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Formalize geometric properties of shapes

Smoothness

Deformation

Mappings
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Differential Geometry Basics
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continuous 

1-1 mapping

u

v

If a sufficiently smooth 

mapping can be 

constructed, we can look 

at its first and second 

derivatives

Tangents, normals, 

curvatures, curve 

angles

Distances, topology
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Geometry of manifolds

Things that can be explored locally 

point + neighborhood
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Planar Curves
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𝛾 𝑡 =
𝑡
𝑡2

𝛾 𝑡 =
𝑥 𝑡
𝑦 𝑡

, 𝑡 ∈ 𝑡0, 𝑡1

𝛾 𝑡 = 𝑡2

𝑡4



#

Arc Length Parameterization

Same curve has many parameterizations!

Arc-length: equal speed of 

the parameter along the curve
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𝐿(𝛾(𝑡1), 𝛾(𝑡2)) = |𝑡1 – 𝑡2|
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Tangent
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A line through two points on the curve.
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Tangent
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The limit secant as two points come together.
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Secant and Tangent

Secant: line through 𝒑(𝑃) – 𝒑(𝑄)

Tangent:𝛾(𝑃) = (𝑥(𝑃), 𝑦(𝑃), … )𝑇
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Arc Length Parameterization

Same curve has many parameterizations!

Arc-length: equal speed of 
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𝐿(𝛾(𝑡1), 𝛾(𝑡2)) = |𝑡1 – 𝑡2|

𝛾′ 𝑡 = 1

What it 𝛾 𝑡 is not arc length?
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Arc Length Parameterization
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Re

Curve

𝛾(𝑡) 𝛾(𝑝(𝑡))

Reparamterization

𝑝: 𝑡0, 𝑡1 → 𝑡0, 𝑡1
𝑝′ 𝑡 ≠ 0

Arc length reparamterization

𝛾′ 𝑝 𝑡 = 1
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Arc Length Parameterization
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Re

Arc length reparamterization

𝛾′ 𝑝 𝑡 = 1

Let

𝑞 𝑡 = න
𝑡0

𝑡

𝛾′ 𝑡

Then

𝑝 𝑡 = 𝑞−1 𝑡
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Tangent, normal, curvature
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p

Osculating circle
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Curvature

Circle through three points on the curve
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Curvature
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The limit circle as points come together.

Curvature

𝜅 =
1

𝑟
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Signed Curvature

Curving left or right
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+

–
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Gauss map ො𝑛(𝑡)

Point on curve maps to point on unit circle.
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ො𝑛 𝑡 → S1
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Curvature = 

change in normal direction

Absolute curvature (assuming arc length)

via the Gauss map
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curve Gauss map curve Gauss map
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#

Curvature Normal

Assume t is arc-length parameter
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)(ˆ)( tt np 

“A multiresolution framework for variational subdivision”, 

Kobbelt and Schröder, ACM TOG 17(4), 1998

p(t)

)(ˆ tn

p(t)
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Curvature Normal

Assume t is arc-length parameter
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)(ˆ)( tt np 

p(t)

)(ˆ tn

p(t)

The curvature defines

the planar curve shape
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up to rotation and translation!
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#

Turning Number Theorem

For a closed curve, 

the integral of curvature is 

an integer multiple of 2.
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+2

–2

+4

0
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Discrete Planar Curves
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#

Discrete Planar Curves

Piecewise linear curves

Not smooth at vertices

Can’t take derivatives

Goal :Generalize notions

From the smooth world for

the discrete case

There is no one single way!

Roi Poranne 443/8/2018



#

Sampling

Connection between discrete and smooth

Finite number of vertices

each lying on the curve,

connected by straight edges.
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#

p1

p2

p3

p4

The Length of a Discrete Curve

Sum of edge lengths
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#

The Length of a Continuous Curve

limit over a refinement sequence
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h = max edge length
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#

Tangents, Normals

tangent is the unit vector along edge 

normal is the perpendicular vector
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On edges
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Curvature of a Discrete Curve

Again: change in normal direction
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no change along each edge –

curvature is zero along edges
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Curvature of a Discrete Curve
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normal changes at vertices –

record the turning angle!
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Again: change in normal direction

normal changes at vertices –

record the turning angle!
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Curvature of a Discrete Curve
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same as the turning angle

between the edges
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Again: change in normal direction
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Curvature of a Discrete Curve

Zero along the edges

Turning angle at the vertices

= the change in normal direction
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1, 2 > 0,   3 < 0

1 2

3
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Total Signed Curvature

Sum of turning 

angles

Roi Poranne 61

1 2

3
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Discrete Gauss Map

Edges map to points, vertices map to arcs.
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#

Discrete Gauss Map

Turning number well defined for discrete 

curves.

Roi Poranne 633/8/2018



#

Discrete Turning Number Theorem

For a closed curve, 

the total signed curvature is 

an integer multiple of 2.

proof: sum of exterior angles
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Turning Number Theorem
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Continuous world Discrete world

k:
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Curvature is scale dependent
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is scale-independent
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#

Discrete Curvature – Integrated Quantity!

Cannot view αi as 

pointwise curvature

It is integrated 

curvature over a local 

area associated with 

vertex i
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1 2
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Discrete Curvature – Integrated Quantity!

Integrated over a local 

area associated with 

vertex i
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1 2
A1
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1 2
A1

A2
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Discrete Curvature – Integrated Quantity!

Integrated over a local 

area associated with 

vertex i
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1 2
A1

A2

The vertex areas Ai form a covering 

of the curve.

They are pairwise disjoint (except 

endpoints).
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Discrete analogues

● Arbitrary discrete curve

▪ total signed curvature obeys

discrete turning number theorem

• even coarse mesh (curve)

▪ which continuous theorems to preserve?

• that depends on the application…

Roi Poranne 713/8/2018



#

Convergence

● length of sampled polygon approaches length of 

smooth curve 

● in general, discrete measures approaches 

continuous analogues

● How to refine?

▪ depends on discrete operator

▪ pathological sequences may exist

▪ in what sense does the operator converge? 
(pointwise, L2; linear, quadratic)

Roi Poranne 723/8/2018
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Surfaces, Parametric Form

Continuous surface

Tangent plane at point 

p(u,v) is spanned by

3/8/2018 Roi Poranne

n

p(u,v)

pu

u

v

pv

These vectors don’t have to be orthogonal

74
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Isoparametric Lines

Lines on the surface when 

keeping one parameter fixed
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u

v

75
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Surfaces, Parametric Form

Continuous surface

Tangent plane at point 

p(u,v) is spanned by
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n

p(u,v)

pu

u

v

pv

These vectors don’t have to be orthogonal
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Surface Normals
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n

p(u,v)

pu

u

v

pv

77

Surface normal:
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Surface Normals

Surface normal:
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n

p(u,v)

pu

u

v

pv

78

Regular parameterization
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Normal Curvature
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n

p

pu
pv

t

Normal Curvature
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t in the tangent plane

(if pu and pv are orthogonal):

t


Tangent plane

80
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Normal Curvature
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n

p

pu
pv

t



The curve  is the intersection 

of the surface with the plane 

through n and t.

Normal curvature:

n() = ((p))

81
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Surface Curvatures

● Principal curvatures

▪ Minimal curvature

▪ Maximal curvature

● Mean curvature

● Gaussian curvature
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#

Principal Directions

Principal directions:

tangent vectors

corresponding to

max and min

3/8/2018 Roi Poranne

min curvature max curvaturetangent 

plane

 min

t1

t2

83
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Principal Directions

Principal directions:

tangent vectors

corresponding to

max and min
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min curvature max curvaturetangent 

plane

 min

t1

t2

84

What can we say about the principal directions?
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Euler’s Theorem: Principal directions are orthogonal.

Principal Directions
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Principal Directions
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Mean Curvature
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Gaussian Curvature

A point p on the surface is called

● Elliptic, if K > 0

● Parabolic, if K = 0

● Hyperbolic, if K < 0

Developable surface 

iff K = 0
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Classification
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Local Surface Shape By Curvatures
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Isotropic:

all directions are 

principal directions

spherical (umbilical) planar

K > 0, 1= 2

Anisotropic:

2 distinct 

principal 

directions

elliptic parabolic hyperbolic

1 > 0, 2 > 0

1= 0

2 > 0

K > 0 K = 0 K < 0

K = 0

1 < 0

2 > 0
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#

Theorema Egregium

“Remarkable theorem”
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For orientable meshes:

c = number of connected components

g = genus

b = number of boundary loops

Reminder: Euler-Poincaré Formula
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Gauss-Bonnet Theorem

For a closed surface M:
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#

Gauss-Bonnet Theorem

For a closed surface M:

Compare with planar curves:
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Fundamental Forms

First fundamental form
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#

Fundamental Forms

I is a generalization of the dot product

allows to measure

length, angles, area, curvature

arc element

area element
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Intrinsic Geometry

Properties of the surface that only depend 

on the first fundamental form

length

angles

Gaussian curvature (Theorema Egregium)
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Fundamental Forms

First fundamental form

Second fundamental form

Together, they define a surface (if some 

compatibility conditions hold)
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Laplace Operator
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Laplace

operator

gradient

operator
2nd partial

derivatives

divergence

operator

function in

Euclidean space
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Laplace-Beltrami Operator

Extension of Laplace to functions on manifolds
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Laplace-

Beltrami

gradient

operator

divergence

operator

function on

surface M
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Laplace-Beltrami Operator

For coordinate functions: 𝐩 𝑥, 𝑦, 𝑧 = (𝑥, 𝑦, 𝑧)
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mean 

curvature

unit

surface

normal

Laplace-

Beltrami

gradient

operator

divergence

operator

function on

surface M
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#

Differential Geometry on Meshes

Assumption: meshes are piecewise linear 

approximations of smooth surfaces

Can try fitting a smooth surface locally 

(say, a polynomial) and find differential 

quantities analytically

But: it is often too slow for interactive 

setting and error prone
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#

Discrete Differential Operators

Approach: approximate differential 

properties at point v as spatial average 

over local mesh neighborhood N(v) where 

typically

● v = mesh vertex

● Nk(v) = k-ring neighborhood
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Discrete Laplace-Beltrami
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vi

vj
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Discrete Laplace-Beltrami

Uniform discretization:  L(v) or ∆v

Depends only on connectivity

= simple and efficient

Bad approximation for 

irregular triangulations
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vi

vj
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Discrete Laplace-Beltrami

Intuition for uniform discretization
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Discrete Laplace-Beltrami

Intuition for uniform discretization
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vi vi+1

vi-1


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Discrete Laplace-Beltrami

Intuition for uniform discretization
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vi

vj1 vj2

vj3

vj4
vj5

vj6

107
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Discrete Laplace-Beltrami

Cotangent formula
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Aivi

vi

vj vj

ij

ij

vi

vj

108
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Discrete Laplace-Beltrami

Cotangent formula

Accounts for mesh 

geometry

Potentially negative/

infinite weights
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Discrete Laplace-Beltrami

Cotangent formula

Can be derived using linear Finite Elements

Nice property: gives zero for planar 1-rings!
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Discrete Laplace-Beltrami

● Uniform Laplacian Lu(vi)

● Cotangent Laplacian Lc(vi)

● Normal

3/8/2018 Roi Poranne

vi

vj




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#

Discrete Laplace-Beltrami

● Uniform Laplacian Lu(vi)

● Cotangent Laplacian Lc(vi)

● Normal

● For nearly equal edge
lengths
Uniform ≈ Cotangent
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vi

vj





112
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Discrete Laplace-Beltrami

● Uniform Laplacian Lu(vi)

● Cotangent Laplacian Lc(vi)

● Normal

● For nearly equal edge
lengths
Uniform ≈ Cotangent
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vi

vj





Cotan Laplacian allows computing discrete normal

113
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Discrete Curvatures

Mean curvature

Gaussian curvature

Principal curvatures
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Ai

j

114
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Discrete Gauss-Bonnet Theorem

Total Gaussian curvature is fixed for a given 

topology
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Discrete Gauss-Bonnet Theorem

Total Gaussian curvature is fixed for a given 

topology
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Example: Discrete Mean Curvature
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Links and Literature

● M. Meyer, M. Desbrun, P. Schroeder, A. Barr

Discrete Differential-Geometry Operators for 

Triangulated 2-Manifolds, VisMath, 2002
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#

Links and Literature

● libigl implements many 

discrete differential 

operators

● See the tutorial! 
● http://libigl.github.io/libigl/tut

orial/tutorial.html
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principal directions

120

http://libigl.github.io/libigl/tutorial/tutorial.html


Thank You
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