252-0538-00L, Spring 2017

# Shape Modeling and Geometry Processing

Surface Reconstruction



3/1/2018

# **Geometry Acquisition Pipeline**



Roi Poranne



#### **Problem Statement**





#### **Problem Statement**





#### **Problem Statement**



#### Given $M_1, ..., M_n$ find $T_2, ..., T_n$ such that $M_1 \approx T_2(M_2) \approx \cdots \approx T_n(M_n)$



#### Correspondences

How many points are needed to define a unique rigid transformation? The first problem is finding pairs!

 $\mathbf{p}_1 \rightarrow \mathbf{q}_1$  $\mathbf{p}_2 \rightarrow \mathbf{q}_2$  $\mathbf{p}_3 \rightarrow \mathbf{q}_3$  $R\mathbf{p}_i + t \approx \mathbf{q}_i$ 



#### ICP: Iterative Closest Point Intuition: Correct correspondences ⇒ problem solved!

Idea:

(1) Find correspondences(2) Use them to find a transformation





## ICP: Iterative Closest Point Intuition: Correct correspondences ⇒ problem solved!

Idea:

(1) Find correspondences(2) Use them to find a transformation





#### ICP: Iterative Closest Point Intuition: Correct correspondences ⇒ problem solved!

Idea:

(1) Find correspondences(2) Use them to find a transformation





## **ICP: Iterative Closest Point**

Intuition:

Correct correspondences  $\Rightarrow$  problem solved!

Idea:

Iterate

(1) Find correspondences

(2) Use them to find a transformation





#### **ICP:** Iterative Closest Point



#### This algorithm converges to the correct solution if the starting scans are "close enough"

Roi Poranne





# **Basic Algorithm**

Select (e.g., 1000) random points Match each to closest point on other scan Reject pairs with distance too big Minimize

$$E := \sum_{i} (R\mathbf{p}_i + t - \mathbf{q}_i)^2$$

closed form solution in: http://dl.acm.org/citation.cfm?id=250160

Roi Poranne

# **Geometry Acquisition Pipeline**



# 13

## Digital Michelangelo Project



1G sample points  $\rightarrow$  8M triangles

4G sample points  $\rightarrow$  8M triangles





#### **Explicit reconstruction:** Connect sample points by triangles

![](_page_15_Figure_2.jpeg)

"Zippered Polygon Meshes from Range Images", Greg Turk and Marc Levoy, ACM SIGGRAPH 1994

Roi Poranne

![](_page_15_Picture_6.jpeg)

**ETH** zürich

#### **Explicit reconstruction:** Connect sample points by triangles

![](_page_16_Figure_2.jpeg)

"Zippered Polygon Meshes from Range Images", Greg Turk and Marc Levoy, ACM SIGGRAPH 1994

Roi Poranne

![](_page_16_Picture_6.jpeg)

**ETH** zürich

#### **Explicit reconstruction:** Connect sample points by triangles

![](_page_17_Figure_2.jpeg)

Problems:

- Bad for noisy or misaligned data
- Can lead to holes or non-manifold situations

![](_page_17_Picture_6.jpeg)

#### Implicit reconstruction:

# estimate a signed distance function (SDF) extract zero set

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_7.jpeg)

#### Implicit reconstruction:

# estimate a signed distance function (SDF) extract zero set

![](_page_19_Figure_3.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_20_Picture_1.jpeg)

Roi Poranne

![](_page_20_Picture_4.jpeg)

**ETH** zürich

- Zero set of a scalar function  $\ f: \mathbb{R}^m 
  ightarrow \mathbb{R}$ 
  - Curve in 2D:  $S = \{x \in \mathbb{R}^2 | f(x) = 0\}$
  - Surface in 3D:  $S = \{x \in \mathbb{R}^3 | f(x) = 0\}$
- Space partitioning

$$\{x \in \mathbb{R}^m | f(x) > 0\} \text{ Outside}$$
$$\{x \in \mathbb{R}^m | f(x) = 0\} \text{ Curve/Surface}$$
$$\{x \in \mathbb{R}^m | f(x) < 0\} \text{ Inside}$$

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)

- Zero set of a scalar function  $\ f: \mathbb{R}^m \to \mathbb{R}$ 
  - Curve in 2D:  $S = \{x \in \mathbb{R}^2 | f(x) = 0\}$
  - Surface in 3D:  $S = \{x \in \mathbb{R}^3 | f(x) = 0\}$
- Zero level set of signed distance function

![](_page_22_Picture_5.jpeg)

23

![](_page_22_Picture_6.jpeg)

#### Implicit circle and sphere

![](_page_23_Figure_2.jpeg)

 $f(x,y) = x^{2} + y^{2} - r^{2} \qquad f(x,y,z) = x^{2} + y^{2} + z^{2} - r^{2}$ 

![](_page_23_Picture_4.jpeg)

24

#### Implicit reconstruction:

# estimate a signed distance function (SDF) extract zero set

![](_page_24_Figure_3.jpeg)

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_7.jpeg)

#### Implicit reconstruction:

# estimate a signed distance function (SDF) extract zero set

![](_page_25_Picture_3.jpeg)

![](_page_25_Picture_7.jpeg)

#### Implicit reconstruction: estimate a signed distance function (SDF)

extract zero set

![](_page_26_Picture_3.jpeg)

Advantages:

- Approximation of input points
- Watertight manifold results by construction

# 27

![](_page_26_Picture_7.jpeg)

#### Implicit vs. Explicit

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_5.jpeg)

## SDF from Points and Normals

Compute signed distance to the tangent plane of the closest point

Normals will help to distinguish between inside and outside

![](_page_28_Figure_3.jpeg)

"Surface reconstruction from unorganized points", Hoppe et al., ACM SIGGRAPH 1992 http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

![](_page_28_Picture_8.jpeg)

### SDF from Points and Normals

Compute signed distance to the tangent plane of the closest point

![](_page_29_Figure_2.jpeg)

# 30

![](_page_29_Picture_3.jpeg)

## SDF from Points and Normals

Compute signed distance to the tangent plane of the closest point

![](_page_30_Figure_2.jpeg)

Note: The Hoppe92 paper computes the tangent planes slightly differently (by PCA on k-nearest-neighbors of each data point, see next class), but the consequences are still the same. Roi Poranne

![](_page_30_Picture_4.jpeg)

Hzürich

### Approximate SDF

#### Pose problem as scattered data interpolation Find a smooth F $F(\mathbf{p}_i) = 0$ Avoid trivial solution $F(\mathbf{x}) = 0$ () Add more constraints $F(\mathbf{x})$

"Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001

Roi Poranne

zürich

### Approximate SDF

#### Pose problem as scattered data interpolation Fina a smooth F $F(\mathbf{p}_i) = 0$ Avoid trivial solution $F(\mathbf{x}) = \mathbf{0}\varepsilon$ $\varepsilon_{\mathbf{0}}$ Add more constraints $F(\mathbf{x})$ $F(\mathbf{p}_i + \varepsilon \mathbf{n}_i) = \varepsilon$ $F(\mathbf{p}_i - \varepsilon \mathbf{n}_i) = -\varepsilon$

"Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001 zürich

# **Radial Basis Function Interpolation**

#### RBF

#### Weighted sum of shifted kernels

![](_page_33_Figure_3.jpeg)

![](_page_33_Picture_4.jpeg)

### **Radial Basis Function Interpolation**

Interpolate the constraints:

 $F(\mathbf{p}_i) = 0$   $F(\mathbf{p}_i + \varepsilon \mathbf{n}_i) = \varepsilon$  $F(\mathbf{p}_i - \varepsilon \mathbf{n}_i) = -\varepsilon$ 

![](_page_34_Figure_3.jpeg)

Set centers at:  

$$\{\mathbf{c}_{3i}, \mathbf{c}_{3i+1}, \mathbf{c}_{3i+2}\} = \{\mathbf{p}_i, \ \mathbf{p}_i + \varepsilon \mathbf{n}_i, \ \mathbf{p}_i - \varepsilon \mathbf{n}_i\}$$
Find  $w_m \sum_{m=0}^{N-1} w_m \varphi(\|\mathbf{c}_j - \mathbf{c}_m\|) = d_j \quad \forall j = 0, \dots, N - d_j = 0$ 
where  

$$d_j = \begin{cases} 0 & j = 3i \\ \varepsilon & j = 3i + 1 \\ -\varepsilon & j = 3i + 2 \\ \text{Roi Poranne} \end{cases}$$
#35

#### **Radial Basis Function Interpolation**

Solve linear system to get the weights:

$$\begin{pmatrix} \varphi(\|\mathbf{c}_0 - \mathbf{c}_0\|) & \dots & \varphi(\|\mathbf{c}_0 - \mathbf{c}_{N-1}\|) \\ \vdots & \ddots & \vdots \\ \varphi(\|\mathbf{c}_{N-1} - \mathbf{c}_0\|) & \dots & \varphi(\|\mathbf{c}_{N-1} - \mathbf{c}_{N-1}\|) \end{pmatrix} \begin{pmatrix} w_0 \\ \vdots \\ w_{N-1} \end{pmatrix} = \begin{pmatrix} d_0 \\ \vdots \\ d_{N-1} \end{pmatrix}$$

![](_page_35_Picture_3.jpeg)

# 36
#### **RBF Kernels**

#### Triharmonic: $\varphi(r) = r^3$

Globally supported

- Leads to dense symmetric linear system
- C<sup>2</sup> smoothness
- Works well for highly irregular sampling

## **RBF Kernels**

Thin plate spline (polyharmonic)

$$\varphi(r) = r^k \log(r), \ k = 2, 4, 6 \dots 
\varphi(r) = r^k, \ k = 1, 3, 5 \dots$$

**Multiquadratic** 

$$\varphi(r) = \sqrt{r^2 + \beta^2}$$

Gaussian

$$\varphi(r) = e^{-\beta r^2}$$



#### B-Spline (compact support) $\varphi(r) = \text{piecewise-polynomial}(r)$

#### Comparison of the various SDFs so far







Distance to plane Local RBF

Global RBF Triharmonic



3/1/2018

#### **RBF Reconstruction Examples**



"Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001



# Off-Surface Points Must pick the correct $\varepsilon$





#### Properly chosen off-surface points

Insufficient number/ badly placed off-surface points

"Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001

Roi Poranne





#### **RBF** - **Discussion**

- Pros: Global definition
- Single function
- Globally optimal

#### Cons: Global definition

- Global optimization slow
- Why is global better?



Do purely **local** approximation of the SDF Weights change depending on where we are evaluating



"Interpolating and Approximating Implicit Surfaces from Polygon Soup", Shen et al., ACM SIGGRAPH 2004 http://graphics.berkeley.edu/pap@rs/Sb@n8AI-2004-08/index.htmloj Poranne



Do purely **local** approximation of the SDF Weights change depending on where we are evaluating



"Interpolating and Approximating Implicit Surfaces from Polygon Soup", Shen et al., ACM SIGGRAPH 2004 http://graphics.berkeley.edu/pap@rst/Sb@n8AI-2004-08/index.htmloj Poranne



Do purely **local** approximation of the SDF Weights change depending on where we are evaluating



"Interpolating and Approximating Implicit Surfaces from Polygon Soup", Shen et al., ACM SIGGRAPH 2004 http://graphics.berkeley.edu/pap@rs/Sb@n8AI-2004-08/index.htmloj Poranne



Do purely **local** approximation of the SDF Weights change depending on where we are evaluating



"Interpolating and Approximating Implicit Surfaces from Polygon Soup", Shen et al., ACM SIGGRAPH 2004 http://graphics.berkeley.edu/pap@rs/Sb@n8AI-2004-08/index.htmloj Poranne



Do purely **local** approximation of the SDF Weights change depending on where we are evaluating



"Interpolating and Approximating Implicit Surfaces from Polygon Soup", Shen et al., ACM SIGGRAPH 2004 http://graphics.berkeley.edu/pap@rst/Shen8AI-2004-08/index.htmloj Poranne



#### Least-Squares Approximation

#### Polynomial least-squares approximation

 $f \in \Pi_k^3 : f(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 x y + \ldots + a_* z^k$  $f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{a}$  $\mathbf{a} = (a_1, a_2, \ldots, a_*)^T, \ \mathbf{b}(\mathbf{x})^T = (1, x, y, z, x^2, x y, \ldots, z^k)$ 

Find **a** that minimizes sum of squared differences

$$\underset{\mathbf{a}}{\operatorname{argmin}} \sum_{m=0}^{N-1} \left( \mathbf{b}(\mathbf{c}_m)^T \mathbf{a} - d_m \right)^2$$



#### MLS - 1D Example

- Global approximation in  $\Pi^1_2$ 



# Least-Squares Approximation

#### Polynomial least-squares approximation

 $f \in \Pi_k^3 : f(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 x y + \ldots + a_* z^k$  $f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{a}$  $\mathbf{a} = (a_1, a_2, \ldots, a_*)^T, \ \mathbf{b}(\mathbf{x})^T = (1, x, y, z, x^2, x y, \ldots, z^k)$ 

Find a that minimizes weighted sum of squared differences

$$\mathbf{a}_{\mathbf{x}} = \underset{\mathbf{a}}{\operatorname{argmin}} \sum_{m=0}^{N-1} \frac{\theta(\|\mathbf{x} - \mathbf{c}_{m}\|)}{(\mathbf{b}(\mathbf{c}_{m})^{T}\mathbf{a} - d_{m})^{2}}$$



#### MLS - 1D Example

#### - MLS approximation using functions in $\Pi^1_2$



$$F(x) = f_x(x), \quad f_x = \operatorname*{argmin}_{f \in \Pi_2^1} \sum_{m=0}^{N-1} \theta(\|c_m - x\|) \left(f(c_m) - d_m\right)^2$$



## Weight Functions





Wendland function  $\theta(r) = (1 - r/h)^4 (4r/h + 1)$ Defined in [0, h] and

$$\theta(0) = 1, \ \theta(h) = 0, \ \theta'(h) = 0, \ \theta''(h) = 0$$

Singular function

$$\theta(r) = \frac{1}{r^2 + \varepsilon^2}$$

For small  $\varepsilon$ , weights are large near r=0 (interpolation)

## **Dependence on Weight Function**





#### **Dependence on Weight Function**

The MLS function F is continuously differentiable if and only if the weight function  $\theta$  is continuously differentiable

In general, F is as smooth as  $\theta$ 

$$F(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x}), \quad f_{\mathbf{x}} = \operatorname*{argmin}_{f \in \Pi_k^d} \sum_{m=0}^{N-1} \theta(\|\mathbf{c}_m - \mathbf{x}\|) \left(f(\mathbf{c}_m) - d_m\right)^2$$



#### Example: Reconstruction







#### MLS SDF - Possible Improvement

• Point constraints vs. true normal constraints



• Details: see [Shen et al. SIGGRAPH 2004] and the bonus assignment in Ex2





#### Extracting the Surface

#### How to find a mesh of the level set?





#### Sample the SDF



3/1/2018

Roi Poranne



**ETH** zürich

#### Sample the SDF





# 59

3/1/2018





#### Sample the SDF



# 62

## Marching Squares

16 different configurations in 2D 4 classes (rotation, reflection, negation)



#### Tessellation in 2D

4 classes (rotation, reflection, negation)



# 64

#### Tessellation in 2D

Case 4 is ambiguious:



#### Always pick consistently











- Marching Cubes (Lorensen and Cline 1987)
  - 1. Load 4 layers of the grid into memory
  - 2. Create a cube whose vertices lie on the two middle layers
  - 3. Classify the vertices of L the cube according to the implicit function (inside, outside or on the surface)





Compute case index. We have 2<sup>8</sup>= 256 cases (0/1 for each of the eight vertices) - can store as 8 bit (1 byte) index.







• Unique cases (by rotation, reflection and negation)





# 69

## Tessellation

3D - Marching Cubes

- 5. Using the case index, retrieve the connectivity in the look-up table
- Example: the entry for index 33 in the look-up table indicates that the cut edges are e<sub>1</sub>; e<sub>4</sub>; e<sub>5</sub>; e<sub>6</sub>; e<sub>9</sub> and e<sub>10</sub>; the output triangles are (e<sub>1</sub>; e<sub>9</sub>; e<sub>4</sub>) and (e<sub>5</sub>; e<sub>10</sub>; e<sub>6</sub>).





6. Compute the position of the cut vertices by linear interpolation:

$$\mathbf{v}_s = t\mathbf{v}_a + (1-t)\mathbf{v}_b$$
$$t = \frac{F(\mathbf{v}_b)}{F(\mathbf{v}_b) - F(\mathbf{v}_a)}$$

7. Move to the next cube

3/1/2018



#### Marching Cubes - Problems

 Have to make consistent choices for neighboring cubes - otherwise get holes




#### • Resolving ambiguities



Ambiguity

No Ambiguity



3/1/2018

- Grid not adaptive
- Many polygons required to represent small features



Images from: "Dual Marching Cubes: Primal Contouring of Dual Grids" by Schaeffer et al.









#### Problems with short triangle edges

When the surface intersects the cube close to a corner, the resulting tiny triangle doesn't contribute much area to the mesh When the intersection is close to an edge of the cube, we get skinny triangles (bad aspect ratio)

Triangles with short edges waste resources but don't contribute to the surface mesh representation







3/1/2018

# Grid Snapping

Solution: threshold the distances between the created vertices and the cube corners

When the distance is smaller than  $d_{snap}$  we snap the vertex to the cube corner

If more than one vertex of a triangle is snapped to the same point, we discard that triangle altogether



77

# Grid Snapping

With grid snapping one can obtain significant reduction of space consumption

| d <sub>snap</sub> | 0    | 0,1  | 0,2  | 0,3  | 0,4  | 0,46 | 0,495 |
|-------------------|------|------|------|------|------|------|-------|
| Vertices          | 1446 | 1398 | 1254 | 1182 | 1074 | 830  | 830   |
| Reduction (%)     | 0    | 3,3  | 13,3 | 18,3 | 25,7 | 42,6 | 42,6  |



#### Global RBF vs. Local MLS

#### **RBF:**

sees the whole data set, can make for very smooth surfaces

global (dense) system to solve - expensive

MLS:

sees only a small part of the dataset, can get confused by noise local linear solves - cheap



Very popular modern method, code available: M. Kazhdan, M. Bolitho and H. Hoppe, Symposium on Geometry Processing 2006 http://www.cs.jhu.edu/~misha/Code/PoissonRecon/

Global fitting of an *indicator function* using PDE Robust to noise, sparse, computationally tractable

You will try out the code in Ex2 and compare with MLS results



# 80





Oriented points

Indicator function

 $\chi_{\mathcal{M}}$ 



3/1/2018

0





Oriented points

Indicator function

 $\chi_{\mathcal{M}}$ 

We don't know the indicator function  $\boldsymbol{\Im}$ 

0







3/1/2018



# Michelangelo's David



- 215 million data points from 1000 scans
- 22 million triangle reconstruction
- Compute time: 2.1 hours (this was in year 2006)
- Peak Memory: 6600MB

# 85

#### David - Chisel marks







#### David - Drill Marks







3/1/2018

#### David - Eye





# 88

Assign a normal vector **n** at each point cloud point **x** 





Assign a normal vector **n** at each point cloud point **x** 





Assign a normal vector **n** at each point cloud point **x** 

Estimate the direction by fitting a local plane



91



Assign a normal vector **n** at each point cloud point **x** 





Assign a normal vector **n** at each point cloud point **x** 





Assign a normal vector **n** at each point cloud point **x** 





Assign a normal vector **n** at each point cloud point **x** 





Assign a normal vector **n** at each point cloud point **x** 





Assign a normal vector **n** at each point cloud point **x** 





Assign a normal vector **n** at each point cloud point **x** 





Assign a normal vector **n** at each point cloud point **x** 

Estimate the direction by fitting a local plane

3/1/2018



99



Assign a normal vector **n** at each point cloud point **x** 

Estimate the direction by fitting a local plane



100

Assign a normal vector **n** at each point cloud point **x** 

Estimate the direction by fitting a local plane



101

Assign a normal vector **n** at each point cloud point **x** 

Estimate the direction by fitting a local plane

Find consistent global orientation by propagation (spanning tree)





Assign a normal vector **n** at each point cloud point **x** 

Estimate the direction by fitting a local plane

Find consistent global orientation by propagation (spanning tree)



103



# Local Plane Fitting

• For each point x in the cloud, pick k nearest neighbors or all points in r-ball:  $\{\mathbf{x}_i \mid ||\mathbf{x}_i - \mathbf{x}|| < r\}$ 

 $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ 

 Find a plane ∏ that minimizes the sum of square distances:

$$\min \sum_{i=1}^{n} \operatorname{dist}(\mathbf{x}_i, \Pi)^2$$



# Local Plane Fitting

• For each point x in the cloud, pick k nearest neighbors or all points in r-ball:  $\{\mathbf{x}_i \mid ||\mathbf{x}_i - \mathbf{x}|| < r\}$ 

 $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ 

 Find a plane ∏ that minimizes the sum of square distances:

$$\min\sum_{i=1}^{n} \operatorname{dist}(\mathbf{x}_i, \Pi)^2$$





#### Linear Least Squares?







ETH zürich

#### Linear Least Squares?



#### But we would like true orthogonal distances!



#### Principle Component Analysis (PCA)





108

3/1/2018
#### Principle Component Analysis (PCA)

PCA finds an orthogonal basis that best represents a given data set



# PCA finds the best approximating line/plane/orientation... (in terms of $\Sigma_{distances}^2$ )

Roi Poranne



109

Hzürich

#### Notations

Input points:  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$ 

#### Looking for a (hyper) plane passing through c with normal n s.t.

$$\min_{\mathbf{c},\mathbf{n},\|\mathbf{n}\|=1}\sum_{i=1}^{n}\left((\mathbf{x}_{i}-\mathbf{c})^{T}\mathbf{n}\right)^{2}$$

#### $\mathbf{c}$ and $\mathbf{n}$ are variables





#### Notations

Input points:  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$ 



Vectors from the centroid:

$$\mathbf{y}_i = \mathbf{x}_i - \mathbf{m}$$



#### Centroid: 0-dim Approximation

It can be shown that:

$$\mathbf{m} = \underset{\mathbf{c}}{\operatorname{argmin}} \sum_{i=1}^{n} \left( (\mathbf{x}_{i} - \mathbf{c})^{T} \mathbf{n} \right)^{2}$$
$$\mathbf{m} = \underset{\mathbf{c}}{\operatorname{argmin}} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{c}\|^{2}$$

m will be the origin of the (hyper)-plane Our problem becomes:





3/1/2018

#### Minimize!

$$\min_{\mathbf{n}^{T}\mathbf{n}=1} \sum_{i=1}^{n} (\mathbf{y}_{i}^{T}\mathbf{n})^{2} = \min_{\mathbf{n}^{T}\mathbf{n}=1} \sum_{i=1}^{n} \mathbf{n}^{T} \mathbf{y}_{i} \mathbf{y}_{i}^{T}\mathbf{n} =$$
$$\min_{\mathbf{n}^{T}\mathbf{n}=1} \mathbf{n}^{T} \left( \sum_{i=1}^{n} \mathbf{y}_{i} \mathbf{y}_{i}^{T} \right) \mathbf{n} = \min_{\mathbf{n}^{T}\mathbf{n}=1} \mathbf{n}^{T} \left( \mathbf{Y}\mathbf{Y}^{T} \right) \mathbf{n}$$
$$\mathbf{Y} = \begin{pmatrix} | & | & | \\ \mathbf{y}_{1} & \mathbf{y}_{2} & \dots & \mathbf{y}_{n} \\ | & | & | & | \end{pmatrix}$$



113

#### Minimize!

$$\min_{\mathbf{n}^T \mathbf{n}=1} \sum_{i=1}^n (\mathbf{y}_i^T \mathbf{n})^2 = \min_{\mathbf{n}^T \mathbf{n}=1} \sum_{i=1}^n \mathbf{n}^T \mathbf{y}_i \mathbf{y}_i^T \mathbf{n} =$$
$$\min_{\mathbf{n}^T \mathbf{n}=1} \mathbf{n}^T \left( \sum_{i=1}^n \mathbf{y}_i \mathbf{y}_i^T \right) \mathbf{n} = \min_{\mathbf{n}^T \mathbf{n}=1} \mathbf{n}^T \left( \mathbf{Y} \mathbf{Y}^T \right) \mathbf{n}$$
$$\mathbf{Y} = \begin{pmatrix} \begin{vmatrix} & & & \\ \mathbf{y}_1 & \mathbf{y}_2 & \dots & \mathbf{y}_n \\ & & \end{vmatrix}$$
$$\mathbf{f}(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n} \quad (\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$$
$$\min_{\mathbf{f}} f(\mathbf{n}) \quad s.t. \ \mathbf{n}^T \mathbf{n} = 1$$

3/1/2018

Roi Poranne

**ETH** zürich

Constrained minimization - Lagrange multipliers

$$f(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n} \qquad (\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$$
$$\min f(\mathbf{n}) \quad s.t. \ \mathbf{n}^T \mathbf{n} = 1$$

$$\mathcal{L}(\mathbf{n}, \lambda) = f(\mathbf{n}) - \lambda(\mathbf{n}^T \mathbf{n} - 1)$$
$$\nabla \mathcal{L} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{n}} = \frac{\partial}{\partial \mathbf{n}} f(\mathbf{n}) - \lambda \frac{\partial}{\partial \mathbf{n}} (\mathbf{n}^T \mathbf{n} - 1)$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = \mathbf{n}^T \mathbf{n} - 1$$



**ETH** zürich

$$\frac{\partial}{\partial \mathbf{n}} f(\mathbf{n}) - \lambda \frac{\partial}{\partial \mathbf{n}} (\mathbf{n}^T \mathbf{n} - 1) = (\mathbf{S} + \mathbf{S}^T) \mathbf{n} - \lambda (\mathbf{I} + \mathbf{I}^T) \mathbf{n} = 2\mathbf{S}\mathbf{n} - 2\lambda \mathbf{n}$$

Constrained minimization - Lagrange multipliers

$$f(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n} \qquad (\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$$
$$\min f(\mathbf{n}) \quad s.t. \ \mathbf{n}^T \mathbf{n} = 1$$

$$\mathcal{L}(\mathbf{n}, \lambda) = f(\mathbf{n}) - \lambda(\mathbf{n}^T \mathbf{n} - 1)$$
$$\nabla \mathcal{L} = 0$$



$$\frac{\partial \mathcal{L}}{\partial \mathbf{n}} = 0 \iff \mathbf{S}\mathbf{n} = \lambda\mathbf{n}$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 \iff \mathbf{n}^T\mathbf{n} = 1$$



Constrained minimization - Lagrange multipliers

$$f(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n} \qquad (\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$$
$$\min f(\mathbf{n}) \quad s.t. \ \mathbf{n}^T \mathbf{n} = 1$$

$$\mathcal{L}(\mathbf{n}, \lambda) = f(\mathbf{n}) - \lambda(\mathbf{n}^T \mathbf{n} - 1)$$
$$\nabla \mathcal{L} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{n}} = 0 \iff \mathbf{S}\mathbf{n} = \lambda\mathbf{n}$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 \iff \mathbf{n}^T\mathbf{n} = 1$$



#### What can be said about n ??



Constrained minimization - Lagrange multipliers

$$f(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n} \qquad (\mathbf{S} = \mathbf{Y} \mathbf{Y}^T)$$
$$\min f(\mathbf{n}) \quad s.t. \ \mathbf{n}^T \mathbf{n} = 1$$

$$\mathcal{L}(\mathbf{n}, \lambda) = f(\mathbf{n}) - \lambda(\mathbf{n}^T \mathbf{n} - 1)$$
$$\nabla \mathcal{L} = 0$$

3/1/2018

$$\frac{\partial \mathcal{L}}{\partial \mathbf{n}} = 0 \iff \mathbf{S}\mathbf{n} = \lambda\mathbf{n}$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 \iff \mathbf{n}^T\mathbf{n} = 1$$

n is the eigenvector of S with the smallest eigenvalue



118



#### Summary - Best Fitting Plane Recipe

- Input:  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$
- Compute centroid = plane origin  $\mathbf{m} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$
- Compute scatter matrix  $\mathbf{S} = \mathbf{Y}\mathbf{Y}^T$

$$\mathbf{Y} = (\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_n)$$

$$\mathbf{y}_i = \mathbf{x}_i - \mathbf{m}$$

 The plane normal n is the eigenvector of S with the smallest eigenvalue

$$\mathbf{S} = \mathbf{V} egin{pmatrix} \lambda_1 & & \ & \ddots & \ & & \lambda_d \end{pmatrix} \mathbf{V}^T$$





### What does Scatter Matrix do?

Let's look at a line *l* through the center of mass m with direction vector v, and project our points x<sub>i</sub> onto it. The variance of the projected points x'<sub>i</sub> is:





120

### What does Scatter Matrix do?

• The scatter matrix measures the variance of our data points along the direction **v** 



121

### **Principal Components**

The scatter matrix measures the variance of the data points along the direction **v** 

Eigenvectors of S that correspond to big eigenvalues are the directions in which the data has strong components (= large variance). If the eigenvalues are more or less the same,

there is no preferable direction.

$$\mathbf{S} = \mathbf{V} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_d \end{pmatrix} \mathbf{V}^T$$



# **Principal Components**



- There's no preferable direction
- S looks like this:

$$\mathbf{S} = \mathbf{V} \begin{pmatrix} \lambda & \\ & \lambda \end{pmatrix} \mathbf{V}^T$$

 Any vector is an eigenvector



- There's a clear preferable direction
- S looks like this:

$$\mathbf{S} = \mathbf{V} \begin{pmatrix} \lambda & \\ & \mu \end{pmatrix} \mathbf{V}^T$$

μ is close to zero, much smaller than λ



# Normal Orientation

PCA may return arbitrarily oriented eigenvectors Need to orient consistently Neighboring points should have similar normals





### Normal Orientation

Build graph connecting neighboring points Edge (i,j) exists if  $\mathbf{x}_i \in kNN(\mathbf{x}_j)$  or  $\mathbf{x}_j \in kNN(\mathbf{x}_i)$ 

Propagate normal orientation through graph For neighbors  $\mathbf{x}_i$ ,  $\mathbf{x}_j$ : Flip  $\mathbf{n}_j$  if  $\mathbf{n}_i^T \mathbf{n}_j < 0$ 

> "Surface reconstruction from unorganized points", Hoppe et al., SIGGRAPH 1992 <u>http://research.microsoft.com/en-us/um/people/hoppe/recon.pdf</u>

Roi Poranne



ETHzürich

# Normal Orientation

Build graph connecting neighboring points Edge (i,j) exists if  $\mathbf{x}_i \in kNN(\mathbf{x}_j)$  or  $\mathbf{x}_j \in kNN(\mathbf{x}_i)$ 

Propagate normal orientation through graph For neighbors  $\mathbf{x}_i$ ,  $\mathbf{x}_j$ : Flip  $\mathbf{n}_j$  if  $\mathbf{n}_i^T \mathbf{n}_j < 0$ Fails at sharp edges/corners

Propagate along "safe" paths (parallel tangent planes)

Minimum spanning tree with angle-based edge weights  $w_{ij} = 1 - |\mathbf{n}_i^T \mathbf{n}_j|$ 

http://research.microsoft.com/en-us/um/people/hoppe/recon.pdf

