
252-0538-00 Shape Modeling and Geometry Processing - Spring 2018

Assignment 3: Mesh Parameterization
Handout date: 23.03.2018

Submission deadline: 13.04.2018 at 09:00

In this exercise you will

• Parameterize a mesh by minimizing four different distortion measures,
• with fixed or free boundaries.
• Visualize the distortion by color coding.

The majority of this task involves setting up a sparse linear system and solving it to obtain the uv
coordinates of the parameterization. The specific linear system will depend on the type of parameteri-
zation and desired boundary conditions. To this end, you are provided with a function that computes
the gradient matrices, but you will have to derive the systems, based on the distortion measure, on your
own. The parameterization energies to be implemented in this assignment are:

• Spring energy (uniform Laplacian)
• Dirichlet/harmonic energy (cotangent Laplacian)
• Least Squares Conformal Maps (LSCM)
• As-Rigid-As-Possible (ARAP)

1. Setting up the boundary conditions

The first task is to define the boundary conditions. There are two possible options:

• The boundary of the mesh is fixed to a unit disc.
• The boundary is free, but two vertices are fixed based on a strategy.

1.1. Finding the fixed vertex indices and their positions. In both cases you are required to find
the lists of indices of the fixed vertices and their fixed positions in the plane. For the first option, you
can use the libigl functions boundary loop and map boundary to circle. For the second option the
boundary should not be fixed, however, in order to get a unique solution, two vertices must be fixed.
Note that this is only relevant for the LSCM and ARAP parameterization, as the spring and Dirichlet
energies can only be used in the fixed boundary setting. Try to explore various possibilities for picking
these two vertices and devise a strategy that will result in nice parameterization (hint: it is a good
practice to pick the two most distance vertices as the fixed ones).

Relevant libigl functions: boundary loop, map boundary to circle as mentioned and perhaps
dijkstra .

1.2. Convert the boundary conditions to linear constraints. in order to satisfy the boundary con-
ditions, they have to be described as a linear system in the following way,
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Implement the function ConvertConstraintsToMatrixForm which converts the lists of fixed vertices
and their positions to a sparse matrix C and a vector d.

2. Write the parameterization problem in matrix form and construct the matrix

As was shown in the tutorial, all parameterization methods discussed in this course solve a system of
the form
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The matrix C and vector d were found in the previous part. In this part you will find the matrix A
and vector b relevant for the specific parameterization method. Initiating each type of parameterization
can be done by pressing ’1’-’4’.

2.1. Uniform and cotangent Laplacian. In this case A is constructed using the matrix L where L can
be either the uniform or cotangent laplacian, and b = 0. Pay attention to the dimensions of the matrices
and vector! it will help you to debug your code. You can use the function igl::adjencency matrix

and igl::cotmatrix to help you.

Optional (1 point) Compute the cotangent Laplacian using the gradient matrices like shown in class,
and compare it to igl::cotmatrix.

2.2. LSCM. One of the ways to define the LSCM distortion measure is as follows,

D(J) = ‖J + JT − (trJ)I‖2F
Follow the technique you saw in the tutorial to derive the system required to minimize the LSCM
distortion. You are provided with the function computeSurfaceGradientMatrix which computes the
gradient matrices Dx, Dy as shown in class. Don’t forget to include the triangle areas!

Sanity check!: it was shown in [2] that the minima of the dirichlet and LSCM energies are the same
when the boundary is fixed.

Relevant libigl functions: double area, cat.

2.3. ARAP (Optional, 4 pts). The ARAP distortion is defined by

(2) D(J) = ‖J −R‖2F
where R is the closest rotation matrix to J . Since R is non linearly dependant on J , this distortion
is not quadratic, and hence cannot be minimized by solving a single linear system. The local/global
approach proposed in [1] is an iterative approach for minimizing the ARAP distortion. Starting from an
initial guess (for example, obtained via LSCM) the idea is to iterate the two following steps:

• Local step: The Jacobians for each face of the current iterate are computed. Then for each
Jacobian the closest rotation matrix is found. This can be done using the SVD of J : If
J = USV T , then the closest rotation is R = UV T .
• Global step: Once the closest rotation for each Jacobian is found, they are all assumed to be

fixed, and then (2) can be minimized by solving a linear system.
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Use the provided function SSVD2x2 to find closest rotations as mentioned above, and derive the matrix
form of (2). Then solve the linear system (next part) to obtain a parameterization with lower ARAP
distortion. Keep pressing ’4’ to initiate the parameterization and get better result. Stop when there is
no observable improvement. For more details refer to [1].

3. Construct the system and display the results

3.1. Solve and show the parameterization. Once A, C, b and d are found, construct the system in
(1) and solve it using the Eigen solver Eigen::SparseLU. Take the relevant part of the solution (i.e.
without the Lagrange multipliers) and store it in global variable UV. You can now see the parameterization
by pressing spacebar or by showing the a grid texture on the mesh. use ’+’ and ’-’ to scale the texture
to appropriate size.

3.2. Visualize the distortion. Color code the distortion of the faces to visualize the quality of the
results. Experiment with different criterions (angle preservation, edge length preservation, etc.). Highly
distorted triangles should appear in red and undistorted triangles in white.

Required output for the report:

• Screenshots of the parameterizations and textured (checkerboard) models for all the imple-
mented methods and boundary conditions.
(models: cathead.obj, hemisphere.off, hemisphere non convex boundary.off,Octo cut2.obj)
• Several examples of the distortion visualizations.
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