
derivatives for design and control
with Jim and Simon



𝒙

𝜃2

𝜃1

𝜃3

motor angles 𝜽 =
𝜃1
⋮
𝜃𝐾

end effector position 𝑥 ∈ ℝ2

review: serial manipulator



forward kinematics (FK)

what is 𝒙 𝜽 ?

i.e., given joint angles 𝜽, what is the corresponding tip position 𝒙?

 something like 𝒙 𝜽 = 𝑻𝐾𝑹𝐾⋯𝑻1𝑹1𝑶 // some big analytic 

// expression with a bunch 

// of sin(𝜃𝑖)’s and cos(𝜃𝑗)’s



inverse kinematics (IK)

what is 𝜽∗ ෥𝒙 ?

i.e., given joint target tip position ෥𝒙, what is an optimal choice of joint angles 𝜽∗?



option 0: solve analytically



option 1: use optimization

minimize a suitable objective



option 1a: derivative-free optimization

requires no derivatives

- when in doubt just use CMA-ES



option 1b: derivative-based optimization

may require 1 derivative (gradient)…

gradient descent

may require 2 derivatives (gradient and Hessian)…

Newton’s method

or be somewhere in the middle…

Gauss-Newton, L-BFGS



option 2: learn it
build a large set of training data {(𝜽𝑖 , 𝒙𝑖)} 𝑖=1

𝑁 using forward kinematics, 
then train a deep net using tensor flow, and evaluate the deep net at 𝜽



option 3: invert kinematics using the real world



option 1b: derivative-based optimization

Say the objective is 𝑓 𝒙(𝒑) =
1

2
(𝒙 𝒑 − ෥𝒙)𝑇(𝒙 𝒑 − ෥𝒙)

gradient is 
𝑑𝑓

𝑑𝒑
=

𝜕𝑓

𝜕𝒙

𝑑𝒙

𝑑𝒑
// chain rule

𝜕𝑓

𝜕𝒙
= (𝒙 𝒑 − ෥𝒙) is trivial to compute 

and for a serial manipulator, 
𝑑𝒙

𝑑𝒑
can be computed analytically



But what if 𝒙 𝒑 does not have an analytic expression?

For example, static equilibrium of a finite element mesh:

𝒙 𝒑 = 𝑎𝑟𝑔 min
𝒙

𝐸(𝒙, 𝒑)

min
𝒑

𝑓 𝒙 𝒑

Still want to solve optimization problems of this form:



An example: topology optimization



Modeling continuous Relation between 
Parameters and State

• Observation: when we set parameters 𝒑, we observe the state 𝒙 as the result of simulation.

• Although 𝒙 are problem variables, they are not real DOFs – they are functions of the 
parameters, i.e.,

𝒙 = 𝒙(𝒑)

• Map from parameters to state is
𝒙 = simulate(𝒑)

• For design, we need derivatives of 𝒙(𝒑), 
𝜕𝑓

𝜕𝒑
=

𝜕𝑓

𝜕𝒙

d𝒙

𝑑𝒑

• But how to compute these derivatives,
𝑑𝒙

𝑑𝒑
=

𝑑simulation

𝑑𝒑
?

• The derivative of an argmin...?

14



Differentiating the Map

• Although we can evaluate the map 𝒙 → 𝒙(𝒑), this map is not available in closed-form

(i.e., analytically) 

• 𝒙 → 𝒙(𝒑) requires minimizing a function, i.e., solving a system of nonlinear equations. 

• In general, it is impractical to compute derivatives of the minimization process.

• But even though 𝒙 → 𝒙(𝒑) is not given explicitly, the gradient of the objective 

𝒈 𝒙, 𝒑 = 𝛁𝐱E =
𝒅𝐸

𝒅𝒙
= 𝟎

provides this map implicitly.

15



Differentiating the Map

• Suppose that (𝒙,𝒑) is a feasible pair, i.e., 𝒈(𝒙, 𝒑) = 𝟎. In other words, 𝒙 is an equilibrium 
configuration for 𝒑.

• If we apply a parameter perturbation Δ𝒑, the system will undergo displacements Δ𝒙 such that 
it is again in equilibrium, 

𝒈(𝒙 + Δ𝒙, 𝒑 + Δ𝒑) = 𝟎

• Since this has to hold for arbitrary parameter variations, we have 
𝑑𝒈

𝑑𝒑
=

𝜕𝒈

𝜕𝒙

𝑑𝒙

𝑑𝒑
+

𝜕𝒈

𝜕𝒑
= 𝟎 // total derivative

• If the Jacobian 𝛻𝒙𝒈 is non-singular, we have

𝑑𝒙

𝑑𝒑
= −

𝜕𝒈

𝜕𝒙

−1 𝜕𝒈

𝜕𝒑

16



Sensitivity Analysis

• Used in many applications to quantify the sensitivity of a solution with respect to parameters 

(𝑺 =
𝑑𝒙

𝑑𝒑
is also called the  sensitivity matrix)

• Widely for shape optimization, topology optimization, control, etc.

17



option 1b: derivative-based optimization

Say the objective is 𝑓 𝒙(𝒑) =
1

2
(𝒙 𝒑 − ෥𝒙)𝑇(𝒙 𝒑 − ෥𝒙)

gradient is 
𝑑𝑓

𝑑𝒑
=

𝜕𝑓

𝜕𝒙

𝑑𝒙

𝑑𝒑
// chain rule

𝜕𝑓

𝜕𝒙
= (𝒙 𝒑 − ෥𝒙) is trivial to compute 

and for statically stable FEM (and for many, many other systems), 
𝑑𝒙

𝑑𝒑
can be computed using sensitivity analysis



application: soft IK

say the control input 𝒑 are the contacted lengths of cables in a soft robot...
given a target pose ෥𝒙, what is the optimal control 𝒑∗? 

𝑓 𝒙(𝒑) =
1

2
(𝒙 𝒑 − ෥𝒙)𝑇𝑸(𝒙 𝒑 − ෥𝒙)



real-world robot

user-specified target pose ෥𝒙

optimal control signals 𝒑∗




