
Shape Modeling and
Geometry Processing

Mass-Spring and FEM Simulation
Part 2

252-0538-00L, Spring 2018

1

#

Overview

- Overview of code for exercise 2
- Quick intro to AutoDiff, and how to use it in the assignment
- Questions for exercise 1

2

#

Questions

If you have questions about the assignment:

moritzge@inf.ethz.ch

3

mailto:moritzge@inf.ethz.ch

#

Exercise 2

Neo-Hookean material model, strain energy density:

4

(Assignment)

(Lecture)

Who is right??

2D:

3D:

#

-

Exercise 2.1

FEM simulation with gradient descent.
- How to get from energy density to energy W?

Answer is in lecture slides!

5

check if energy is
finite (not NAN)

- Compute gradient with finite differences

#

Exercise 2.3 (Bonus)

(1) compute exact gradient/Hessian using Automatic Differentiation
(2) compute exact gradient/Hessian by deriving analytical solution by

hand, as in exercise 1

6

#

Automatic Differentiation

What is it?
Instead of computing derivatives by hand, let a program compute
derivatives!

7

need to know f’ need to know chain rule

How does it work?
1. chain rule

2. expression graphs

#

Expression Graphs

8

sin

x1 x2

f

*

#

Expression Graphs

9

sin

x1 x2

f

*

1 0

*

+ +

cos *

f’

#

AutoDiff class

10

class AutoDiff {

AutoDiff operator*(AutoDiff b) {
 AutoDiff df;

df.v = v * b.v;
df.d = d*b.v + v*b.d;
return df;

}

double v, d;
};

AutoDiff sin(AutoDiff b)
{

AutoDiff df;
df.v = sin(b.v);

 df.d = cos(b.v) * b.d);
return df;

}

sin

x1 x2

f

*

1 0

*

+ +

cos *

f’

#

AutoDiff class

11

sin

x1 x2

f

*

1

0

+

+ +

cos

*

f’

class AutoDiff {

AutoDiff operator*(AutoDiff b) {
 AutoDiff df;

df.v = v * b.v;
df.d = d*b.v + v*b.d;
return df;

}

double v, d;
};

AutoDiff sin(AutoDiff b)
{

AutoDiff df;
df.v = sin(b.v);

 df.d = cos(b.v) * b.d);
return df;

}

AutoDiff x1;
x1.v = M_PI;
x1.d = 1;

AutoDiff x2;
x2.v = 3;
x2.d = 0;

AutoDiff f = sin(x1*x2);

double f_val = f.v;
double dfdx1 = f.d;

#

What about higher-order derivatives?

12

template<class T>
class AutoDiff {

...

T v, d;
};

// df/dx1
AutoDiff<double> x1; x1.v = M_PI;
x1.d = 1;
AutoDiff<double> x2; x2.v = 3;
x2.d = 0;
AutoDiff<double> f = sin(x1*x2);
double f_val = f.v;
double dfdx1 = f.d;

// ddf/dx1dx2
AutoDiff<AutoDiff<double>> x1;
x1.v.v = M_PI; x1.v.d = 1; x1.d.v = 0;
AutoDiff<AutoDiff<double>> x2;
x2.v.v = 3; x2.v.d = 0; x2.d.v = 1;
AutoDiff<AutoDiff<double>> f = sin(x1*x2);
double f_val = f.v.v;
double ddfdx1dx2 = f.d.d;

// ddf/dx2dx2
AutoDiff<AutoDiff<double>> x1;
x1.v.v = M_PI; x1.v.d = 0; x1.d.v = 0;
AutoDiff<AutoDiff<double>> x2;
x2.v.v = 3; x2.v.d = 1; x2.d.v = 1;
AutoDiff<AutoDiff<double>> f = sin(x1*x2);
double f_val = f.v.v;
double ddfdx2dx2 = f.d.d;

#

Symbolic Differentiation

- Store expression graph
- use algebraic rules to simplify

expression graph
- avoid repetition of computation

of same operation
→ create hashmap of nodes

- generate code from simplified
expression graph

- JIT compilation of generated
code

13

sin

x1 x2

f

*

1 0

+

+ +

cos *

f’

#

Questions Exercise 1

Do we need to compute the derivative of the function or do we
numerically perform the gradient ?
For exercise 1, compute the gradient and hessian analytically, and not
numerically with finite differences. The analytical derivatives are in the
lecture slides. For exercise 2, see assignment.
Do we need to add (+=) or to replace (=) the calculated values in the
gradient Vector ?
You will have to figure this out yourself :)
A hint: In the function `computeSearchDirection`, the vector `dx` has the
correct size, but is not guaranteed to be zero in every element!

14

#

Questions Exercise 1

Do you have sample/examples of what we should end up with for the
results of each question ?
You can check it yourself:
1. is the computed x_min a local minimum of the function? Easy to verify for
Rosenbrock function.
2. Is the gradient at x_min zero? (or actually: is it smaller than the residual?
In the gradient descent class, variable solveResidual holds this value.)
After clicking “Test”, I get a non-zero deformation energy. Is this
correct?
We are applying a gravitational force on a body with mass. Thus, the static
solution will have a no-zero internal energy. The static solution should
however satisfy that the sum over all forces is zero.

15

#

Questions Exercise 1

What is the size/structure of x/X/grad/hessian?
In both, the ObjectiveFunction and the Element class, x/X/grad/hessian are
global quantities and of size 2N (or 2N x 2N for the hessian).
The structure is: x=[x1,y1,x2,y2,...,xn,yn]^T, where (x1,y1) are coordinates of
node 1. The same is true for the gradient/hessian.

Typo: The spring energy was missing an L. Corrected pdf is uploaded.

General life advice: If you want fast and good answers, write short and
concise emails :)

MacOS + clang → :-/

16

Good luck!

17

any questions?
moritzge@inf.ethz.ch

mailto:moritzge@inf.ethz.ch

