
252-0538-00 Shape Modeling and Geometry Processing - Spring 2018

Assignment 2: Implicit Surface Reconstruction
Handout date: 02.03.2018

Submission deadline: 23.03.2018 at 09:00

In this exercise you will

• Compute an implicit MLS function approximating a 3D point cloud with given (but possibly
unnormalized) normals.
• Sample the implicit function on a 3D volumetric grid.
• Apply the marching cubes algorithm to extract a triangle mesh of this zero level set.
• Experiment with various MLS reconstruction parameters.

Your main task is to construct an implicit function f(x) defined on all x ∈ R3 whose zero level set
contains (or at least passes near) each input point. That is, for every point pi in the point cloud, we
want f(pi) = 0. Furthermore, ∇f (the isosurface normal) evaluated at each point cloud location should
approximate the point’s normal provided as input.

You will construct f by interpolating a set of target values, di, at “constraint locations,” ci. The MLS
interpolant is defined by minimization of the form f(x) = argminφ

∑
iw(ci,x)(φ(ci) − di)2, where

φ(x) lies in the space of admissible function (e.g., multivariate polynomials up to some degree) and w
is a weight function that prioritizes each constraint equation depending on the evaluation point, x.

Note: The datasets provided actually already include triangles. Ignore them for this assignment.

Follow the instructions from the repository to pull the newest update including the starter code for
assignment 2: https://github.com/eth-igl/GP2018-Assignments

1. Setting up the Constraints

Your first step is thus to build the set of constraint equations by choosing constraint locations and
values. Naturally, each point pi in the input point cloud should contribute a constraint with target value
di = 0. But these constraints alone provide no information to distinguish the object’s inside (where we
want f < 0) from its outside (where we want f > 0). Even worse, the minimization is likely to find
the trivial solution f = 0 (if it lies in the space of admissible functions). To address these problems, we
introduce additional constraints incorporating information from the normals as follows:

• For each point pi in the point cloud, add a constraint of the form f(pi) = 0.
• Fix an ε value, for instance ε = 0.01× bounding box diagonal.
• For each point pi compute pi+N = pi + εni, where ni is the normalized normal of pi. Check

that pi is the closest point to pi+N ; if not, halve ε and recompute pi+N until this is the case.
Then, add another constraint equation: f(pi+N ) = ε.
• Repeat the same process for −ε, i.e., add equations of the form f(pi+2N ) = −ε. Do not forget

to check each time that pi is the closest point to pi+2N .
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After these steps, you should have 3n equations for the implicit function f(x).

(a) Input point cloud (b) Inward/Outward value constraints

Figure 1. Input point cloud for the cat mesh and inward/outward value constraints.
In Fig. 1b, labels green, red and blue correspond to inside, outside and on the surface
respectively. The blue points in Fig. 1b are the same as the black ones in Fig. 1a.

1.1. Creating the constraints. For this task, you need to complete the appropriate sections (keyboard
callback, keys ’1’ and ’2’) of src/main.cpp. Pressing key ’1’ displays the input point cloud (this part
has already been completed). When key ’2’ is pressed, you must calculate and display the constraints
(points and implicit function values), storing them in constrained points, constrained values.
You should plot each constraint point in a color chosen based on its type (inside/outside/surface) as in
Figure 1.

Relevant libigl functions: None.

1.2. Implementing a spatial index to accelerate neighbour calculations. To construct the MLS
equations, you will perform queries to find, for a query point q:

• the closest input point to q (needed while constructing inside/outside offset points); and
• all input points within distance h of q (needed to select constraints with nonzero weight).

Although a simple loop over all points could answer these queries, it would be slow for large point clouds.
Improve the efficiency by implementing a simple spatial index (a uniform grid at some resolution). By
this, we mean binning vertices into their enclosing grid cells and restricting the neighbour queries to visit
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only the grid cells that could possibly satisfy the query. You can debug this data structure by ensuring
that it agrees with the brute-force for loop implementation.

Relevant libigl functions: None.

Required output of Section 1.

• Visualization of the constrained points.

2. MLS Interpolation

We now use MLS interpolation to construct an implicit function satisfying the constraints as nearly as
possible. We won’t define the function with an explicit formula; instead we characterize it as the linear
combination of polynomial basis functions that best satisfies the constraints in some sense. At a given
point x, you evaluate this function by finding the “optimal” basis function coefficients (which will vary
from point to point!) and using these to combine the basis function values at x.

Complete the appropriate source code sections (inside the keyboard callback, key ’3’) to evaluate the
MLS function at every node of a regular volumetric grid containing the point cloud. As an example, the
provided code computes the grid values for an implicit function representing a sphere (MLS wasn’t used
in this case since the formula is known analytically). It corresponds to the point cloud sphere.off.
For a result using MLS see Fig. 2 (A).

2.1. Create a grid sampling the 3D space. Create a regular volumetric grid around your point cloud:
compute the axis-aligned bounding box of the point cloud, enlarge it slightly, and divide it into uniform
cells (cubes). The grid resolution is configured by the global variable resolution, which can be changed
in the GUI sidebar. The marching cubes library needs to know the location of each grid point, which you
should store in the grid points array. The library expects the points to be ordered lexicographically
by their (z, y, x) grid index; see the example grid construction provided in createGrid.

Relevant libigl functions: igl::colon can optionally be used to generate points.

2.2. Evaluate the implicit function on the grid. For each grid node of the grid, evaluate the implicit
function f(x), whose zero level set approximates the point cloud. Use the moving least squares approxi-
mation presented in class and in the tutoring session. You should use the Wendland weight function with
radius configured by wendlandRadius and degree k = 0, 1, 2 polynomial basis functions configured by
polyDegree (add these parameters to the GUI!). Only use the constraint points with nonzero weight
(which you can find efficiently using the spatial index you created earlier). If no constraint points are
within wendlandRadius of the evaluation grid point, you can assign a large positive (outside) value to
the grid point.

Store the field value in the grid values array, using the same ordering as in grid points. Render
these values by coloring each grid point red/green as already done for the sphere function. You can use
the global variables grid colors and grid lines to store the colors and the lines of your grid. Code
for displaying the grid is already provided (see function getLines and the callback function).

Relevant libigl functions: igl::slice might come in handy to extract the relevant constraint
locations/values.
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(a) Implicit function values at
grid points

(b) Marching Cubes result

Figure 2. MLS implicit function constructed from the value constraints shown in
Fig. 1 and final reconstruction using marching cubes. In Fig. 2a, green and red labels
correspond to negative and positive values of the implicit function respectively.

2.3. Using a non-axis-aligned grid. The point cloud luigi.off is not aligned with the canonical
axes. Running reconstruction on an axis-aligned grid is wasteful in this case: many of the grid points
will lie far outside the object. Devise an automatic (and general) way to align the grid to the data and
implement it.

Required output of this section:

• Screenshots of the grid with nodes colored according to their implicit function values.

3. Extracting the surface

You can now use marching cubes to extract the zero isosurface from your grid. The extraction has
already been implemented and the surface is displayed when key ’4’ is pressed. Add code to export your
mesh in off format. For an example result, see Fig. 2 (B).

Relevant libigl functions: igl::copyleft::marching cubes, igl::writeOFF.
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Required output of this section:

• Screenshots of the reconstructed surfaces. Experiment with different parameter settings: grid
resolution (also anisotropic in the 3 axes), Wendland function radius, polynomial degree. Add
all these settings to the GUI to ease experimentation.
• The reconstructed model in off format for every point-cloud dataset provided.

4. Theory question

Let S be the implicit surface defined by f(x) = 0. Formally prove that the normal of S at point p ∈ S
is proportional to ∇f(p).

Optional tasks

(1) (2 points) Compute the closed-form gradient of the MLS approximation. Suggestion: A good
strategy to solve this exercise is to write MLS explicitly in matrix form and then compute its
gradient (a good reference for differentiating expressions with matrices can be found in “The
Matrix Cookbook”).

(2) (2 points) In “Interpolating and Approximating Implicit Surfaces from Polygon Soup [2],” nor-
mals are used differently to define the implicit surface. Instead of generating new sample points
offset in the positive and negative normal directions, the paper uses the normal to define a
linear function for each point cloud point: the signed distance to the tangent plane at the point.
Then the values of these linear functions are interpolated by MLS. Implement Section 3.3 of
the paper and append to your report a description of the method and how it compares to the
original point-value-based approach.

(3) (1 point) Screened Poisson Surface Reconstruction [1] is a more modern technique that avoids
some of the pitfalls of local reconstruction methods.

An implementation is provided in MeshLab. A standalone implementation of this method is
also provided by the authors here with accompanying usage instructions and datasets. Compare
your MLS reconstruction results to the surfaces obtained with this method, and try to understand
the differences. Report your findings.
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