{dp}?$$

• The derivative of an argmin...?

Differentiating the Map

- Although we can evaluate the map $x \to x(p)$, this map is not available in closed-form (i.e., *analytically*)
- $x \rightarrow x(p)$ requires minimizing a function, i.e., solving a system of nonlinear equations.
- In general, it is impractical to compute derivatives of the minimization process.
- But even though $x \to x(p)$ is not given *explicitly*, the gradient of the objective

$$\boldsymbol{g}(\boldsymbol{x},\boldsymbol{p}) = \boldsymbol{\nabla}_{\mathbf{x}}\mathbf{E} = \frac{dE}{dx} = \mathbf{0}$$

provides this map *implicitly*.

Differentiating the Map

- Suppose that (x,p) is a feasible pair, i.e., g(x,p) = 0. In other words, x is an equilibrium configuration for p.
- If we apply a parameter perturbation Δp , the system will undergo displacements Δx such that it is again in equilibrium,

 $g(x + \Delta x, p + \Delta p) = 0$

• Since this has to hold for arbitrary parameter variations, we have

$$\frac{dg}{dp} = \frac{\partial g}{\partial x}\frac{dx}{dp} + \frac{\partial g}{\partial p} = \mathbf{0} // \text{ total derivative}$$

• If the Jacobian $abla_x g$ is non-singular, we have

$$\frac{dx}{dp} = -\frac{\partial g}{\partial x}^{-1} \frac{\partial g}{\partial p}$$

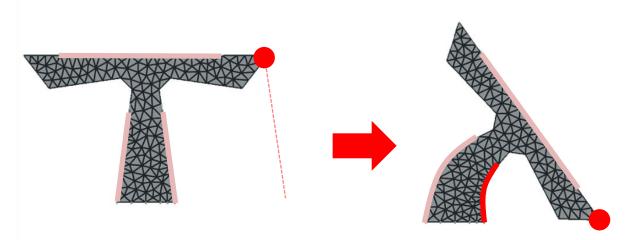
Sensitivity Analysis We could in principle approximate the sensitivity... ameters $D_{\Delta p} f(p) \sim \frac{f(p+h\Delta p) - f(p)}{h} // "finite difference"$...but this approach is typically real slow

option 1b: derivative-based optimization

Say the objective is
$$f(x(p)) = \frac{1}{2}(x(p) - \tilde{x})^T(x(p) - \tilde{x})$$

gradient is $\frac{df}{dp} = \frac{\partial f}{\partial x}\frac{dx}{dp}$ // chain rule
 $\frac{\partial f}{\partial x} = (x(p) - \tilde{x})$ is trivial to compute
and for statically stable FEM (and for many, many other systems),
 $\frac{dx}{dp}$ can be computed using sensitivity analysis

application: soft IK



say the control input p are the contacted lengths of cables in a soft robot... given a target pose \widetilde{x} , what is the optimal control p^* ?

$$f(\boldsymbol{x}(\boldsymbol{p})) = \frac{1}{2} (\boldsymbol{x}(\boldsymbol{p}) - \widetilde{\boldsymbol{x}})^T \boldsymbol{Q} (\boldsymbol{x}(\boldsymbol{p}) - \widetilde{\boldsymbol{x}})$$

real-world robot

optimal control signals p^st

user-specified target pose \widetilde{x}

