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Scanning:
results in 

range images

Registration:
bring all range 

images to one 

coordinate 

system

Reconstruction:
Integration of scans into a 

single mesh

Postprocess:
• Topological and

geometric 

filtering

• Remeshing

• Compression

Geometry Acquisition Pipeline
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Problem Statement

𝑀1 ≈ 𝑇 𝑀2

𝑇: Translation + Rotation

𝑀1 𝑀2
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Problem Statement

𝑀1 𝑀2

Given 𝑀1, … ,𝑀𝑛 find 𝑇2, … , 𝑇𝑛 such that

𝑀1 ≈ 𝑇2 𝑀2 ≈⋯ ≈ 𝑇𝑛 𝑀𝑛
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Correspondences

How many points are needed to define a 

unique rigid transformation?

The first problem is finding pairs!
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ICP: Iterative Closest Point

Intuition:

Correct correspondences ⇒ problem solved!

Idea: 

(1) Find correspondences

(2) Use them to find a transformation
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ICP: Iterative Closest Point

Intuition:

Correct correspondences ⇒ problem solved!

Idea: 

Iterate

(1) Find correspondences

(2) Use them to find a transformation
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ICP: Iterative Closest Point

This algorithm converges to the correct solution

if the starting scans are “close enough”
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Basic Algorithm

Select (e.g., 1000) random points

Match each to closest point on other scan

Reject pairs with distance too big

Minimize

closed form solution in: 

http://dl.acm.org/citation.cfm?id=250160
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Scanning:
results in 

range images

Registration:
bring all range 

images to one 

coordinate 

system

Reconstruction:
Integration of scans into a 

single mesh

Postprocess:
• Topological and

geometric 

filtering

• Remeshing

• Compression

Geometry Acquisition Pipeline
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4G sample points → 8M triangles1G sample points → 8M triangles

Digital Michelangelo Project
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Input to Reconstruction Process

Point cloud Point cloud
Oriented
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How to Connect the Dots?

Explicit reconstruction: 

Connect sample points by triangles

# 16

“Zippered Polygon Meshes from Range Images”, Greg Turk and Marc Levoy, ACM SIGGRAPH 1994
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How to Connect the Dots?

Explicit reconstruction: 

Connect sample points by triangles

# 17

“Zippered Polygon Meshes from Range Images”, Greg Turk and Marc Levoy, ACM SIGGRAPH 1994
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How to Connect the Dots?

Explicit reconstruction: 

Connect sample points by triangles

# 18

Problems:

▪ Bad for noisy or 

misaligned data

▪ Can lead to holes or 

non-manifold 

situations
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How to Connect the Dots?

Implicit reconstruction: 

estimate a signed distance function (SDF)

extract zero set
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How to Connect the Dots?

Implicit reconstruction: 

estimate a signed distance function (SDF)

extract zero set
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Implicit Curves and Surfaces
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Implicit Curves and Surfaces

● Zero set of a scalar function

▪ Curve in 2D:

▪ Surface in 3D: 

● Space partitioning

3/1/2018 Roi Poranne 22

Outside

Curve/Surface

Inside



Implicit Curves and Surfaces

● Zero set of a scalar function

▪ Curve in 2D:

▪ Surface in 3D: 

● Zero level set of 

signed distance function
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Implicit Curves and Surfaces

● Implicit circle and sphere
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How to Connect the Dots?

Implicit reconstruction: 

estimate a signed distance function (SDF)

extract zero set
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How to Connect the Dots?

Implicit reconstruction: 

estimate a signed distance function (SDF)

extract zero set
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How to Connect the Dots?

Implicit reconstruction: 

estimate a signed distance function (SDF)

extract zero set

# 27

< 0 > 00

Advantages:

▪ Approximation of input 

points

▪ Watertight manifold 

results by construction
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Implicit vs. Explicit

# 28

Input ImplicitExplicit
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SDF from Points and Normals

Compute signed distance to the tangent 

plane of the closest point

# 29

- +

“Surface reconstruction from unorganized points”, Hoppe et al., ACM SIGGRAPH 1992

http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

Normals will help to 

distinguish between

inside and outside
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SDF from Points and Normals

Compute signed distance to the tangent 

plane of the closest point
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SDF from Points and Normals

Compute signed distance to the tangent 

plane of the closest point

# 31

Problem?

The function will be discontinuous

Note: The Hoppe92 paper computes the tangent planes slightly 

differently (by PCA on k-nearest-neighbors of each data point, see next 

class), but the consequences are still the same. 
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Approximate SDF

Pose problem as scattered data interpolation

Find a smooth 𝐹

𝐹 𝐩𝑖 = 0

Avoid trivial solution 𝐹 𝐱 = 0

0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

# 32

Add more constraints
𝐹 𝐱
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Approximate SDF

Pose problem as scattered data interpolation

Fina a smooth 𝐹

𝐹 𝐩𝑖 = 0

Avoid trivial solution 𝐹 𝐱 = 0

0

0

0 0

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

# 33

Add more constraints
𝐹 𝐱
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Radial Basis Function Interpolation

RBF

Weighted sum of shifted kernels

Scalar weights

Unknowns

Kernel /basis function

# 34

Centers
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Radial Basis Function Interpolation

Interpolate the constraints:

0

0

0 0

# 35

Set centers at:

Find 𝑤𝑚

where
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Radial Basis Function Interpolation

Solve linear system to get the weights:
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RBF Kernels

Triharmonic:

Globally supported

Leads to dense symmetric linear system

C2 smoothness

Works well for highly irregular sampling
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RBF Kernels

Thin plate spline (polyharmonic)

Multiquadratic

Gaussian

B-Spline (compact support)
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Distance

to plane

Local RBF Global RBF

Triharmonic

Comparison of the various SDFs so far
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RBF Reconstruction Examples

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001
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Off-Surface Points

Insufficient number/

badly placed off-surface points

Properly chosen off-surface points

“Reconstruction and representation of 3D objects with radial basis functions”, Carr et al., ACM SIGGRAPH 2001

# 41

Must pick the correct 𝜀
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RBF – Discussion

Pros: Global definition

● Single function

● Globally optimal

Cons: Global definition

● Global optimization – slow

● Why is global better?
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Moving Least Squares (MLS)

Do purely local approximation of the SDF

Weights change depending on where we are evaluating

0

0

0 0

“Interpolating and Approximating Implicit Surfaces from Polygon Soup”, Shen et al., 

ACM SIGGRAPH 2004

http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html # 433/1/2018 Roi Poranne
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Moving Least Squares (MLS)

Do purely local approximation of the SDF

Weights change depending on where we are evaluating

0

0

0 0

“Interpolating and Approximating Implicit Surfaces from Polygon Soup”, Shen et al., 
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Moving Least Squares (MLS)

Do purely local approximation of the SDF

Weights change depending on where we are evaluating

0

0

0 0

“Interpolating and Approximating Implicit Surfaces from Polygon Soup”, Shen et al., 

ACM SIGGRAPH 2004

http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html # 463/1/2018 Roi Poranne
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Moving Least Squares (MLS)

Do purely local approximation of the SDF

Weights change depending on where we are evaluating

0

0

0 0

“Interpolating and Approximating Implicit Surfaces from Polygon Soup”, Shen et al., 

ACM SIGGRAPH 2004

http://graphics.berkeley.edu/papers/Shen-IAI-2004-08/index.html # 47

The challenge: Make it smooth
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Least-Squares Approximation

Polynomial least-squares approximation

Find a that minimizes sum of squared differences

# 483/1/2018 Roi Poranne



MLS – 1D Example

● Global approximation in 

# 493/1/2018 Roi Poranne



Least-Squares Approximation

Polynomial least-squares approximation

# 50

Find a that minimizes sum of squared differencesweighted
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MLS – 1D Example

● MLS approximation using functions in 

# 513/1/2018 Roi Poranne



Weight Functions

Gaussian
h is a smoothing parameter

Wendland function
Defined in [0, h] and

Singular function

For small ε, weights are large near r=0 (interpolation)

# 523/1/2018 Roi Poranne



Dependence on Weight Function

Global least squares 

with linear basis

MLS with (nearly) 

singular weight function

MLS with approximating

weight function
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Dependence on Weight Function

The MLS function F is continuously 

differentiable if and only if the weight 

function θ is continuously differentiable

In general, F is as smooth as θ
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Example: Reconstruction
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MLS SDF – Possible Improvement

● Point constraints vs. true normal constraints

● Details: see [Shen et al. SIGGRAPH 2004] and the bonus 

assignment in Ex2
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Extracting the Surface

How to find a mesh of the level set?

Im
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F(x) > 0 

outside

F(x) = 0 

surface

F(x) < 0 

inside
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Sample the SDF
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Sample the SDF
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+

- -

-
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Sample the SDF
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Marching Squares

16 different configurations in 2D

4 classes (rotation, reflection, negation)

… …
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Tessellation in 2D

4 classes (rotation, reflection, negation)

?
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Tessellation in 2D

Case 4 is ambiguious:

Always pick consistently
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3D: Marching Cubes

Layer k+1

Layer k
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Layer k+1

Layer k

Marching Cubes

● Marching Cubes (Lorensen and Cline 1987) 

1. Load 4 layers of the grid 

into memory

2. Create a cube whose 

vertices lie on the two 

middle layers

3. Classify the vertices of 

the cube according to the

implicit function (inside, 

outside or on the surface)
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Marching Cubes

4. Compute case index. We have 28= 256 cases (0/1 for 

each of the eight vertices) – can store as 8 bit (1 byte) 

index.

e1

e4

e9 e10

e5

e6

v1

v6

0 0 0 0 0 01 1index  = = 33

e1

e4

e9 e10

e5

e6

v2

v6

e2

e3

e7

e8

e11
e12

v3
v4

v1

v5

v7v8

v1index  = v2 v3 v4 v5 v6 v7 v8
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Marching Cubes

● Unique cases (by rotation, reflection and negation)
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Tessellation
3D – Marching Cubes

5. Using the case index, retrieve the connectivity in the 

look-up table

● Example: the entry for index 33 in the look-up table 

indicates that  the cut edges are e1; e4; e5; e6; e9 and 

e10 ; the output triangles are (e1; e9; e4) and (e5; e10; 

e6).

e1

e4

e9 e10

e5

e6

v1

v6

0 0 0 0 0 01 1index  = = 33
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Marching Cubes

6. Compute the position of the cut vertices by linear 

interpolation:

7. Move to the next cube

# 713/1/2018 Roi Poranne



Marching Cubes – Problems 

● Have to make consistent choices for 

neighboring cubes – otherwise get holes

3 3–
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Marching Cubes – Problems 

● Resolving ambiguities

Ambiguity No Ambiguity
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Images from: “Dual Marching Cubes: Primal Contouring of Dual Grids”
by Schaeffer et al.

Marching Cubes – Problems

● Grid not adaptive

● Many polygons required to represent 

small features
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Marching Cubes – Problems

# 753/1/2018 Roi Poranne

lite.exe skull.wrl


Marching Cubes – Problems 

Problems with short triangle edges

When the surface intersects the cube close to a corner, the 

resulting tiny triangle doesn‘t contribute much area to the mesh

When the intersection is close to an edge of the cube, we get 

skinny triangles (bad aspect ratio)

Triangles with short edges waste resources but don‘t 

contribute to the surface mesh representation
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Grid Snapping

Solution: threshold the distances between the created 

vertices and the cube corners

When the distance is smaller than dsnap we snap the vertex 

to the cube corner

If more than one vertex of a triangle is snapped to the 

same point, we discard that triangle altogether
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Grid Snapping

With grid snapping one can obtain significant reduction of 

space consumption

dsnap 0 0,1 0,2 0,3 0,4 0,46 0,495

Vertices 1446 1398 1254 1182 1074 830 830

Reduction (%) 0 3,3 13,3 18,3 25,7 42,6 42,6
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Global RBF vs. Local MLS

RBF: 

sees the whole data set, can make for very 

smooth surfaces

global (dense) system to solve – expensive 

MLS:

sees only a small part of the dataset, can get 

confused by noise

local linear solves – cheap
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Poisson Surface Reconstruction

Very popular modern method, code available: M. 

Kazhdan, M. Bolitho and H. Hoppe, Symposium on 

Geometry Processing 2006
http://www.cs.jhu.edu/~misha/Code/PoissonRecon/

Global fitting of an indicator function using PDE

Robust to noise, sparse, computationally tractable

You will try out the code in Ex2 and compare with 

MLS results

# 803/1/2018 Roi Poranne
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Poisson Surface Reconstruction

Oriented points Indicator function

0

1

0

0
0

0

1

1

# 813/1/2018 Roi Poranne



Poisson Surface Reconstruction

Oriented points Indicator function

0

1

0

0
0

0

1

1

We don’t know the indicator function 
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Poisson Surface Reconstruction

Oriented points Indicator gradient

0 0

0

0

0

0

Indicator function

0

1

0

0
0

0

1

1

But we can estimate its gradient! ☺
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Poisson Surface Reconstruction

Oriented points Indicator gradient

0 0

0

0

0

0

Indicator function

0

1

0

0
0

0

1

1

Reconstruct χ by solving 

the Poisson equation
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Michelangelo’s David

• 215 million data points from 

1000 scans

• 22 million triangle 

reconstruction

• Compute time: 2.1 hours

(this was in year 2006)

• Peak Memory: 6600MB
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David – Chisel marks
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David – Drill Marks
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David – Eye
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Normal Estimation

Assign a normal vector n at 

each point cloud 

point x

Estimate the direction by 

fitting a local plane
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Normal Estimation
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Assign a normal vector n at 

each point cloud 

point x

Estimate the direction by 

fitting a local plane
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Normal Estimation

Roi Poranne 91

Assign a normal vector n at 

each point cloud 

point x

Estimate the direction by 

fitting a local plane

3/1/2018



Normal Estimation
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Normal Estimation
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Normal Estimation
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Normal Estimation
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Normal Estimation
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Assign a normal vector n at 
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Normal Estimation
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Normal Estimation
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Normal Estimation
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Normal Estimation
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Normal Estimation
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Assign a normal vector n at 

each point cloud 

point x

Estimate the direction by 

fitting a local plane
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Normal Estimation

Roi Poranne 102

Assign a normal vector n at 

each point cloud 

point x

Estimate the direction by 

fitting a local plane

Find consistent global 

orientation by propagation 

(spanning tree)
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Normal Estimation

Roi Poranne 103

Assign a normal vector n at 

each point cloud 

point x

Estimate the direction by 

fitting a local plane

Find consistent global 

orientation by propagation 

(spanning tree)
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Local Plane Fitting

● For each point x in the 

cloud, pick k nearest 

neighbors or all points in 

r-ball:

● Find a plane Π that 

minimizes the sum of 

square distances:

Roi Poranne 1043/1/2018



Local Plane Fitting

● For each point x in the 

cloud, pick k nearest 

neighbors or all points in 

r-ball:

● Find a plane Π that 

minimizes the sum of 

square distances:
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Linear Least Squares?

Roi Poranne 106

x

y

Find a line 𝑦 = 𝑎𝑥 + 𝑏 s.t.
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Linear Least Squares?

Find a line 𝑦 = 𝑎𝑥 + 𝑏 s.t.

Roi Poranne 107

x

y

But we would like true orthogonal distances!
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x

y

x

y
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Principle Component Analysis (PCA)

PCA finds an orthogonal basis that best represents 

a given data set

PCA finds the best approximating 

line/plane/orientation… (in terms of distances2)

Roi Poranne 109

x y

z

x

y

x

y
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Notations

Input points:

Looking for a (hyper) plane 
passing through c with 
normal n s.t.

c and n are variables

Roi Poranne 1103/1/2018



Notations

Input points:

Centroid:

Vectors from the centroid:

Roi Poranne 111

m
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Centroid: 0-dim Approximation

It can be shown that:

m will be the origin of 
the (hyper)-plane

Our problem becomes:

Roi Poranne 112

m
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Hyperplane Normal

Minimize!
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Hyperplane Normal

Minimize!
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Hyperplane Normal

Constrained minimization – Lagrange multipliers
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Hyperplane Normal

Constrained minimization – Lagrange multipliers

Roi Poranne 1163/1/2018



Hyperplane Normal

Constrained minimization – Lagrange multipliers

Roi Poranne 117

What can be said about n ??
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Hyperplane Normal

Constrained minimization – Lagrange multipliers

Roi Poranne 118

n is the eigenvector of S

with the smallest 

eigenvalue
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Summary – Best Fitting Plane Recipe

● Input:

● Compute centroid = plane origin

● Compute scatter matrix

● The plane normal n is the eigenvector of S with 

the smallest eigenvalue 
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What does Scatter Matrix do?

● Let’s look at a line l through the center of mass m with direction 

vector v, and project our points xi onto it. The variance of the 

projected points xi is:  

Roi Poranne 120

Original set Small variance Large variance

l l l l

v
m

xi

xi
l

yi

3/1/2018



What does Scatter Matrix do?

Roi Poranne 121

Original set Small variance Large variance

l l l l

v
m

xi

xi
l

yi

● The scatter matrix measures the variance of 

our data points along the direction v
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Principal Components

Eigenvectors of S that correspond to big

eigenvalues are the directions in which the data 

has strong components (= large variance).

If the eigenvalues are more or less the same, 

there is no preferable direction. 

Roi Poranne 122

The scatter matrix measures the variance of 

the data points along the direction v
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Principal Components

● There’s no preferable 

direction

● S looks like this:

● Any vector is an 

eigenvector 

Roi Poranne 123

● There’s a clear preferable 

direction

● S looks like this:

▪  is close to zero, much 

smaller than 
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Normal Orientation

PCA may return arbitrarily 

oriented eigenvectors

Need to orient consistently

Neighboring points should 

have similar normals
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Build graph connecting neighboring points
Edge (i,j) exists if xi ∈ kNN(xj) or xj∈ kNN(xi)

Propagate normal orientation through graph
For neighbors xi, xj : Flip nj if ni

Tnj < 0

▪ Fails at sharp edges/corners

● Propagate along “safe” paths (parallel 
normals)
▪ Minimum spanning tree with angle-based edge 

weights wij = 1- | ni
Tnj |

Normal Orientation

Roi Poranne 125

“Surface reconstruction from unorganized points”, Hoppe et al., SIGGRAPH 1992

http://research.microsoft.com/en-us/um/people/hoppe/recon.pdf
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Normal Orientation

Build graph connecting neighboring points
Edge (i,j) exists if xi ∈ kNN(xj) or xj∈ kNN(xi)

Propagate normal orientation through graph
For neighbors xi, xj : Flip nj if ni

Tnj < 0

Fails at sharp edges/corners

Propagate along “safe” paths (parallel tangent 
planes)

Minimum spanning tree with angle-based edge 
weights
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