252-0538-00, Spring 2017

Shape Modeling and Geometry Processing

Introduction and Overview

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

February 21, 2018

Course Staff

Lecturers

Prof. Stelian Coros stelian.coros@inf CNB, H 101

Dr. Roi Poranne roi.poranne@inf CNB, E 106

Assistants

Moritz Geilinger <u>moritz.geilinger@inf</u> CNB, E 108.1

Michael Rabinovich <u>michael.rabinovich@inf</u> CAB G 82.2

http://crl.ethz.ch/teaching/shape-modeling-18/

CRL - Computational Robotics Lab

Stelian Coros

Roi Poranne

David Hahn

James Bern

Vittorio Megaro

Moritz Geilinger

Nitish Kumar

Simon Duenser

Simon Zimmerman

IGL - Interactive Geometry Lab

Faculty

Olga Sorkine-Hornung

PhD students

Christian Schüller

Michael Rabinovich

Oliver Glauser

Yifan Wang

Postdocs

ETH zürich

February 21, 2018

Shape modeling

Geometry processing

Signal processing on surfaces

Levy and Zhang, Spectral Mesh Processing, Siggraph Asia 2009 course notes

Spherical cow in vacuum

https://en.wikipedia.org/wiki/Spherical_cow

Geometry processing

Crane et al. Conformal Willmore Flow, Siggraph 2013

Computational fabrication

Course Goals

Shape	Computational	Geometry
modeling	fabrication	processing

Theory and	Modeling	Hands-on
applications	competition	experience

Geometry = Shape = Object = Model

Applications

Product design and prototyping

Medicine, prosthetics

Architecture

Cultural heritage

Applications

Geographical systems

Boyer et al. 2012

Manufacturing, 3D Printing

Animation

Fabrication

Digital Geometry Processing

- DGP!
- Processing of discrete
 (polygonal mesh) models
- Why discrete?
 - Simplicity
 - Efficiency
 - Output of most scanners
 - Input to most simulators

Roi Poranne

ETH zürich

Interactive Shape Modeling

- Tools for design, editing and animation of digital shapes
 - Interactive = fast
 - Intuitive = predictable

http://youtu.be/EMx6yNe23ug

Interactive Shape Modeling Modeling is difficult!

https://youtu.be/ALbt17LLH54

February 21, 2018

Interactive Shape Modeling Modeling is difficult!

Interactive Shape Modeling Modeling is difficult!

Interactive Shape Modeling Modeling is easy?

https://youtu.be/nUe2IHN_isU

February 21, 2018

Tools of the trade

- Use techniques from both CS & Math
 - Numerical Optimization
 - Discrete differential geometry
 - Linear algebra
 - Graph theory
 - • •
- Coding!

Organization

- Communication through course website: <u>http://crl.ethz.ch/teaching/shape-modeling-18/</u>
- Mailing list
- Weekly lectures and exercise sessions
- Prerequisites:
 - Intro to Computer Graphics or Computer Graphics (252-0543-01L) - somewhat soft condition
 - Knowledge of C++ programming firm condition

Course Materials

- No book covers all topics
 - Many of the topics are recent research results
 - The following book might be helpful: Polygon Mesh Processing, Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, Bruno Levy, AK Peters, 2010. <u>http://www.pmp-book.org/</u> Several copies available in the CS library.
- We will **link** to some relevant papers in the **course slides**
- Lecture slides available on the website shortly after the class
- Papers from: ACM SIGGRAPH, Symposium on Geometry Processing (SGP), Shape Modeling International (SMI), EUROGRAPHICS, see <u>http://kesen.huang.googlepages.com/</u>

Grading

 Homework assignments 	80%
Basic mesh modeling	10%
Surface reconstruction	14%
Parameterization	14%
Mesh deformation	14%
Finite Element Method	14%
Geometry Optimization	14%

• Exam (last tutorial of semester) - 20%

Policy

- Homework assignments to be done individually.
 You may consult but may not collaborate. More details in the exercise section.
- Assignment are evaluated mostly based on a written report. This report should be GOOD.

Shape representation

Digital geometry processing Shape acquisition 3D printing Finite element method Surface parameterization Discrete differential geometry Editing and modeling Shape optimization Architectural geometry **Digital fabrication** Topology optimization

Shape representation

A little about

Parametric curves/surfaces

Implicits

Shape representation

But mostly about Polygonal meshes

Shape acquisition

Scanning

Shape acquisition

Reconstruction

"Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001

Differential geometry Continuous and discrete Powerful tool to analyze and model shapes

Digital geometry processing Denoising, smoothing, simplification, remeshing, parameterization, compression

Parameterization

Parameterization

Shape creation and editing

Shape creation and editing

Shape creation and editing

February 21, 2018

Animation

http://www.mit.edu/~ibaran/autorig/

February 21, 2018

http://youtu.be/P9fqm8vgdB8

Shape optimization

http://igl.ethz.ch/projects/spin-it/ Spin-It: Optimizing Moment of Inertia for Spinnable Objects", Bächer et al., ACM SIGGRAPH 2014

Shape optimization

Bharaj et al., "Computational design of metallophone contact sounds", Siggraph 2014

Topology optimization

Lu et al., Siggraph 2014 Stava et al., Siggraph 2012Wang et al., Siggraph Asia 2013

Roi Poranne

#

Topology optimization

February 21, 2018

