
SHAPE MODELING AND GEOMETRY PROCESSING

ASSIGNMENT 1 - LIBIGL ”HELLO WORLD”

Handout date: 23.02.2018
Submission deadline: 09.03.2018, 08:00

In this exercise you will

• Familiarize yourself with libigl and the provided mesh viewer
• Get acquainted with some basic mesh programming, by computing topological relations and

isolating connected components.
• Implement a simple mesh subdivision scheme.
• Implement a simple mesh editing operation.

Setup

Please go to https://github.com/eth-igl/GP2018-Assignments/tree/master/assignment1

and carefully follow the instructions.

1. First steps with libigl

The first task of the assignment is getting familiar with some of the basic code infrastructure provided
in libigl.

1.1. Eigen. libigl uses the Eigen library for all its matrix computations. In libigl, a mesh is
typically represented by a set of two Eigen arrays V and F. V is a float or double array (dimension
#V × 3 where #V is the number of vertices) that contains the positions of the vertices of the mesh,
where the i-th row of V contains the coordinates of the i-th vertex. F is an integer array (dimension
#faces × 3 where #F is the number of faces) which contains the descriptions of the triangles in the
mesh. The i-th row of F will contain the indices of the vertices in V that form the i-th face, sorted
counter-clockwise.

Have a look at the ”Getting Started” page of Eigen as well as the Quick Reference page to acquaintain
yourselves with the basic matrix operations supported.

1

https://github.com/eth-igl/GP2018-Assignments/tree/master/assignment1
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/GettingStarted.html
http://eigen.tuxfamily.org/dox/group__QuickRefPage.html

2 ASSIGNMENT 1 - LIBIGL ”HELLO WORLD”

1.2. libigl. Throughout this course you will use libigl, a geometry processing library. Have a look
at the libigil tutorials. Each tutorial has a name of the form ./XXX TUTORIAL NAME where XXX is
the number ID of the tutorial. The executables for all tutorials will then be located inside the directory
TOPDIR/libigl/tutorial/build and can be run e.g. by using: cd TOPDIR/libigl/tutorial/build;

./XXX TUTORIAL NAME bin

The source code for the corresponding tutorial is located in

TOPDIR/libigl/tutorial/XXX TUTORIAL NAME/main.cpp

Experiment with the basic functionality of libigl and the included mesh viewer by running at least
the first 6 tutorials and having a look at the corresponding source code.

2. Neighborhood Computations

For this task, you will use libigl to perform basic neighborhood computations on a mesh. Computing
the neighbors of a mesh face or vertex is required for most mesh processing operations, as you will see
later in the class. For this task, you need to fill in the appropriate sections (inside the keyboard
callback, keys ’1’ to ’2’) of the source code provided in the main.cpp file of the provided project
to compute the neighborhood relations using libigl. In order to use the a library function (e.g.
the function to compute per-face normals), you need to include the relevant header file at the top
of your main.cpp file (e.g. #include <igl/per face normals.h>), and call it later in your code
(igl::per face normals(V,F,FN)).

2.1. Vertex-to-Face relations. Given V and F, generate an adjacency list which contains, for each
vertex, the faces adjacent to it. The ordering of the faces incident on a vertex does not matter. Your
program should print out the vertex-to-face relations in text form when key ’1’ is pressed.

Relevant libigl functions: igl::vertex triangle adjacency.

2.2. Vertex-to-Vertex relations. Given V and F, generate an adjacency list which contains, for each
vertex, the vertices connected with it. Two vertices are connected if there exists an edge between them,
i.e., if the two vertices appear in the same row of F. The ordering of the vertices in the list does not
matter. Your program should print out the vertex-to-face relations in text form when key ’2’ is pressed.

Relevant libigl functions: igl::adjacency list.

2.3. Visualizing the neighborhood relations. Check your results by comparing them to the built-in
relations calculated by the mesh viewer. You can do this by clicking on the checkboxes “Show Vertex
Labels” and “Show Faces Labels” in the viewer window.

Required output of this section:

• A textual dump of the content of the two data structures for the provided mesh ”cube.off” .

SHAPE MODELING AND GEOMETRY PROCESSING 3

3. Connected Components

Using the neighborhood connectivity, it is possible to separate a mesh into separated connected com-
ponents, where each mesh face only belongs to a single component. Fill in the appropriate source code
sections (inside the keyboard callback, key ’3’) of the project to display the mesh with faces of the
various connected components colored differently for each component. For coloring the components
you can use the jet colormap provided with libigl, or you can implement your own colormap.

Relevant libigl functions: igl::facet components, igl::jet. Call viewer.data.set colors(.)

to set the displayed colors to the per-face colors you computed.

Figure 1. Connected Components of meshes

Required output of this section:

• Screenshots of the provided meshes with their connected components colored differently.

4 ASSIGNMENT 1 - LIBIGL ”HELLO WORLD”

• The number of connected components and the size of every one of them (measured in number
of faces) for all the provided models.

4. A simple subdivision scheme

Figure 2.
√
3 Subdivision. From left to right: original mesh, added vertices at the

midpoints of the faces (step 1), connecting the new points to the original mesh (step
1), flipping the original edges to obtain a new set of faces (step 3). Step 2 involves
shifting the original vertices and is not shown.

For this task you will implement the subdivision scheme described in [1] (https://www.graphics.
rwth-aachen.de/media/papers/sqrt31.pdf) to iterative create finer meshes from a given, coarse
one. According to the paper, given a given mesh (V,F), the

√
3-subdivision scheme creates a new

meshes (V’,F’) by using the following rules

(1) Add a new vertex at location mf for each face f ∈ F of the original mesh. The new vertex
will be located at the midpoint of the face. Append the newly created vertices M = {mf} to
V to create a new set of vertices V ′′ = [V ;M]. Add three new faces for each face f in order
by connecting mf with edges to the original 3 vertices of the face; we call the set of this newly
created faces F ′′. Replace the old set of faces F with F ′′.

(2) Move each vertex v of the old vertices V to a new position p by averaging v with the positions
of its neighboring vertices in the original mesh. If v has valence n and its neighbors in the
original mesh (V,F) are located at v0,v1, . . . ,vn, then the update rule is

p = (1− an)v +
an
n

n−1∑
i=0

vi

where an =
4−2 cos(2π

n)
9 . The vertex set of the subdivided mesh is then V ′ = [P,M], where P

is the concatenation of the new positions p for all vertices.
(3) Replace the F ′′ with a new set of faces F ′ such that the edges connecting the newly added

points M to P (the moved vertices corresponding to the original vertices) remain but the original
edges of the mesh connecting points in M to each other are flipped. See Figure 2.

https://www.graphics.rwth-aachen.de/media/papers/sqrt31.pdf
https://www.graphics.rwth-aachen.de/media/papers/sqrt31.pdf

SHAPE MODELING AND GEOMETRY PROCESSING 5

Figure 3. Example results of one step of
√
3 Subdivision.

Fill in the appropriate source code sections (inside the keyboard callback, key ’4’) of the project so that
hitting key ’4’ subdivides the mesh once and displays it in place of the old mesh.

Relevant libigl functions: Many options possible. Some suggestions: igl::adjacency list,
igl::triangle triangle adjacency, igl::edge topology, igl::barycenter. Use viewer.data.clear()
and viewer.data.set mesh(.,.) to replace the displayed mesh in the viewer.

Required output of this section:

• Screenshots of the subdivided meshes.

5. Mesh extrude - A simple mesh editing operation

In this task you will implement a basic mesh editing operation. The code supplied already has a built-in
support for a few operations: selecting faces, translating faces, and selecting/translating a single vertex
(See Figure 5).

Figure 4. Editing operations supported in the code. From left to right: The editor
GUI, face selection, face translation, vertex selection, vertex translation.

There is however a feature that is not fully implemented: triangular faces extrusion. The process is
best explained in Figure 5.

Triangular faces extrusion takes a mesh with vertices V, faces F, and a set of selected faces and returns
a new mesh with vertices V’ and faces F’ using the following steps:

(1) Verify that the set of faces are connected by edges.

6 ASSIGNMENT 1 - LIBIGL ”HELLO WORLD”

Figure 5. Faces extrusion. Left: The user select a set of connected faces. Right: The
faces are extruded by their boundary. The boundary vertices/edges are the vertices/edges
separating the red selected faces and the unselected grey faces. The boundary vertices
are duplicated, the old vertices are slightly translated upwards, and 2 new faces are
created for every boundary edge of the selected faces. These faces are connecting the
old boundary vertices with the new duplicated ones.

(2) Create a new set of vertices V’, which contains the old set of vertices as well as new vertices
that are just duplicates of the boundary of the selected faces.

(3) Compute T: The direction of the average normal of the selected faces.
(4) Offset the old vertices in direction T.
(5) Create a new set of faces F’. F’ contain all the faces F contained, as well as new faces: 2 for

each boundary edge surrounding the selected faces which connect the old boundary vertices
into the new duplicated ones. Furthermore, faces touching the boundary vertices that were not
selected should be updated to contain the new duplicated vertices, instead of the old ones that
were offseted by T in step (4).

(6) Make sure the new set of V’,F’ is a manifold.

The code provided to you already offers a partial implementation of extrude() with steps (1)-(4).
Your task is to implement tasks (5)-(6).

Relevant libigl functions: igl::vertex triangle adjacency, igl::is edge manifold,
igl::is vertex manifold. Also consider using std::set to store unique lists of indices, and std::set difference

to get the list of faces that should be updated.

To call the extrude routine, first select a few faces (connected by edges) and then press the ’extrude’
button in the gui.
Lastly, here are a few tips:

(1) First test your extrude implentation on a single selected face.

SHAPE MODELING AND GEOMETRY PROCESSING 7

(2) Make sure your created faces are correctly oriented. If they are not, they will appear dark in the
viewer as the normal will be flipped. Given a face defined with vertices v1, v2, v3, one can flip
its orientation by changing the order of its vertices to v1, v3, v2.

(3) After implementing the extrude function, please uncomment the lines: V = Vout; F = Fout;
for your changes to take affect.

Required output of this section:

• Screenshots of two different extrusion operation on the ’cube.off’ model. Make sure to include
a ’before’ and ’after’ extrude picture, and that at least one of the extrude operations will be on
3 faces or more.
• A mesh you designed starting from ’cube.off’ and using the GUI supplied editing operations, as

well as your implemented subdivision and extrude operations. You can save your result using
the ’Export mesh’ button. Save it under ’design.off’, and also take a screenshot of it from a
few angles.

References

[1] Leif Kobbelt. Sqrt(3)-subdivision, 2000.

	Setup
	1. First steps with libigl
	1.1. Eigen
	1.2. libigl

	2. Neighborhood Computations
	2.1. Vertex-to-Face relations
	2.2. Vertex-to-Vertex relations
	2.3. Visualizing the neighborhood relations

	3. Connected Components
	4. A simple subdivision scheme
	5. Mesh extrude - A simple mesh editing operation
	References

