252-0538-00L, Spring 2018

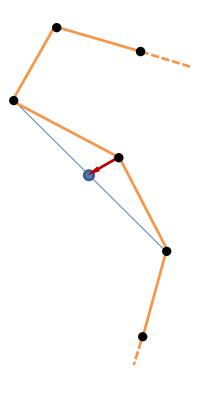
Shape Modeling and Geometry Processing

Smoothing (continued)
Deformations

Smoothing by flowing

Laplace in 1D = second derivative:

$$L(\mathbf{p}_i) = \frac{1}{2}(\mathbf{p}_{i-1} - \mathbf{p}_i) + \frac{1}{2}(\mathbf{p}_{i+1} - \mathbf{p}_i)$$



Laplace in 1D = second derivative:

$$L(\mathbf{p}_i) = \frac{1}{2}(\mathbf{p}_{i-1} - \mathbf{p}_i) + \frac{1}{2}(\mathbf{p}_{i+1} - \mathbf{p}_i)$$

In matrix-vector form for the whole curve

$$L\mathbf{p}$$

$$\mathbf{p} = [\mathbf{x} \ \mathbf{y}] \in \mathbb{R}^{n \times 2}$$

Laplace in 1D = second derivative:

$$L(\mathbf{p}_i) = \frac{1}{2}(\mathbf{p}_{i-1} - \mathbf{p}_i) + \frac{1}{2}(\mathbf{p}_{i+1} - \mathbf{p}_i)$$

In matrix-vector form for the whole curve

$$L\mathbf{p} = [\mathbf{x} \ \mathbf{y}] \in \mathbb{R}^{n \times 2}$$

$$L = \frac{1}{2} \begin{pmatrix} -2 & 1 & & & 1 \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -2 & 1 \\ 1 & & & 1 & -2 \end{pmatrix}$$

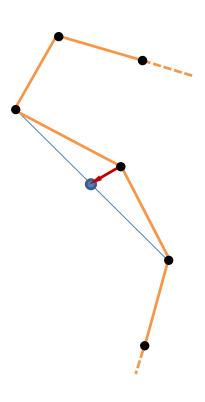
Flow to reduce curvature:

$$\tilde{\mathbf{p}}_i = \mathbf{p}_i + \lambda \frac{d^2}{ds^2} (\mathbf{p}_i)$$

Scale factor $0 < \lambda < 1$

Matrix-vector form:

$$\tilde{\mathbf{p}} = \mathbf{p} + \lambda L \mathbf{p}, \quad \mathbf{p} \in \mathbb{R}^{n \times 2}$$



Flow to reduce curvature:

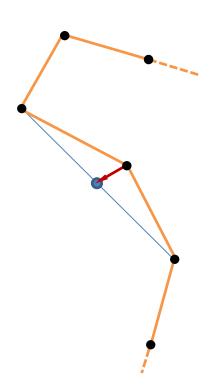
$$\tilde{\mathbf{p}}_i = \mathbf{p}_i + \lambda L(\mathbf{p}_i) = \mathbf{p}_i + \lambda \frac{d^2}{ds^2}(\mathbf{p}_i)$$

Scale factor $0 < \lambda < 1$

Matrix-vector form:

$$\tilde{\mathbf{p}} = \mathbf{p} + \lambda L \mathbf{p}, \quad \mathbf{p} \in \mathbb{R}^{n \times 2}$$

Drawbacks?



Flow to reduce curvature:

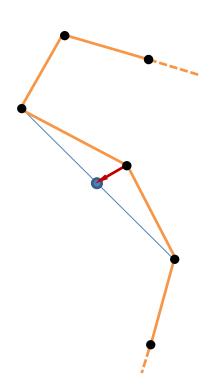
$$\tilde{\mathbf{p}}_i = \mathbf{p}_i + \lambda L(\mathbf{p}_i) = \mathbf{p}_i + \lambda \frac{d^2}{ds^2}(\mathbf{p}_i)$$

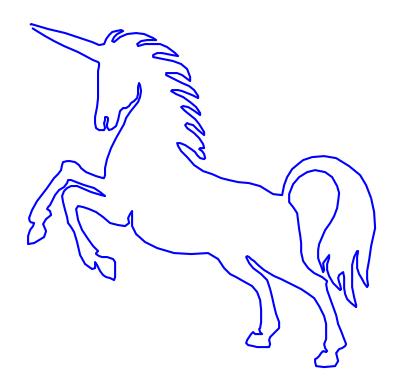
Scale factor $0 < \lambda < 1$

Matrix-vector form:

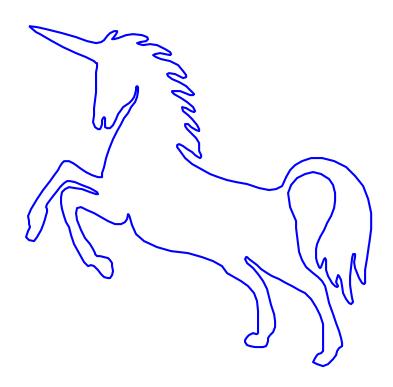
$$\tilde{\mathbf{p}} = \mathbf{p} + \lambda L \mathbf{p}, \quad \mathbf{p} \in \mathbb{R}^{n \times 2}$$

May shrink the shape; can be slow

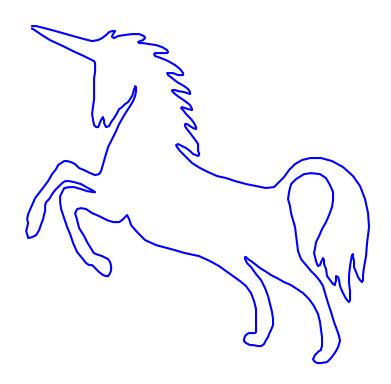




Original curve

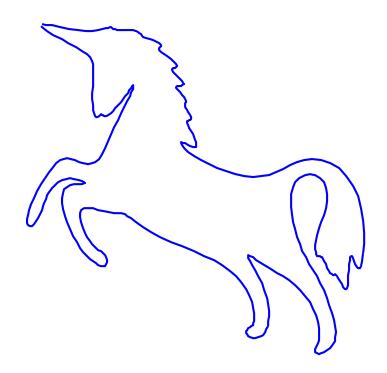


1st iteration; λ =0.5



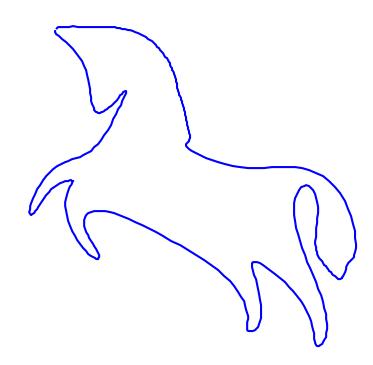
2nd iteration; λ =0.5

11

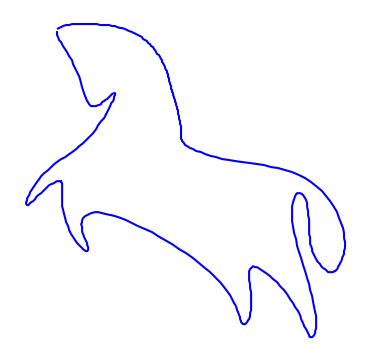


8th iteration; λ =0.5

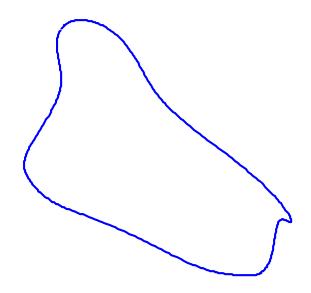
12



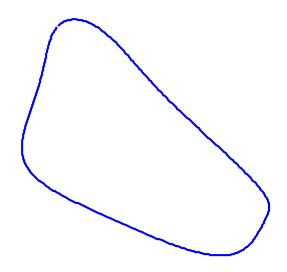
27th iteration; λ =0.5



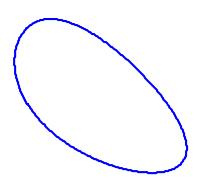
50th iteration; λ =0.5



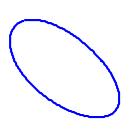
500th iteration; λ =0.5



1000th iteration; λ =0.5



5000th iteration; λ =0.5



10000th iteration; λ =0.5

50000th iteration; λ =0.5

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

Discretize in time, forward differences:

$$\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n)}$$

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

Discretize in time, forward differences:

$$\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n)}$$
$$\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)} = dt \, \lambda L \mathbf{p}^{(n)}$$

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

Discretize in time, forward differences:

$$\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n)}$$
$$\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)} = dt \, \lambda L \mathbf{p}^{(n)}$$

$$\mathbf{p}^{(n+1)} = (I + dt \,\lambda L)\mathbf{p}^{(n)}$$

Explicit integration! Unstable unless time step dt is small

Smoothing as Mean Curvature Flow

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

Backward Euler for unconditional stability

$$\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n+1)}$$
$$\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)} = dt \, \lambda L \mathbf{p}^{(n+1)}$$

Smoothing as Mean Curvature Flow

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

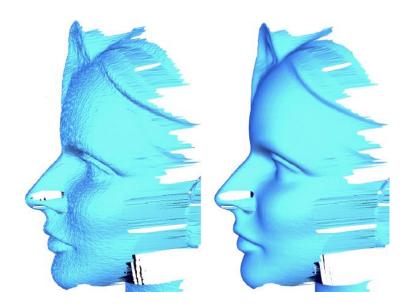
Backward Euler for unconditional stability

$$\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n+1)}$$
$$\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)} = dt \lambda L \mathbf{p}^{(n+1)}$$
$$(I - dt \lambda L) \mathbf{p}^{(n+1)} = \mathbf{p}^{(n)}$$

Implicit Fairing: Implicit Euler Steps

In each iteration, solve for the smoothed $: \tilde{p}$

$$(I - \tilde{\lambda} L)\tilde{\mathbf{p}} = \mathbf{p}$$

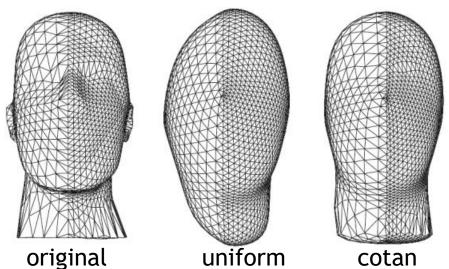


Implicit fairing of irregular meshes using diffusion and curvature flow M. Desbrun, M. Meyer, P. Schroeder, A. Barr ACM SIGGRAPH 99

Mesh Independence

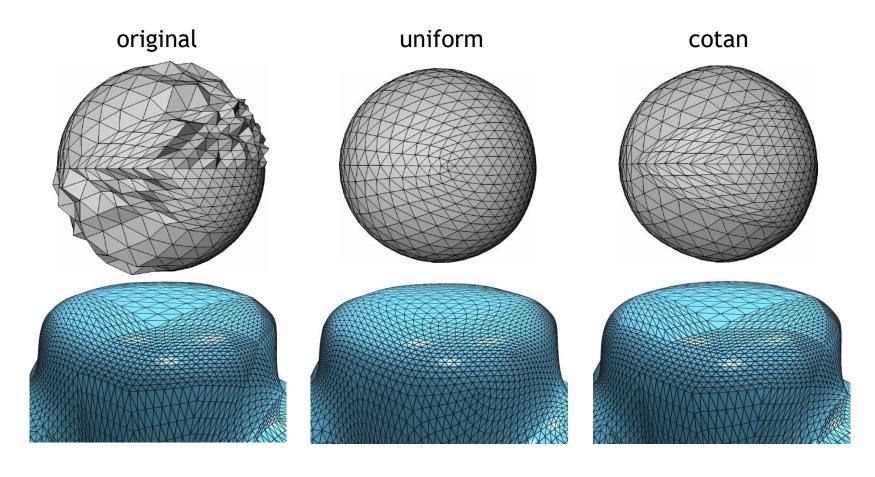
Result of smoothing with uniform Laplacian depends on triangle density and shape Why?

Asymmetric results although underlying geometry is symmetric



Comparison of the weights

Explicit flow with different weights:



Smoothing by optimization

$$\Delta_{\mathcal{M}}\mathbf{p} = -2H\mathbf{n}$$

goal: H=0 or $H=\mathrm{const}$

Let's go for H = 0

 $\Delta_{\mathcal{M}}\tilde{\mathbf{p}}=0$ only trivial solution, no connection to initial surface \mathbf{p}

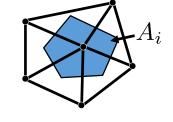
$$\Delta_{\mathcal{M}}\mathbf{p} = -2H\mathbf{n}$$
 goal: $H = 0$ or $H = \mathrm{const}$

- Let's go for H = 0
- $\Delta_{\mathcal{M}}\tilde{\mathbf{p}} = 0$ only trivial solution, no connection to initial surface \mathbf{p}
- Let's regularize!

$$\min_{\tilde{\mathbf{p}}} \int_{\mathcal{M}} \frac{\|\Delta_{\mathcal{M}} \tilde{\mathbf{p}}\|^2}{\|\Delta_{\mathcal{M}} \tilde{\mathbf{p}}\|^2} + \widehat{w} \|\tilde{\mathbf{p}} - \mathbf{p}\|^2 + \widehat{w} \|\tilde{\mathbf{p}} - \mathbf{p}\|^2$$
stay close to original surface

$$\min_{\tilde{\mathbf{p}}} \int_{\mathcal{M}} \|\Delta_{\mathcal{M}} \tilde{\mathbf{p}}\|^2 + w \|\tilde{\mathbf{p}} - \mathbf{p}\|^2$$

Discretize:



$$\min_{\tilde{\mathbf{p}}} \sum_{i=1}^{n} A_i (\|L\tilde{\mathbf{p}}_i\|^2 + w\|\tilde{\mathbf{p}}_i - \mathbf{p}_i\|^2)$$

Minimize!

$$\frac{\partial}{\partial \tilde{\mathbf{p}}} = 0$$
 remember: $\frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^T A \mathbf{x}) = (A + A^T) \mathbf{x}$

tip: "The Matrix Cookbook"

$$\tilde{\mathbf{p}} = [\tilde{\mathbf{x}} \ \tilde{\mathbf{y}} \ \tilde{\mathbf{z}}] = \begin{pmatrix} \tilde{p}_{1x} & \tilde{p}_{1y} & \tilde{p}_{1z} \\ \tilde{p}_{2x} & \tilde{p}_{2y} & \tilde{p}_{2z} \\ \vdots & \vdots & \vdots \\ \tilde{p}_{nx} & \tilde{p}_{ny} & \tilde{p}_{nz} \end{pmatrix} \in \mathbb{R}^{n \times 3}$$

$$E(\tilde{\mathbf{p}}) = \sum_{\mathbf{v} \in \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}} (L\tilde{\mathbf{v}})^T M (L\tilde{\mathbf{v}}) + w(\tilde{\mathbf{v}} - \mathbf{v})^T M (\tilde{\mathbf{v}} - \mathbf{v})$$

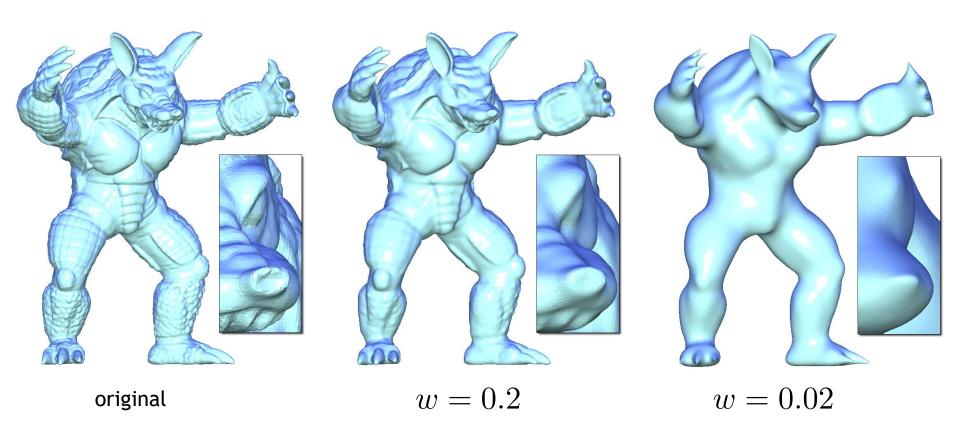
$$\frac{\partial E}{\partial \tilde{\mathbf{p}}} = 2L^T M L \tilde{\mathbf{p}} + 2w M (\tilde{\mathbf{p}} - \mathbf{p}) \stackrel{!}{=} 0$$

$$\Rightarrow (L^T M L + w M) \tilde{\mathbf{p}} = w M \mathbf{p}$$

$$NB:$$

$$L = M^{-1} L_w \Rightarrow L^T M L = L_w M^{-1} L_w$$
compare with implicit Euler!

Results



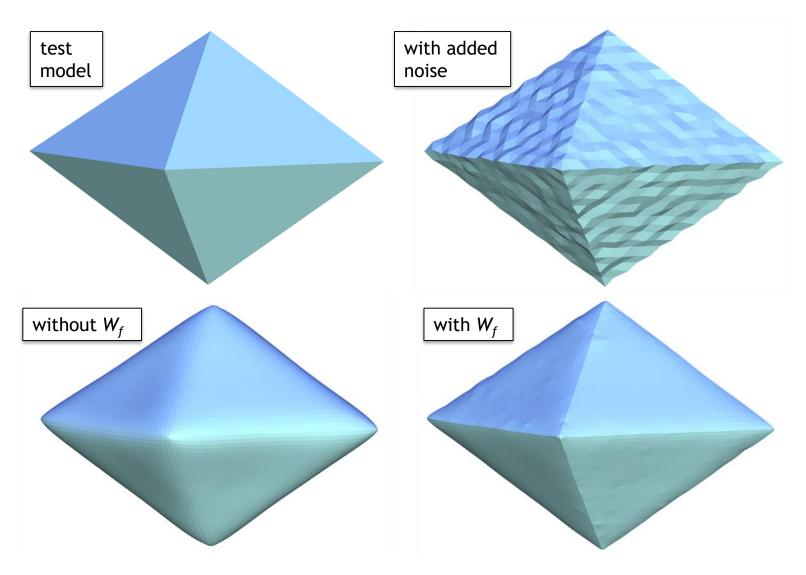
34

Customize the energy functional

$$\min_{\tilde{\mathbf{p}}} \sum_{i=1}^n A_i \left(\|L\tilde{\mathbf{p}}_i\|^2 + w \|\tilde{\mathbf{p}}_i - \mathbf{p}_i\|^2 \right)$$
 add a varying weight here to control feature preservation

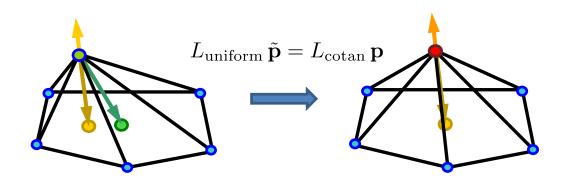
$$E(\tilde{\mathbf{p}}) = \tilde{\mathbf{p}}^T L^T (M^{0.5} \underline{W_f} M^{0.5}) L \tilde{\mathbf{p}} + w (\tilde{\mathbf{p}} - \mathbf{p})^T M (\tilde{\mathbf{p}} - \mathbf{p})$$
 (slight abuse of notation, the energy is actually the sum of the xyz components, $E(\tilde{\mathbf{p}}) = \sum_{\mathbf{v} \in \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}} \tilde{\mathbf{v}}^T L^T \dots$ like on slide #62)

Using W_f



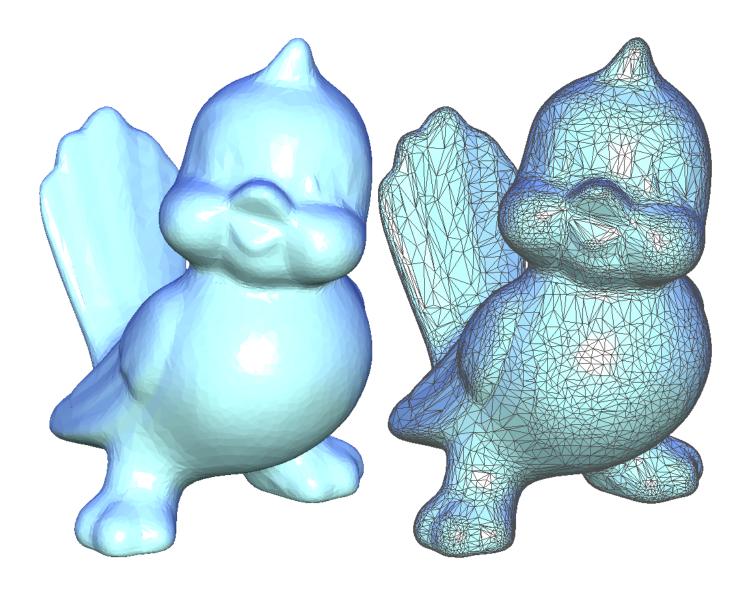
Customize the energy functional

- Can do tangential smoothing!
 - Improve the shapes of mesh triangles without changing the surface shape

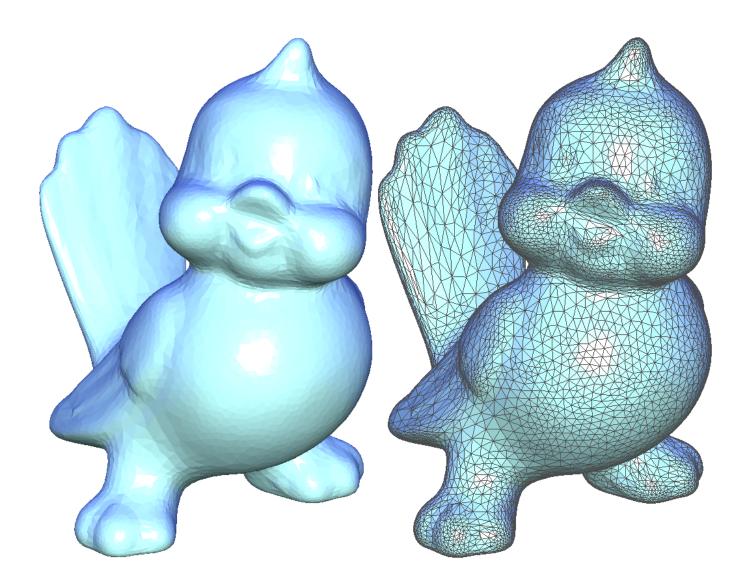


$$\min_{\tilde{\mathbf{p}}} \sum_{i=1}^{n} A_i \left(\| L_{\text{uniform }} \tilde{\mathbf{p}}_i - L_{\text{cotan }} \mathbf{p}_i \|^2 + w \| \tilde{\mathbf{p}}_i - \mathbf{p}_i \|^2 \right)$$

Original

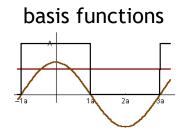


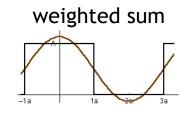
Triangle Shape Optimization



Smoothing by flitering

 Represent a function as a weighted sum of sines and cosines (basis functions)



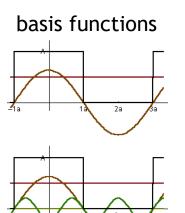


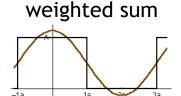
Joseph Fourier 1768 - 1830

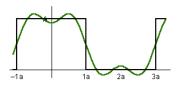
$$f(x) = a_0 + a_1 \cos(x)$$

 Represent a function as a weighted sum of sines and cosines (basis functions)

Joseph Fourier 1768 - 1830



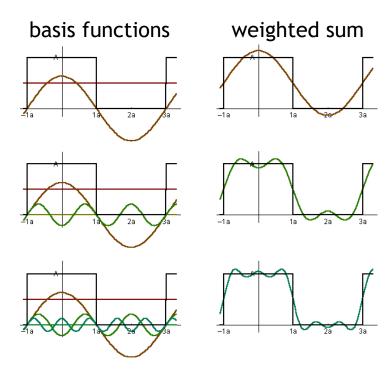




42

 Represent a function as a weighted sum of sines and cosines (basis functions)

Joseph Fourier 1768 - 1830

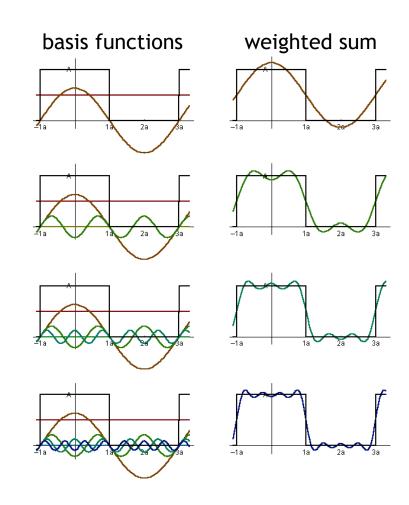


43

$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(3x) + a_3 \cos(5x)$$

 Represent a function as a weighted sum of sines and cosines (basis functions)

Joseph Fourier 1768 - 1830



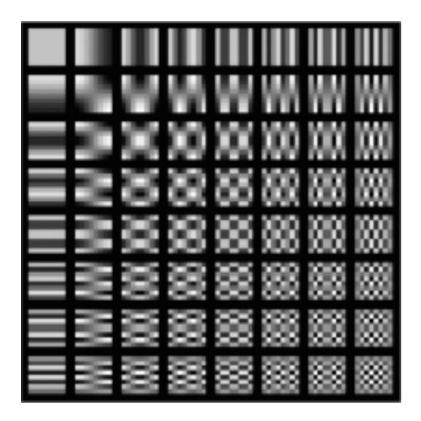
$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(3x) + a_3 \cos(5x) + a_4 \cos(7x) + \dots$$

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \omega x} dx$$

$$f(x) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega x} d\omega$$

4/10/2018 Roi Poranne # 45

Also works on rectangular 2D domains



Fourier (DCT) basis functions for 8x8 grayscale images $\cos(2\pi\omega_h)\cos(2\pi\omega_v)$

Roi Poranne

Smoothing = filtering high frequencies out

spatial domain

Frequency content of y

80

70

60

50

40

30

20

10

50

150

200

250

300

350

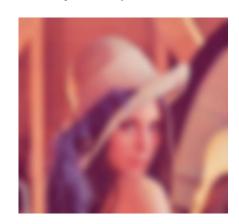
400

450

500

frequency (Hz)

frequency domain



Extend Fourier to meshes?

- Basis functions??
- Fourier basis functions are eigenfunctions of the (standard) Laplace operator:

$$\Delta \left(e^{2\pi i\omega x} \right) = \frac{\partial^2}{\partial x^2} e^{2\pi i\omega x} = -(2\pi\omega)^2 e^{2\pi i\omega x}$$

 On meshes: take the eigenvectors of the Laplace-Beltrami matrix!

Spectral analysis on meshes

- Take your favorite L-B matrix L
- Compute eigenvectors $e_1, e_2, ..., e_k$ with the k smallest eigenvalues
- Reconstruct the smoothed mesh geometry from these eigenvectors:

$$\mathbf{x} = [x_1, \dots, x_n]^T \qquad \mathbf{y} = [y_1, \dots, y_n]^T \qquad \mathbf{z} = [z_1, \dots, z_n]^T$$

$$\tilde{\mathbf{x}} = \sum_{i=1}^k (\mathbf{x}^T \mathbf{e}_i) \mathbf{e}_i \qquad \tilde{\mathbf{y}} = \sum_{i=1}^k (\mathbf{y}^T \mathbf{e}_i) \mathbf{e}_i \qquad \tilde{\mathbf{z}} = \sum_{i=1}^k (\mathbf{z}^T \mathbf{e}_i) \mathbf{e}_i$$

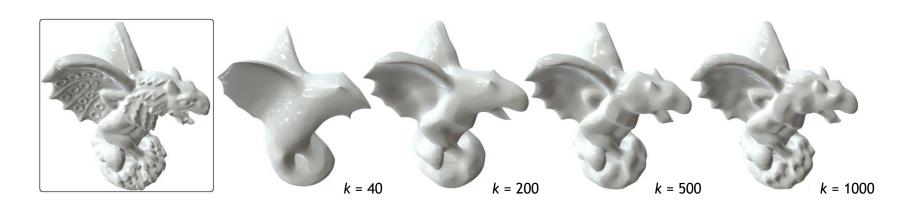
$$\tilde{\mathbf{p}} = [\tilde{\mathbf{x}} \ \tilde{\mathbf{y}} \ \tilde{\mathbf{z}}] \in \mathbb{R}^{n \times 3}$$

Spectral analysis on meshes

Take your favorite L-B matrix L

too expensive for large meshes

- Compute eigenvectors $e_1, e_2, ..., e_k$ with the k smallest eigenvalues
- Reconstruct the smoothed mesh geometry from these eigenvectors:

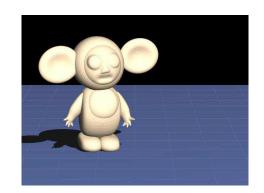


4/10/2018 Roi Poranne # 50

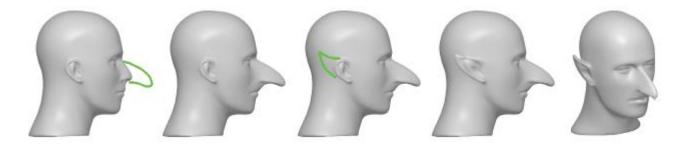
Deformation

Why Shape Deformation?

Animation



Editing



Simulation

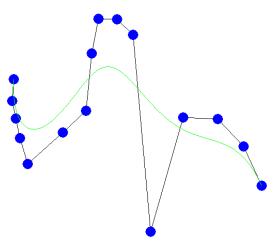
Parametric Curves and Surfaces

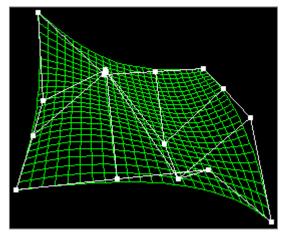
Deformation by control point manipulation

Show example

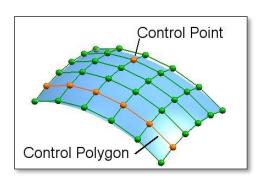
Built-in deformation mechanism

Control structure is pre-set (can't pull on arbitrary points)

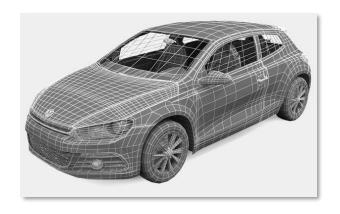




Traditional CAD vs Unstructured Meshes



$$s(u,v) = \sum_{i,j} \mathbf{p}_{i,j} B_i(u) B_j(v)$$





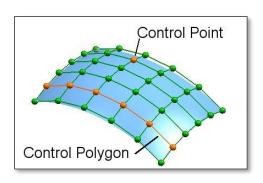
$$\min_{\mathbf{x}'} \int_{\mathcal{S}} \|\Delta_{\mathcal{S}} \mathbf{x}' - \delta_0\|^2$$

$$s.t. \mathbf{x}'|_{\mathcal{C}} = \mathbf{x}_{\text{fixed}}$$

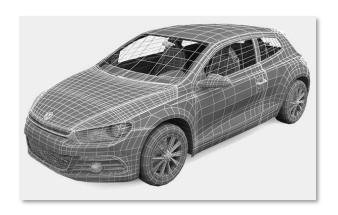
54

images from Jacobson et al., SGP 2010

Traditional CAD vs Unstructured Meshes



$$s(u,v) = \sum_{i,j} \mathbf{p}_{i,j} B_i(u) B_j(v)$$



$$\min_{\mathbf{x}'} \int_{\mathcal{S}} \|\Delta_{\mathcal{S}} \mathbf{x}' - \delta_0\|^2$$

$$s.t. \mathbf{x}'|_{\mathcal{C}} = \mathbf{x}_{\text{fixed}}$$

Deformation metaphors

Bounded Biharmonic Weights for Real-Time Deformation

Alec Jacobson¹ Ilya Baran² Jovan Popović³ Olga Sorkine^{1,4}

¹New York University

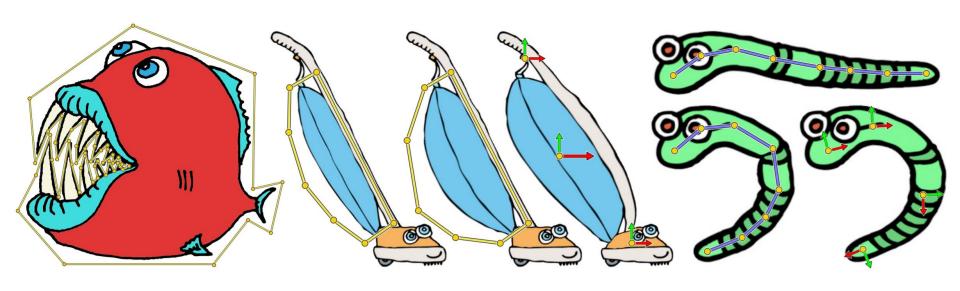
²Disney Research, Zurich

³Adobe Systems, Inc.

⁴ETH Zurich

This video contains narration

Deformation metaphors

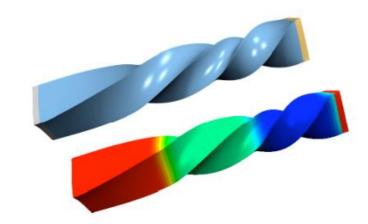


57

Deformation: Common Paradigms

Surface based deformation

Optimization on the surface Physically motivated: variants of elastic energy minimization



Space deformation

Deforms some 2D/3D space using a *cage*Deformation propagation to all points in the space
Independent of shape representation

General Framework

Find a mesh that optimizes an objective and satisfies modeling constraints

$$\mathbf{x}_{\mathrm{def}} = \mathrm{arg\,min}\,E(\mathbf{x},\mathbf{x}')$$
 $s.t.\mathbf{x}_i' = \mathbf{c}_i$
Original mesh

Candidate mesh

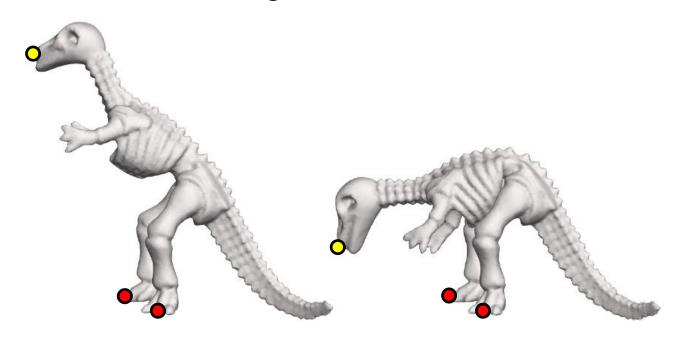
How to Define $E(\mathbf{x}, \mathbf{x}')$?

Goal: Intuitive deformations

Smooth deformation on the global scale Preserve local details (curvatures)

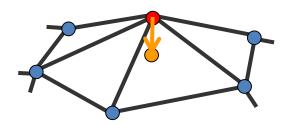
Invariants:

 $E(\mathbf{x}') = 0$ if \mathbf{x}' is a rigid transformation of \mathbf{x}



Differential Coordinates

Detail = *smooth*(surface) - surface Smoothing = averaging



$$\delta_i = \frac{1}{W_i} \sum_{j \in \mathcal{N}(i)} w_{ij}(\mathbf{x}_j - \mathbf{x}_i) \approx -2H_i \mathbf{n}_i$$

Differential Coordinates

Represent *local detail* at each surface point

More descriptive of the shape than just xyz

Linear transition from xyz to δ

Useful for operations on surfaces where surface details are important

Simple Laplacian Editing

Preserve mean curvature normal [*differential coordinates] at every point in the ROI [* every vertex of the ROI]

continuous:
$$E(\mathcal{S}') = \int_{\mathcal{S}'} \|\Delta \mathbf{x}' - \delta\|^2 d\mathbf{x}'$$

discrete:
$$E(\mathbf{x}') = \sum_{i=1}^n A_i \|\Delta(\mathbf{x}_i') - \delta_i\|^2$$

Simplifying the Laplacian Energy

$$E(\mathbf{x}') = \sum_{i=1}^{n} A_i \|\Delta(\mathbf{x}'_i) - \delta_i\|^2 = \sum_{i=1}^{n} A_i \left(\Delta(\mathbf{x}'_i)^T \Delta(\mathbf{x}'_i) - 2\Delta(\mathbf{x}'_i)^T \delta_i + \delta_i^T \delta_i\right) =$$

$$= \mathbf{x}'^T \underline{L}^T \underline{M} \underline{L} \mathbf{x}' - 2\mathbf{x}'^T \underline{L}^T \underline{M} \delta + \text{const}$$

$$\mathbf{L} = \mathbf{M}^{-1} \mathbf{L}_{w} \leftarrow \text{cotan matrix}$$

 $n \times n$

Simplifying the Laplacian Energy

$$E(\mathbf{x}') = \sum_{i=1}^{n} A_i \|\Delta(\mathbf{x}'_i) - \delta_i\|^2 = \sum_{i=1}^{n} A_i \left(\Delta(\mathbf{x}'_i)^T \Delta(\mathbf{x}'_i) - 2\Delta(\mathbf{x}'_i)^T \delta_i + \delta_i^T \delta_i\right) =$$

$$= \mathbf{x}'^T \underline{L}^T \underline{M} \underline{L} \mathbf{x}' - 2\mathbf{x}'^T \underline{L}^T \underline{M} \delta + \text{const}$$

$$\mathbf{L} = \mathbf{M}^{-1} \underline{L}_w \leftarrow \text{cotan matrix}$$

$$n \times n$$

$$L^{T}ML = (M^{-1}L_{w})^{T}M(M^{-1}L_{w}) = L_{w}M^{-1}MM^{-1}L_{w} =$$

$$= L_{w}M^{-1}L_{w} - \text{Symmetric sparse matrix!}$$

ETH zürich

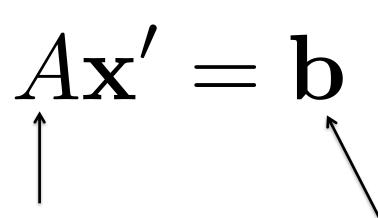
Minimizing the Laplacian Energy

$$E(\mathbf{x}') = \mathbf{x}'^T L_w M^{-1} L_w \mathbf{x}' - 2\mathbf{x}'^T L_w \delta + \text{const}$$
$$\frac{\partial}{\partial \mathbf{x}'} E(\mathbf{x}') = 2L_w M^{-1} L_w \mathbf{x}' - 2L_w \delta$$

 To find the minimum, gradient = 0 and substitute the modeling constraints

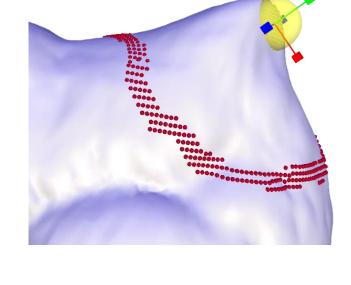
$$\mathbf{x}_i' = \mathbf{c}_i, i \in \mathcal{C}$$

Minimizing the Laplacian Energy



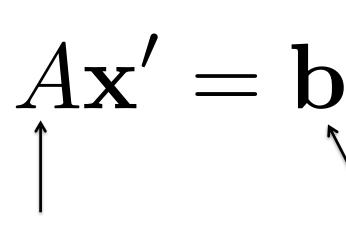
Matrix depends on the initial mesh and the indices of the constraints only.

Matrix is fixed!



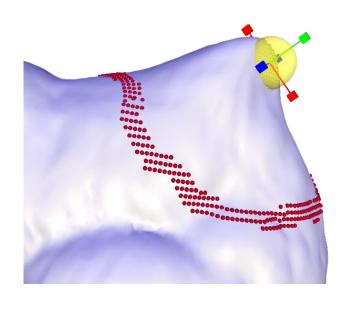
Right-hand side contains the coordinates of the constraints (handles)

Minimizing the Laplacian Energy



Sparse Cholesky decomposition:

$$A = L_{\rm chol} L_{\rm chol}^T$$



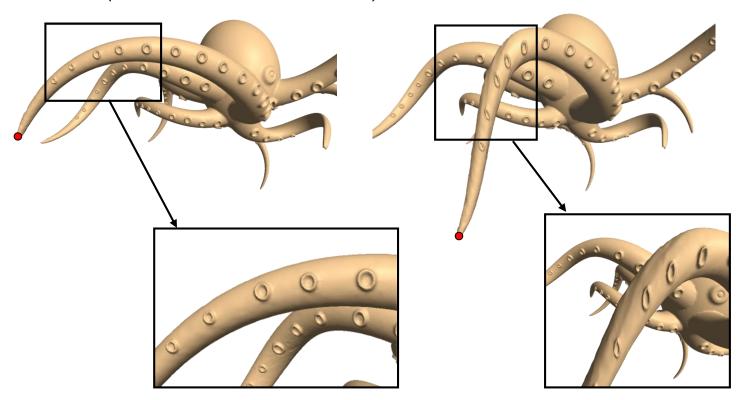
At run-time: just back-substitution!

$$L_{\rm chol} {f y} = {f b}$$

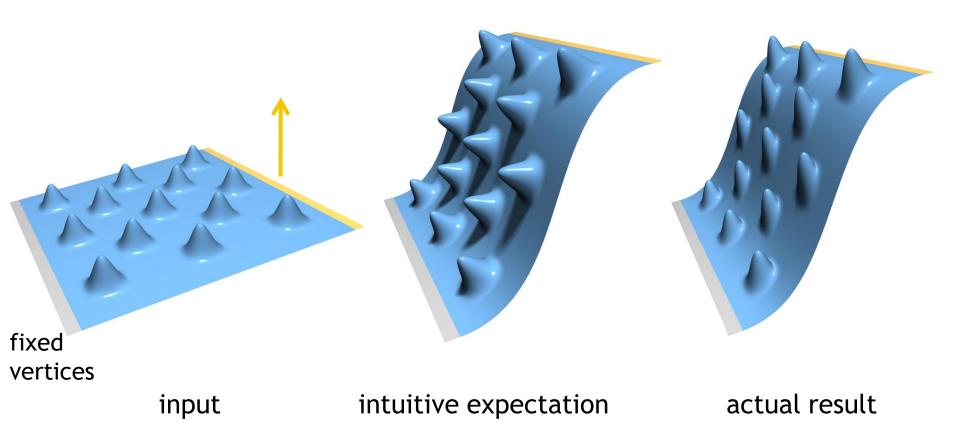
$$L_{\rm chol}^T \mathbf{x}' = \mathbf{y}$$

Fundamental Problem: Invariance to Transformations

- The basic Laplacian operator is translation-invariant, but not rotation-invariant
- E(x') attempts to preserve the original global orientation of the details (the normal directions)

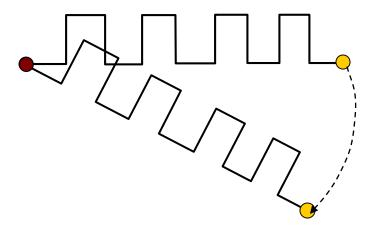


Fundamental Problem: Invariance to Transformations



Fundamental Problem: Invariance to Transformations

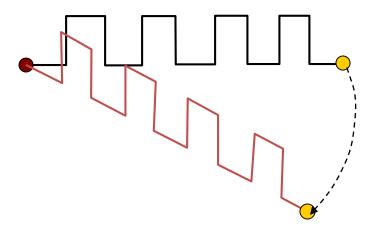
- The basic Laplacian operator is translation-invariant, but not rotation-invariant
- E(x') attempts to preserve the **original global** orientation of the details (the normal directions)



71

Fundamental Problem: Invariance to Transformations

- The basic Laplacian operator is translation-invariant, but not rotation-invariant
- E(x') attempts to preserve the original global orientation of the details (the normal directions)



72

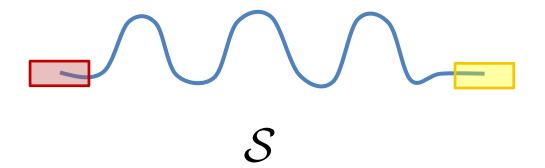
Energy Functional

We need a rigid-invariant energy...

$$E(\mathbf{x}') = \sum_{i=1}^{n} A_i \|\Delta(\mathbf{x}'_i) - \delta_i\|^2$$

Need to locally rotate the *target* m.c. normals

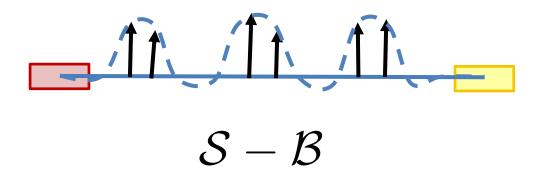
input



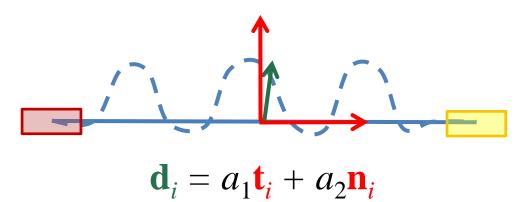
Smooth base surface

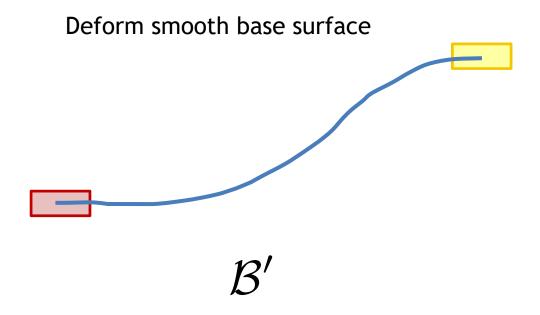
 \mathcal{B}

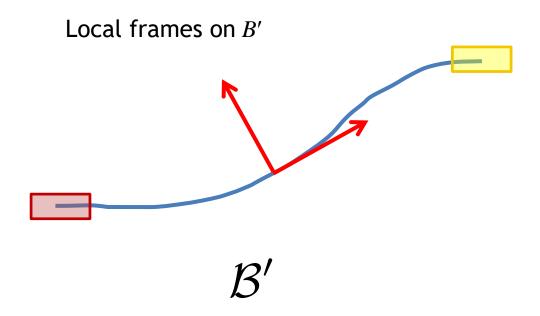
Details - displacement vectors

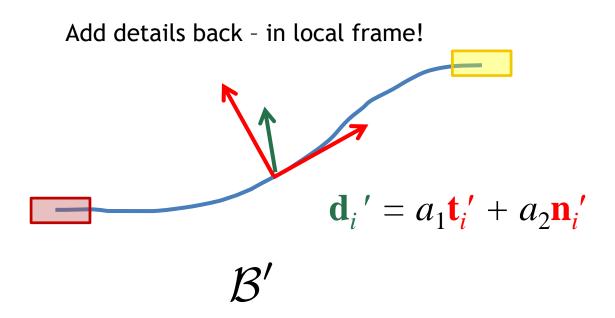


Encode details in the local frame of ${\it B}$

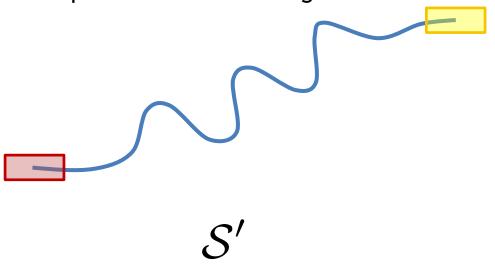




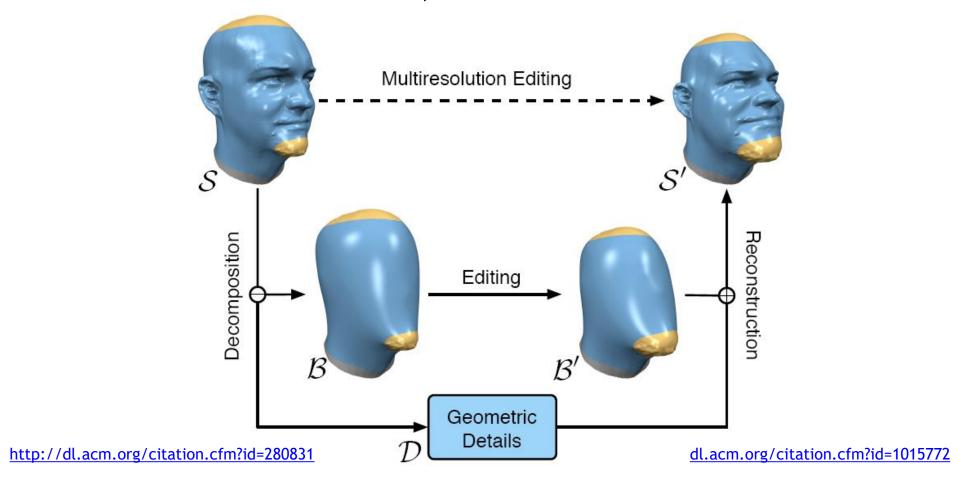




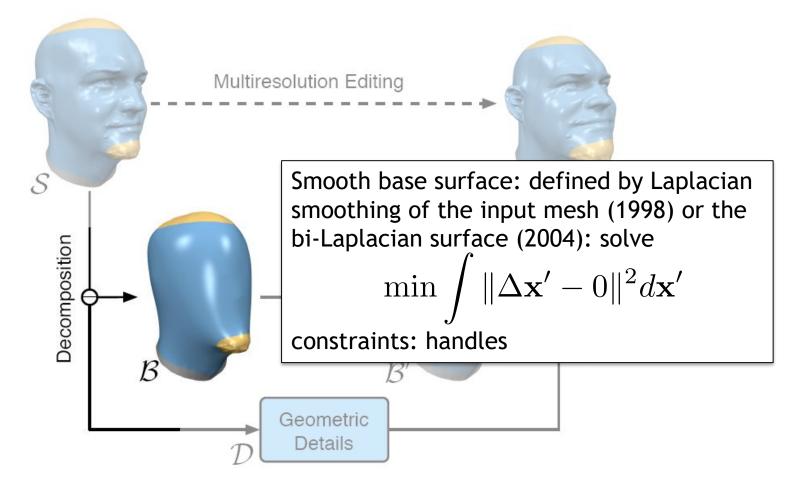
Displace the vertices to get the result



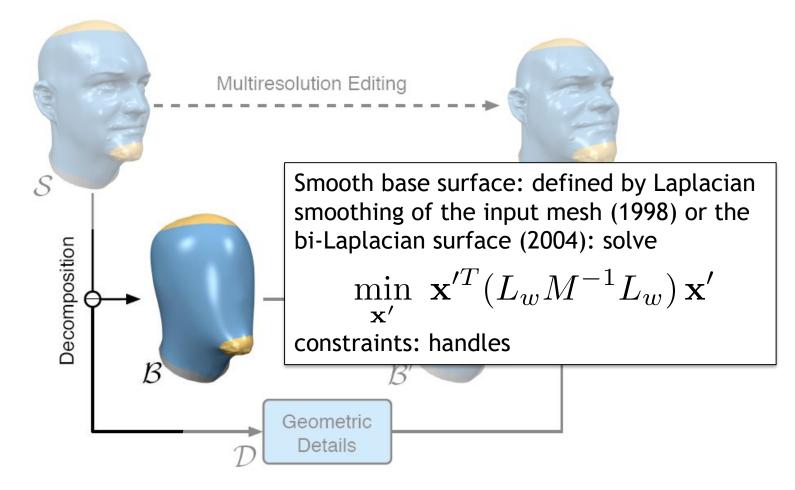
Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004



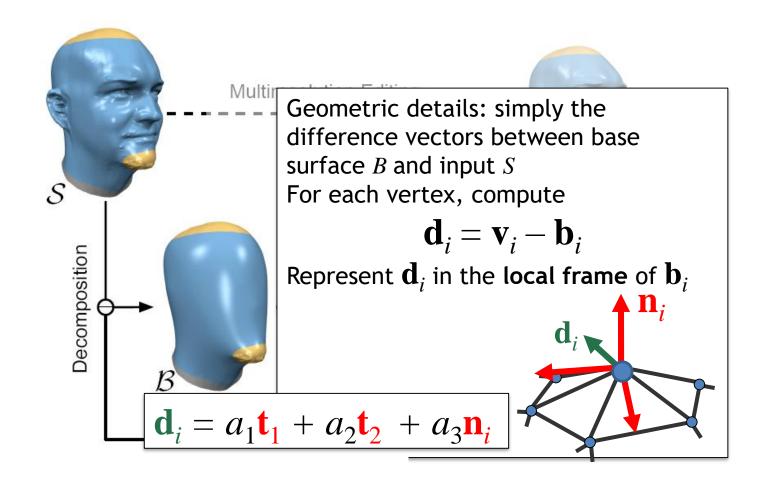
Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004



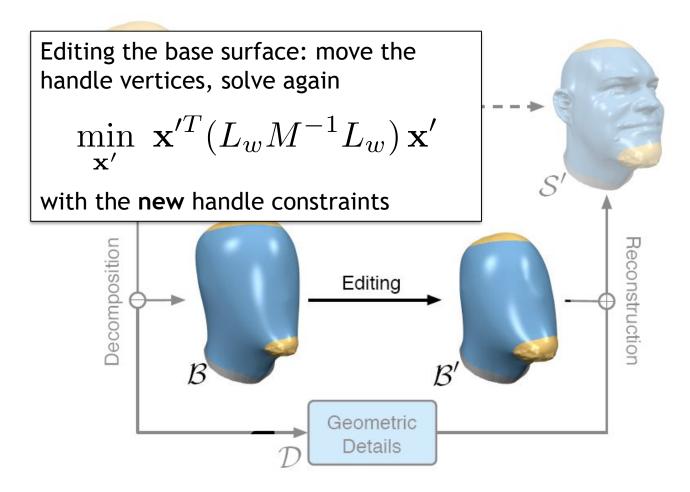
Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004



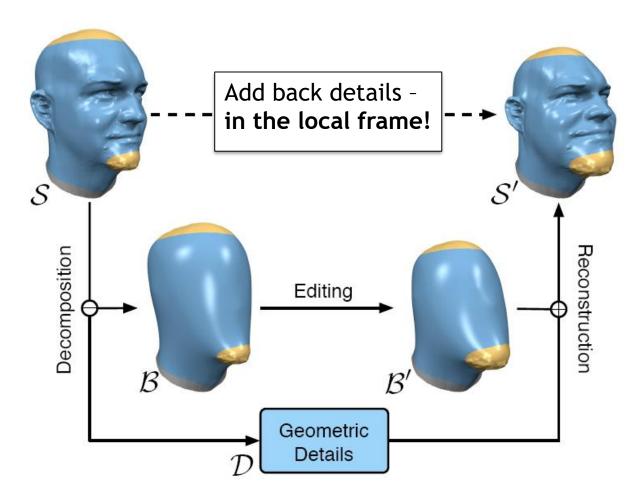
Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004



Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004



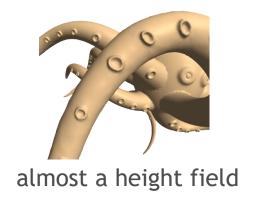
Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004

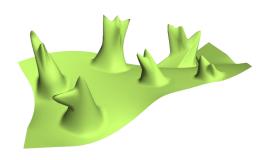


Multiresolution Framework: Discussion

Advantages:

- Fast! Linear solve for the base surface deformation, and then add back displacements
- Intuitive, easy to implement
- Problem: works only for small height fields (when details vectors are small)

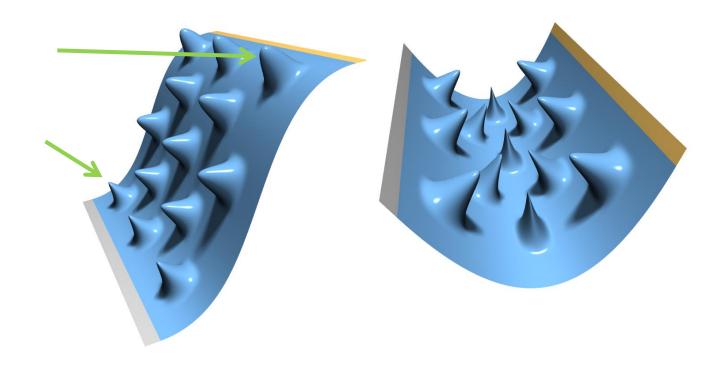




not a height field

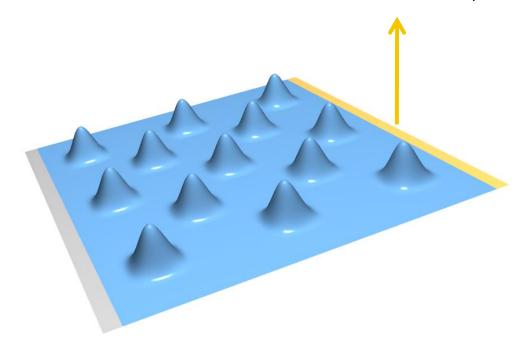
Multiresolution Framework: Discussion

 Problem: If detail vectors are too big we get overshooting and self-intersections, especially in concave cases



Local Rotations -Single Resolution Solutions

- Come up with a rotation field on the surface based on the modeling constraints
- Rotate the differential coordinates; solve

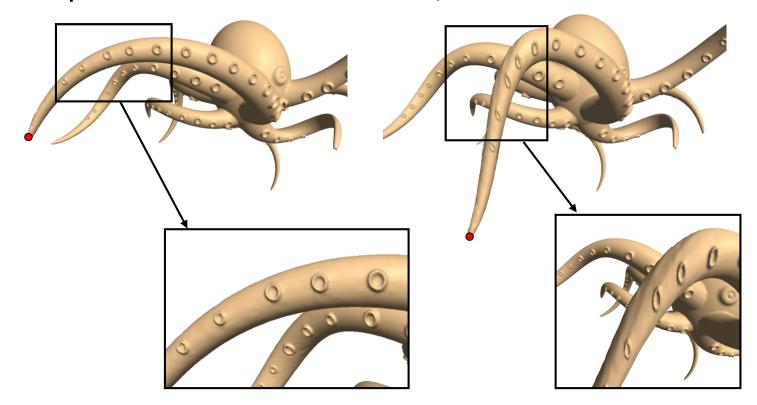


Estimation of Rotations

Lipman et al. 2004

http://igl.ethz.ch/projects/Laplacian-mesh-processing/Laplacian-mesh-editing/diffcoords-editing.pdf

- Edit the surface using the original Laplacians δ (naïve Laplacian editing)
- Compute smoothed local frames, estimate rotation

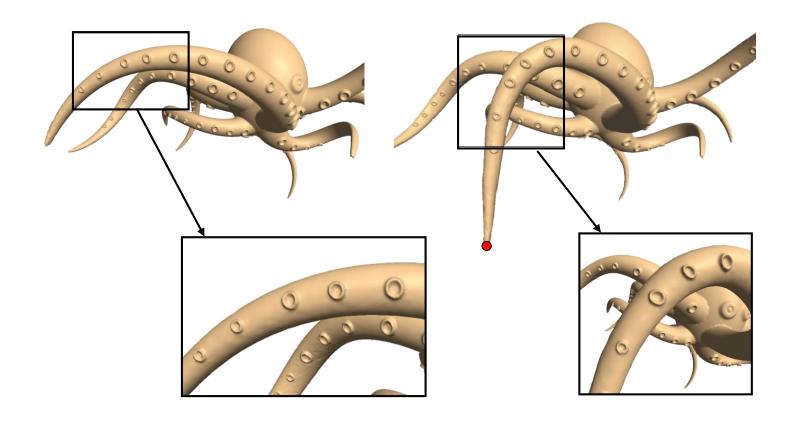


Estimation of Rotations

Lipman et al. 2004

http://igl.ethz.ch/projects/Laplacian-mesh-processing/Laplacian-mesh-editing/diffcoords-editing.pdf

• Then solve the optimization again with the **rotated** δ 's!



Estimation of Rotations

Lipman et al. 2004

http://igl.ethz.ch/projects/Laplacian-mesh-processing/Laplacian-mesh-editing/diffcoords-editing.pdf

Advantages:

- Sparse linear solve
- Less or no self-intersections thanks to global optimization (no more local displacements that fight each other)

Disadvantages:

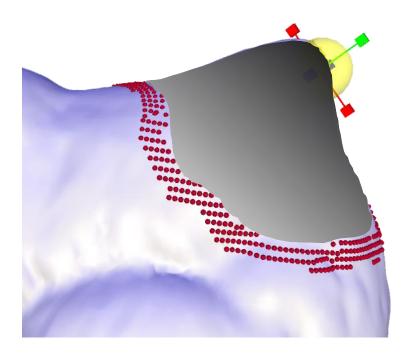
- Heuristic estimation of the rotations
- Speed depends on the support of the smooth local frame estimation operator; for highly detailed surfaces it must be large
- Unclear how much we need to smooth (what is detail?)

4/10/2018 Roi Poranne 93

Rotation Propagation

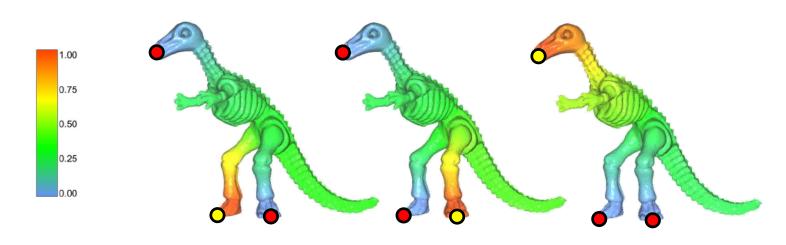
[Yu et al. SIGGRAPH 2004][Zayer et al. EG 2005][Lipman et al. SIGGRAPH 2005]

- Assume more user input: the user also specifies handle rotation, not just translation
- The rotation is diffused to the rest of the ROI



Rotation Propagation

- Geodesic distance [Yu et al. 2004]
- Harmonic field [Zayer et al. 2005]
- Optimization [Lipman et al. 2005, 2007]



Harmonic field

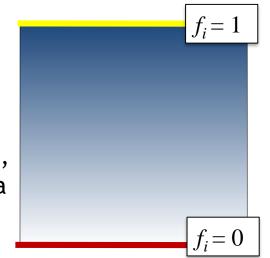
Harmonic Fields on Meshes

- Scalar function, attains 1 on the active handle, 0 on the static handles
- Smooth away from handles, no local extrema (maximum principle)
- Solve:

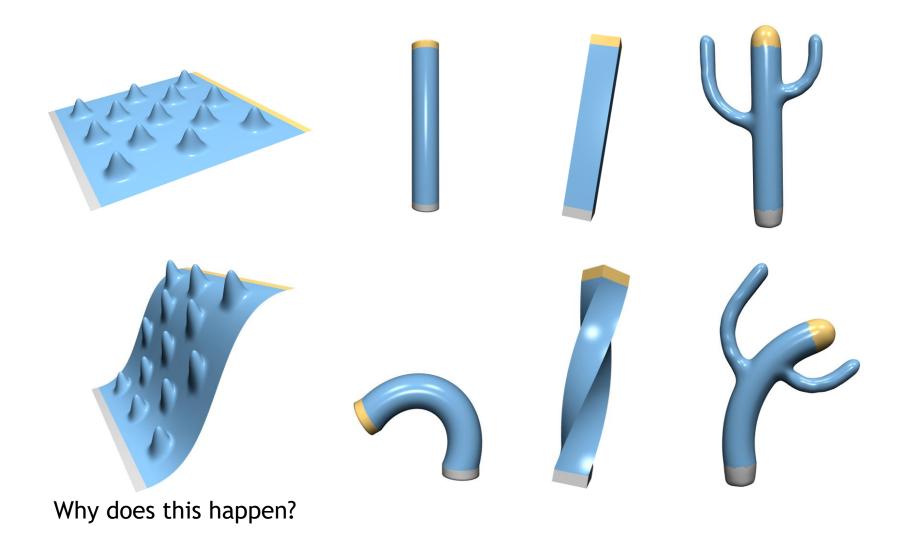
$$\Delta \mathbf{f} = 0$$

with constraints $f_i = 1$ on active handle, $f_i = 0$ on static handle

Example: in this simple case, the harmonic field is a just a linear ramp

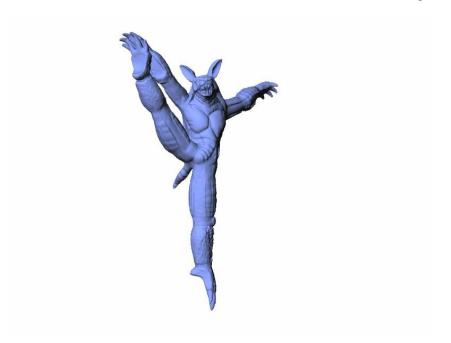


Rotation Propagation w/Harmonic Fields



Rotation Propagation w/Harmonic Fields

- If rotations are provided and consistent with the desired transformation, this works well
- However, the method is translation-insensitive (doesn't generate rotations when there are none provided)



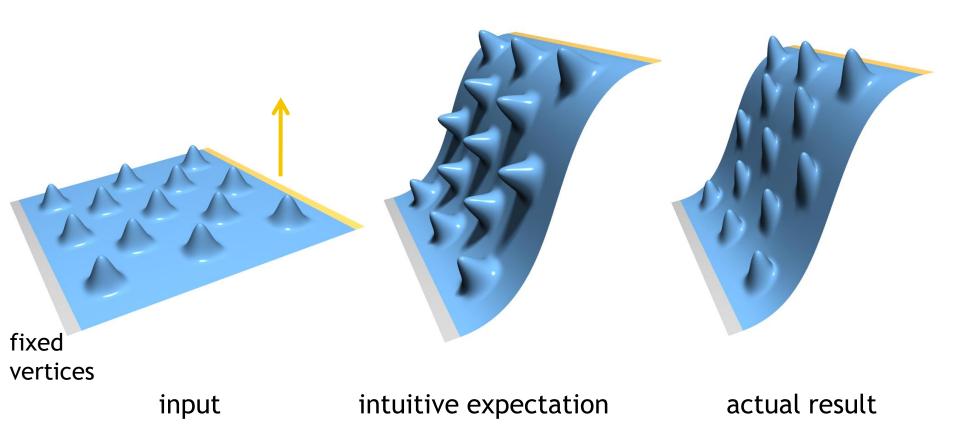
Literature - rotation propagation

- Yu et al. 2004: Mesh Editing with Poisson-Based Gradient Field Manipulation, ACM SIGGRAPH 2004
- Lipman et al. 2005: Linear Rotation-Invariant Coordinates for Meshes,
 ACM SIGGRAPH 2005
- Zayer et al. 2005: Harmonic Guidance for Surface Deformation, EUROGRAPHICS 2005
- Lipman et al. 2007: Volume and Shape Preservation via Moving Frame Manipulation, ACM Transactions on Graphics 26(1), 2007

Demo

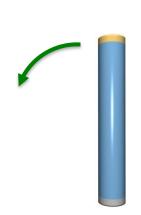
• Libigl tutorial 401, 402

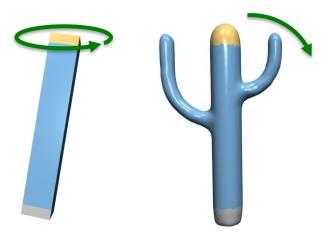
Fundamental Problem: Invariance to Transformations



Rotation Propagation

 Propagate using a harmonic scalar field from handle to fixed region





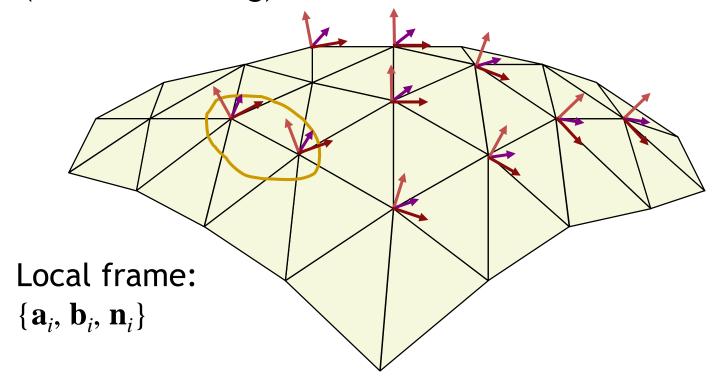
 Works for single handle and user prescribes same rotation for all vertices in the handle

102

4/10/2018 Roi Poranne

Lipman et al. 2005

- Keep a local orthonormal frame at each vertex
- Prescribe changes to some selected frames (rotation/scaling)



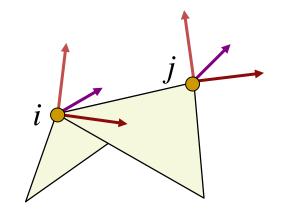
Lipman et al. 2005

- Encode the differences between adjacent frames in the original mesh - the numbers □ □ □ for each edge
 - Represented in the local frame coord. system!
- Want the deformed surface to have the same local differences
 - Rotation-invariant representation!

$$\mathbf{a}_{i} - \mathbf{a}_{j} = \mathbf{\alpha}_{i,1} \mathbf{a}_{i} + \mathbf{\alpha}_{i,2} \mathbf{b}_{i} + \mathbf{\alpha}_{i,3} \mathbf{n}_{i}$$

$$\mathbf{b}_{i} - \mathbf{b}_{j} = \mathbf{\beta}_{i,1} \mathbf{a}_{i} + \mathbf{\beta}_{i,2} \mathbf{b}_{i} + \mathbf{\beta}_{i,3} \mathbf{n}_{i}$$

$$\mathbf{n}_{i} - \mathbf{n}_{j} = \mathbf{\gamma}_{i,1} \mathbf{a}_{i} + \mathbf{\gamma}_{i,2} \mathbf{b}_{i} + \mathbf{\gamma}_{i,3} \mathbf{n}_{i}$$

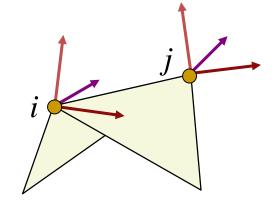


Lipman et al. 2005

- Solve for the new frames in least-squares sense
- Need to orthogonalize (and normalize) post-hoc

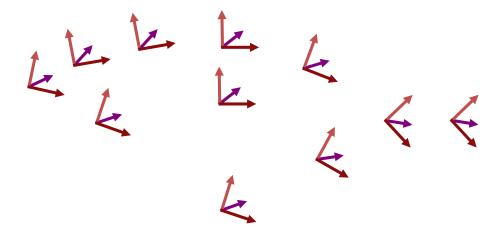
$$\sum_{i=1}^{n} \|(\mathbf{a}'_{i} - \mathbf{a}'_{j}) - (\alpha_{i,1}\mathbf{a}'_{i} + \alpha_{i,2}\mathbf{b}'_{i} + \alpha_{i,3}\mathbf{n}'_{i})\|^{2} + \min_{\mathbf{a},\mathbf{b},\mathbf{n}} \|(\mathbf{b}'_{i} - \mathbf{b}'_{j}) - (\beta_{i,1}\mathbf{a}'_{i} + \beta_{i,2}\mathbf{b}'_{i} + \beta_{i,3}\mathbf{n}'_{i})\|^{2} + \|(\mathbf{n}'_{i} - \mathbf{n}'_{j}) - (\gamma_{i,1}\mathbf{a}'_{i} + \gamma_{i,2}\mathbf{b}'_{i} + \gamma_{i,3}\mathbf{n}'_{i})\|^{2}$$

s.t.
$$(\mathbf{a}'_k, \mathbf{b}'_k, \mathbf{n}'_k) = \mathbf{M}_k, \ k \in \mathcal{C}$$



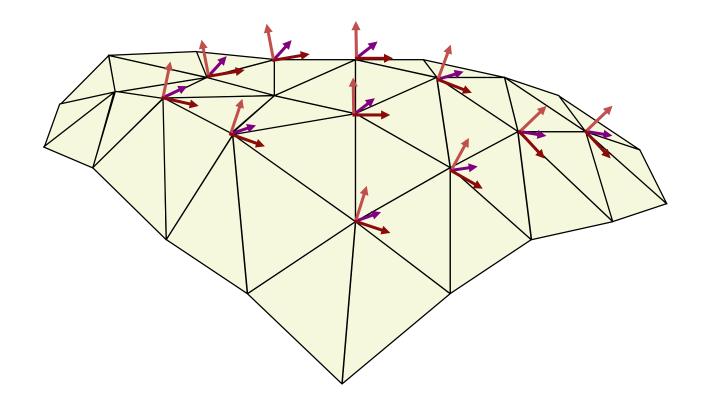
Lipman et al. 2005

 After solving the frames, solve for positions using e.g. naïve Laplacian editing (rotate each delta-vector...)



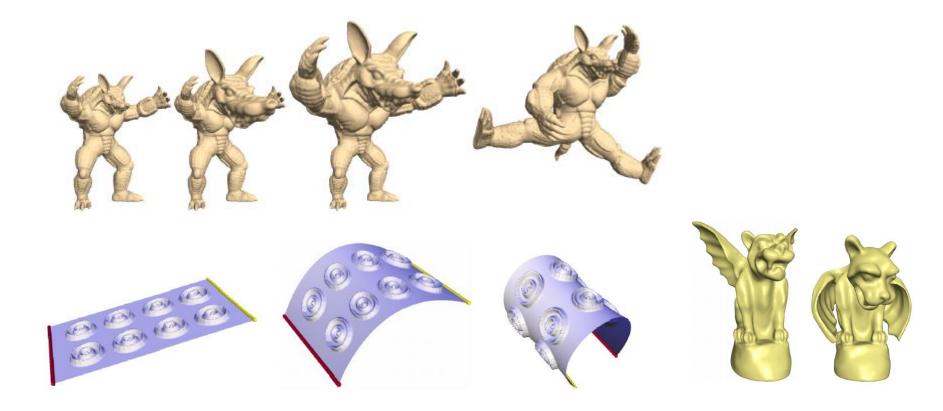
Lipman et al. 2005

 After solving the frames, solve for positions using e.g. naïve Laplacian editing (rotate each delta-vector...)



Lipman et al. 2005

Some results



Optimization of Rotation Propagation

Lipman et al. 2005

Can use this representation for shape interpolation

Linear Rotation-Invariant Coordinates for Meshes

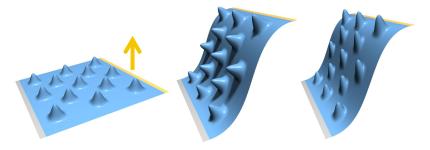
Yaron Lipman
Olga Sorkine
David Levin
Daniel Cohen-Or

Tel Aviv University

Rotation Propagation - Summary

- Linear optimization to find the local frames of the deformed surface
- Works well even for large rotations of the handle

 Does not work if there is no rotation to propagate - translation insensitivity



Implicit Definition of Transformations

Sorkine et al. 2004

- The idea: solve for local transformations AND the edited surface simultaneously!
- Estimate the local transformations T_i from the eventual solution

$$E(\mathbf{x}') = \sum_{i=1}^n A_i \|\Delta(\mathbf{x}_i') - \mathbf{T}_i \delta_i\|^2$$
 Linear transformation of the local frame

Defining T_i

$$E(\mathbf{x}') = \sum_{i=1}^{n} A_i \|\Delta(\mathbf{x}'_i) - \mathbf{T}_i \delta_i\|^2$$

- How to formulate T_i ?
 - Based on the local (1-ring) neighborhood
 - Linear dependence on the unknown x'_i

$$\mathbf{x'}_{j1} - \mathbf{x'}_{i} = \mathbf{T}_{i} (\mathbf{x}_{j1} - \mathbf{x}_{i})$$

$$\vdots$$

$$\mathbf{x'}_{jk} - \mathbf{x'}_{i} = \mathbf{T}_{i} (\mathbf{x}_{jk} - \mathbf{x}_{i})$$

$$\mathbf{x}_{js}$$

$$\mathbf{x}_{js}$$

Defining T_i

• First attempt: define T_i simply by solving

$$\mathbf{T}_i = \underset{\mathbf{T}_i}{\operatorname{argmin}} \sum_{s=1}^k \|(\mathbf{x}'_{j_s} - \mathbf{x}'_i) - \mathbf{T}_i (\mathbf{x}_{j_s} - \mathbf{x}_i)\|^2$$

$$\mathbf{T}_i = \begin{pmatrix} (\mathbf{x}'_{j_1} - \mathbf{x}'_i) & (\mathbf{x}'_{j_2} - \mathbf{x}'_i) & \cdots & (\mathbf{x}'_{j_k} - \mathbf{x}'_i) \end{pmatrix} \begin{pmatrix} (\mathbf{x}_{j_1} - \mathbf{x}_i) & (\mathbf{x}_{j_2} - \mathbf{x}_i) & \cdots & (\mathbf{x}_{j_k} - \mathbf{x}_i) \end{pmatrix}^+$$

pseudoinverse

Defining T_i

• Plug the expressions for T_i into the energy formula:

$$E(\mathbf{x}') = \sum_{i=1}^{n} A_i ||\Delta(\mathbf{x}'_i) - \mathbf{T}_i \delta_i||^2$$

Linear combination of the unknown \mathbf{x}'

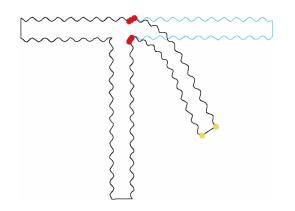
But: we didn't solve anything since T_i is an arbitrary linear transformation, i.e. admits distorting shears

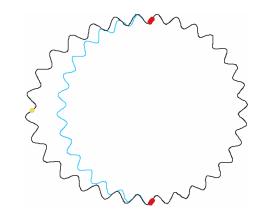
Constraining T_i

Rotation + scale (i.e., similarity) is easy in 2D:

$$\mathbf{T}_{i} = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

- Rotation alone is nonlinear (bounds on a and b)
- Can edit 2D curves:



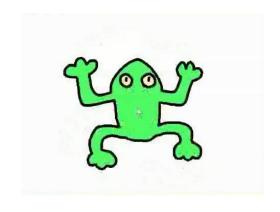


Constraining T_i

Rotation + scale (i.e., similarity) is easy in 2D:

$$\mathbf{T}_{i} = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

- Rotation alone is nonlinear (bounds on a and b)
- Similar idea applied in [Igarashi et al. 2005] for 2D shape manipulation:



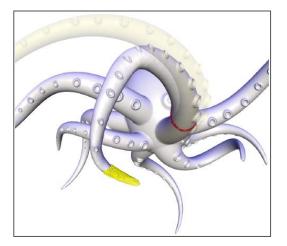
Constraining T_i

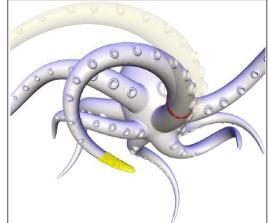
In 3D: even similarity has nonlinear form. Linearization of rotations
 first order Taylor approximation:

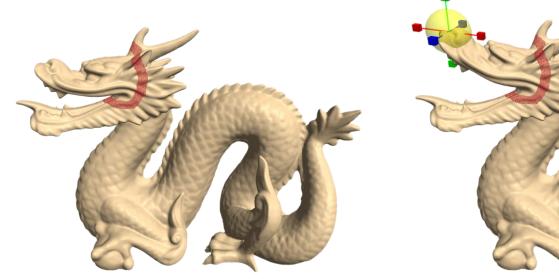
$$\mathbf{T}_i = \begin{pmatrix} 1 & -h_3 & h_2 \\ h_3 & 1 & -h_1 \\ -h_2 & h_1 & 1 \end{pmatrix}$$

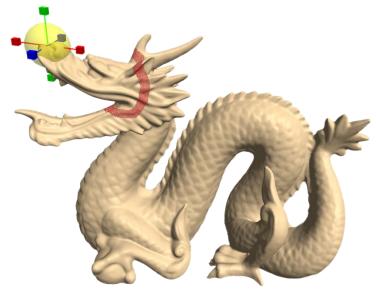
Works well for moderate rotations, problems with large rotation

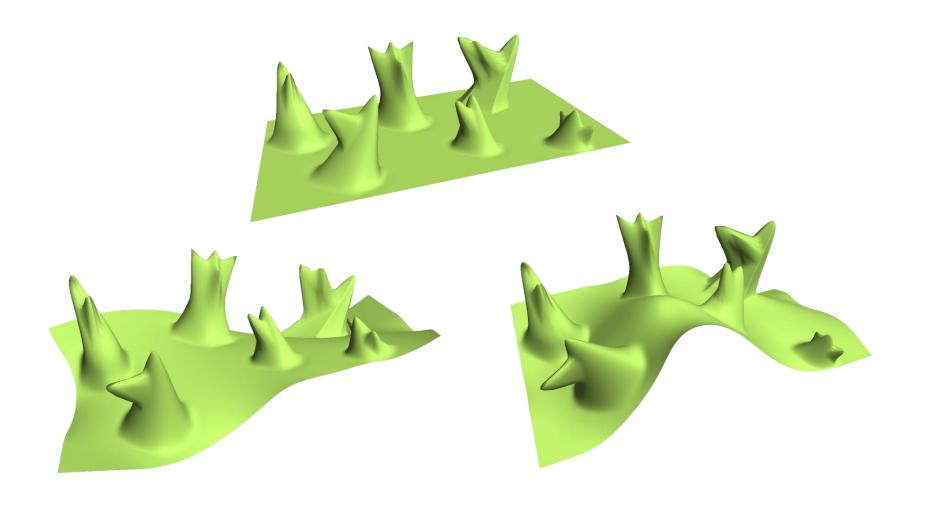
angles

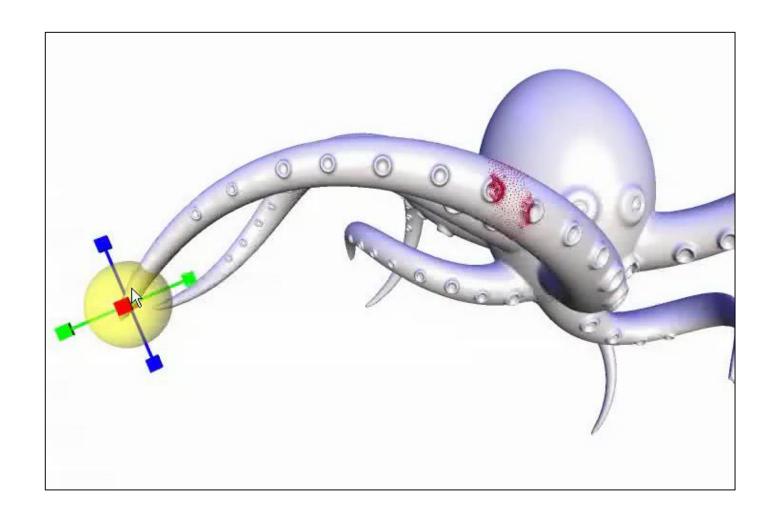






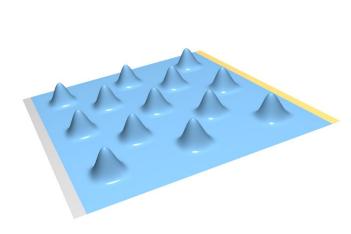




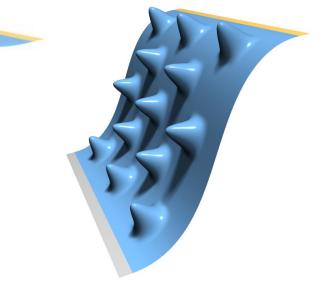


Linear Deformation Methods: Summary

- Involve linear global optimization (efficient)
- Suffer from artifacts because of local rotations
- The relationship between the translation of a handle and the local rotation is inherently



nonlinear



Nonlinear Surface-based Deformations

- Formulate a nonlinear functional $E(\mathbf{x}')$ that handles local rotations properly
- Still need an efficient minimization method...

252-0538-00L, Spring 2017

Shape Modeling and Geometry Processing

As-Rigid-As-Possible Surface Modeling

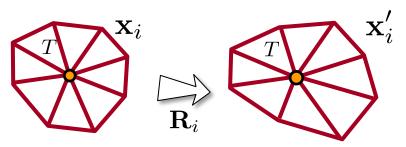
Demo

Libigl demo 405

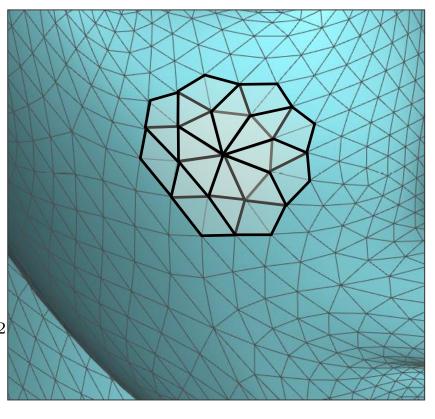
4/10/2018 Roi Poranne # 125

As-Rigid-As-Possible Deformation

- Preserve shape of cells covering the surface
- Ask each cell i to transform rigidly by best-fitting rotation \mathbf{R}_i

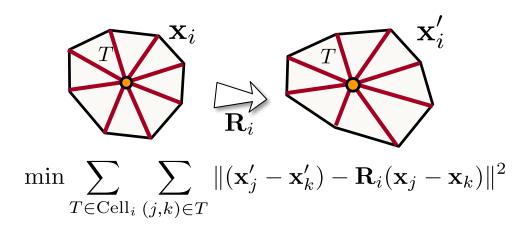


$$\min \sum_{T \in \text{Cell}_i} \sum_{(j,k) \in T} \| (\mathbf{x}'_j - \mathbf{x}'_k) - \mathbf{R}_i (\mathbf{x}_j - \mathbf{x}_k) \|^2$$



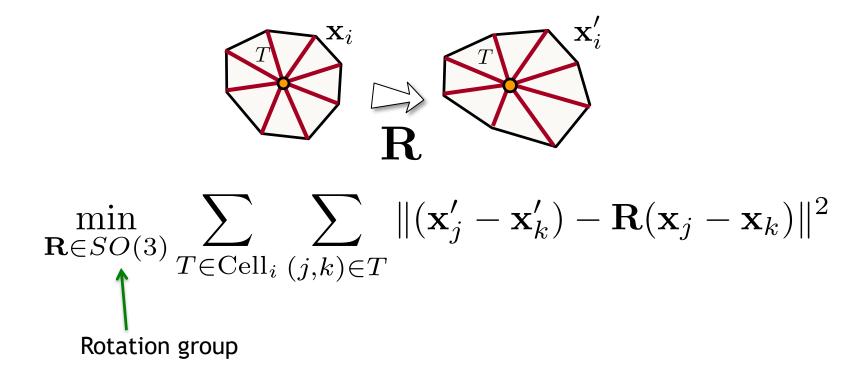
As-Rigid-As-Possible Deformation

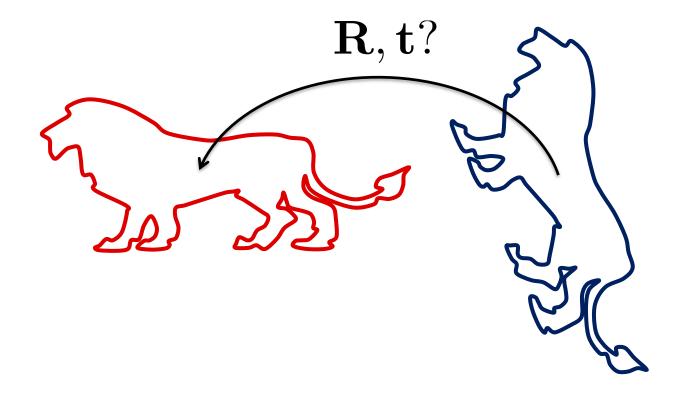
Optimal \mathbf{R}_i is uniquely defined by \mathbf{x}_i , \mathbf{x}_i'

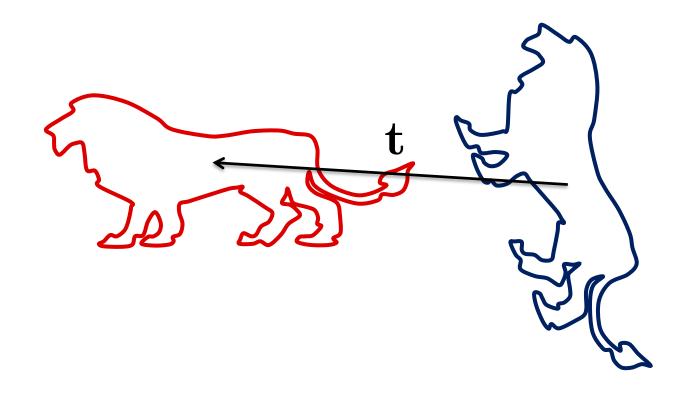


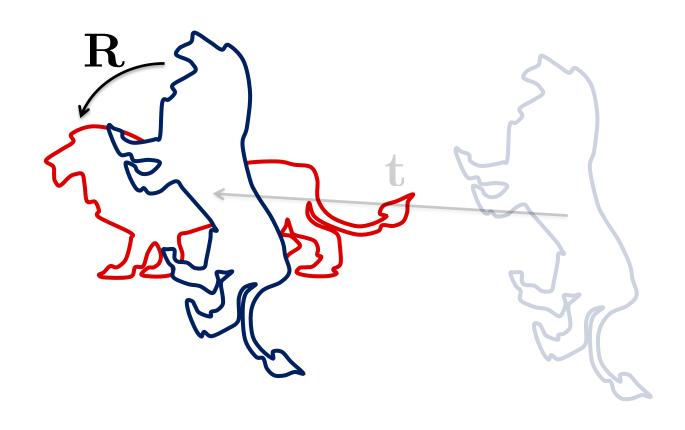
 so-called shape-matching problem, solved by a 3x3 SVD \mathbf{R}_i is a nonlinear function of \mathbf{x}

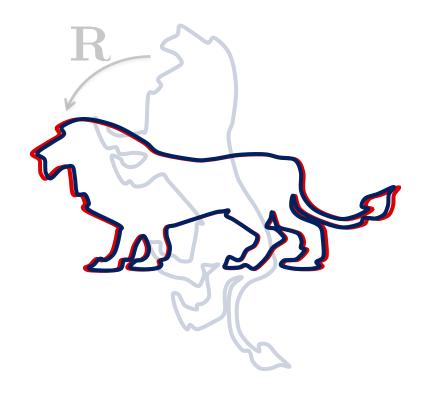
Optimal Rotation











Align two point sets

• Find a translation rectord and rotation matrix R so that

$$\sum_{i=1}^{n} \|(\mathbf{R}\mathbf{p}_i + \mathbf{t}) - \mathbf{q}_i\|^2 \text{ is minimized}$$

Shape Matching - Solution

Solve for translation first (w.r.t. R, p, and q)

$$\frac{\partial}{\partial \mathbf{t}} \sum_{i=1}^{n} \| (\mathbf{R} \mathbf{p}_i + \mathbf{t}) - \mathbf{q}_i \|^2 = \sum_{i=1}^{n} 2 \left((\mathbf{R} \mathbf{p}_i + \mathbf{t}) - \mathbf{q}_i \right) \stackrel{!}{=} 0$$

$$\mathbf{R}\sum_{i=1}^{n}\mathbf{p}_{i} + \sum_{i=1}^{n}\mathbf{t} - \sum_{i=1}^{n}\mathbf{q}_{i} = 0$$

$$\mathbf{t} = \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{q}_{i}\right) - \mathbf{R} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{i}\right)$$

Take a look at the Matrix Cookbook!

Point sets $\{\mathbf{q}_i\}$ and $\{\mathbf{Rp}_i\}$ have the same center of mass

134

4/10/2018 Roi Poranne

• To find the optimal \mathbb{R} , we bring the centroids of both point sets to the origin

$$\mathbf{v}_i = \mathbf{p}_i - \bar{\mathbf{p}}, \quad \mathbf{v}_i' = \mathbf{q}_i - \bar{\mathbf{q}}$$
• We want to find \mathbf{R} that minimizes

$$\sum_{i=1}^n \|\mathbf{R}\mathbf{v}_i - \mathbf{v}_i'\|^2$$

$$\sum_{i=1}^{n} \|\mathbf{R}\mathbf{v}_i - \mathbf{v}_i'\|^2 = \sum_{i=1}^{n} (\mathbf{R}\mathbf{v}_i - \mathbf{v}_i')^T (\mathbf{R}\mathbf{v}_i - \mathbf{v}_i') =$$

$$= \sum_{i=1}^{n} \left(\mathbf{v}_i^T \mathbf{R}^T \mathbf{R} \mathbf{v}_i - \mathbf{v}_i'^T \mathbf{R} \mathbf{v}_i - \mathbf{v}_i^T \mathbf{R}^T \mathbf{v}_i' + \mathbf{v}_i'^T \mathbf{v}_i' \right)$$
These terms do not depend on \mathbf{R} , so we can ignore them in the minimization

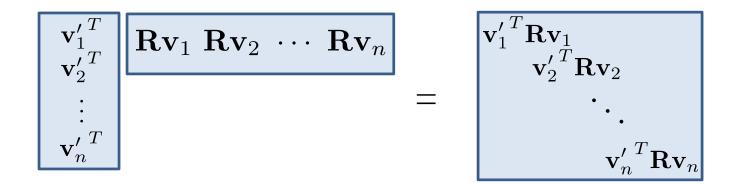
$$\underset{\mathbf{R} \in SO(3)}{\operatorname{argmin}} \sum_{i=1}^{n} \left(-\mathbf{v}_{i}^{\prime T} \mathbf{R} \mathbf{v}_{i} - \mathbf{v}_{i}^{T} \mathbf{R}^{T} \mathbf{v}_{i}^{\prime} \right) = \underset{\mathbf{R} \in SO(3)}{\operatorname{argmax}} \sum_{i=1}^{n} \left(\mathbf{v}_{i}^{\prime T} \mathbf{R} \mathbf{v}_{i} + \mathbf{v}_{i}^{T} \mathbf{R}^{T} \mathbf{v}_{i}^{\prime} \right) =$$

$$= \underbrace{\left[\underset{\mathbf{R} \in SO(3)}{\operatorname{argmax}} \sum_{i=1}^{n} \mathbf{v}_{i}^{\prime T} \mathbf{R} \mathbf{v}_{i} \right]}_{\mathbf{v}_{i}^{T} \mathbf{R}^{T} \mathbf{v}_{i}^{\prime}} = \left(\mathbf{v}_{i}^{T} \mathbf{R}^{T} \mathbf{v}_{i}^{\prime} \right)^{T} = \mathbf{v}_{i}^{\prime T} \mathbf{R} \mathbf{v}_{i}$$

$$\sum_{i=1}^{n} \mathbf{v}_{i}^{\prime T} \mathbf{R} \mathbf{v}_{i} = tr \left(\mathbf{V}^{\prime T} \mathbf{R} \mathbf{V} \right)$$

$$\begin{bmatrix} \mathbf{v}_{1}^{\prime T} \\ \mathbf{v}_{2}^{\prime T} \\ \vdots \\ \mathbf{v}_{n}^{\prime T} \end{bmatrix} \mathbf{R} \begin{bmatrix} \mathbf{v}_{1} \ \mathbf{v}_{2} \ \cdots \ \mathbf{v}_{n} \\ \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{1}^{\prime T} \\ \mathbf{v}_{2}^{\prime T} \\ \vdots \\ \mathbf{v}_{n}^{\prime T} \end{bmatrix} \mathbf{R} \mathbf{v}_{1} \mathbf{R} \mathbf{v}_{2} \cdots \mathbf{R} \mathbf{v}_{n}$$

$$\sum_{i=1}^{n} \mathbf{v}_{i}^{\prime T} \mathbf{R} \mathbf{v}_{i} = tr \left(\mathbf{V}^{\prime T} \mathbf{R} \mathbf{V} \right)$$



Find R that maximizes

Take a look at the Matrix Cookbook!

$$tr\left(\mathbf{V'}^{T}\mathbf{R}\mathbf{V}\right) = tr\left(\mathbf{R}\mathbf{V}\mathbf{V'}^{T}\right)$$
 $\mathbf{V}\mathbf{V'}^{T} = \mathbf{U}\mathbf{\Sigma}\tilde{\mathbf{U}}^{T}$

$$\mathbf{V}{\mathbf{V'}}^T = \mathbf{U}\mathbf{\Sigma} ilde{\mathbf{U}}^T$$

$$tr\left(\mathbf{R}\mathbf{V}\mathbf{V'}^{T}\right) = tr\left(\mathbf{R}\mathbf{U}\boldsymbol{\Sigma}\tilde{\mathbf{U}}^{T}\right) = tr\left(\boldsymbol{\Sigma}\tilde{\mathbf{U}}^{T}\mathbf{R}\mathbf{U}\right)$$
orthogonal matrix

140 4/10/2018 Roi Poranne

We want to maximize

$$tr\left(\Sigma \mathbf{M}\right)$$

 $tr\left(\sum \mathbf{M} \right)$ M: orthogonal matrix all coeffs < 1

$$egin{array}{c|cccc} \sigma_1 & & & & m_{11} & \dots & & \\ & \sigma_2 & & & \vdots & m_{22} & \vdots & \\ & & \sigma_3 & & \dots & m_{33} & \end{array}$$

$$tr(\Sigma \mathbf{M}) = \sum_{i=1}^{3} \sigma_i m_{ii} \le \sum_{i=1}^{3} \sigma_i$$

$$tr(\Sigma \mathbf{M}) = \sum_{i=1}^{3} \sigma_{i} m_{ii} \leq \sum_{i=1}^{3} \sigma_{i}$$

• Our best shot is $m_{ii} = i \pm 1$, i.e. to make $\mathbf{M} = \mathbf{I}$

$$\mathbf{M} = \tilde{\mathbf{U}}^T \mathbf{R} \mathbf{U} \stackrel{!}{=} \mathbf{I}$$
 $\mathbf{R} \mathbf{U} = \tilde{\mathbf{U}}$
 $\mathbf{R} = \tilde{\mathbf{U}} \mathbf{U}^T$

Summary of Rigid Alignment

Translate the input points to the centroids

$$\mathbf{v}_i = \mathbf{p}_i - ar{\mathbf{p}}, \qquad \mathbf{v}_i' = \mathbf{q}_i - ar{\mathbf{q}}$$

- Compute the "covariance matrix"
- Compute its SVD:

$$\mathbf{V}{\mathbf{V}'}^T$$

• The optimal orthogonal \mathbf{R} $\overline{\mathbf{ts}}$ $\mathbf{U} \mathbf{\Sigma} \tilde{\mathbf{U}}^T$

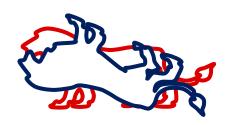
$$\mathbf{R} = \tilde{\mathbf{U}}\mathbf{U}^T$$

Sign Correction

• It is possible that $\det(\tilde{\mathbf{U}}\mathbf{U}^T) = -1$: sometimes reflection is the best orthogonal transform

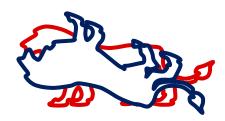
Sign Correction

• It is possible that $\det(\tilde{\mathbf{U}}\mathbf{U}^T) = -1$: sometimes reflection is the best orthogonal transform



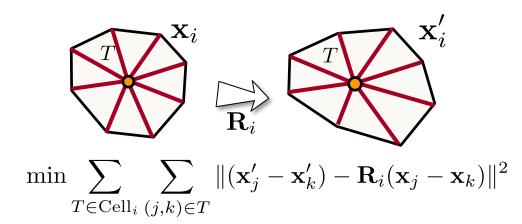
Sign Correction

 To restrict ourselves to rotations only: take the last column of U (corresponding to the smallest singular value) and invert its sign.



Why? See http://igl.ethz.ch/projects/ARAP/svd_rot.pdf

Optimal \mathbf{R}_i is uniquely defined by \mathbf{x}_i , \mathbf{x}_i'



 so-called shape-matching problem, solved by a 3x3 SVD \mathbf{R}_i is a nonlinear function of \mathbf{x}

Total ARAP energy: sum up for all the cells i

$$\sum_{i} \sum_{T \in \text{Cell}_i} \sum_{(j,k) \in T} \| (\mathbf{x}'_j - \mathbf{x}'_k) - \mathbf{R}_i (\mathbf{x}_j - \mathbf{x}_k) \|^2$$

- Treat x and R as separate sets of variables
- Simple local-global iterative optimization process
 - Decreases the energy at each step

Total ARAP energy: sum up for all the cells i

$$\sum_{i} \sum_{T \in \text{Cell}_{i}} \sum_{(j,k) \in T} \| (\mathbf{x}'_{j} - \mathbf{x}'_{k}) - \mathbf{R}_{i} (\mathbf{x}_{j} - \mathbf{x}_{k}) \|^{2}$$

- Local step: keep \mathbf{x} ' fixed, find optimal \mathbf{R}_i per cell i Global step: keep \mathbf{R}_i fixed, solve for \mathbf{x} ' \rightarrow $\mathbf{L}\mathbf{x}' = \mathbf{b}$ quadratic minimization problem

Total ARAP energy: sum up for all the cells i

$$\sum_{i} \sum_{T \in \text{Cell}_{i}} \sum_{(j,k) \in T} \| (\mathbf{x}'_{j} - \mathbf{x}'_{k}) - \mathbf{R}_{i} (\mathbf{x}_{j} - \mathbf{x}_{k}) \|^{2}$$

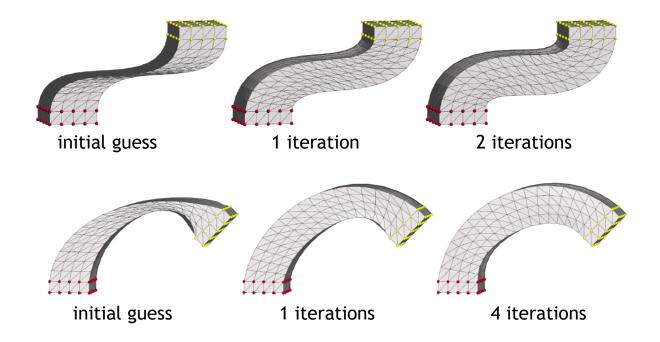
- Local step: keep \mathbf{x} ' fixed, find optimal \mathbf{R}_i per cell i Global step: keep \mathbf{R}_i fixed, solve for \mathbf{x} ' \longrightarrow $\mathbf{L}\mathbf{x}' = \mathbf{b}$ quadratic minimization problem

 The matrix \mathbf{L} stays fixed, can pre-factorize

Roi Poranne # 150 4/10/2018

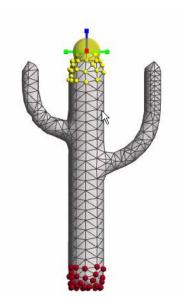
Initial Guess

Can use naïve Laplacian editing



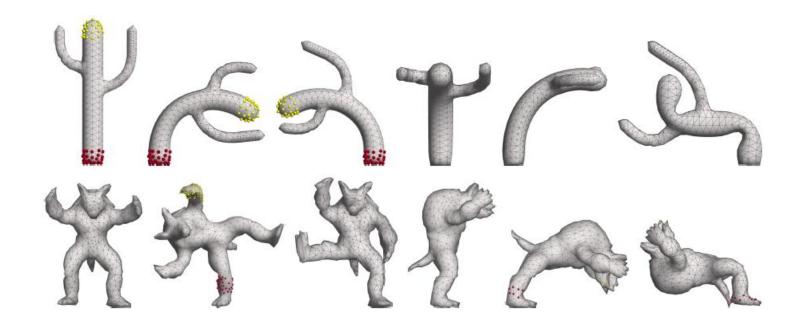
Initial Guess

- Can also use the previous frame
- Replace all handle vertex positions by the currently prescribed ones
- Fast convergence

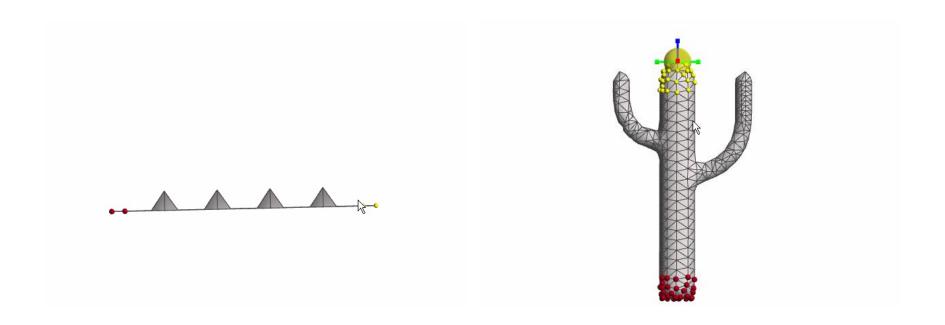


Large Rotations

Use previous frame as the initial guess



Examples



Discussion

- Nonlinear deformation that models a kind of elastic behavior
- Very simple to implement, no parameters to tune except number of iterations
- Each step is guaranteed to not increase the energy
 - Compare with Gauss-Newton...
- Each iteration is relatively cheap, no matrix refactorization necessary

Discussion

- Works fine on small meshes
- On larger meshes: slow convergence
 - Each iteration is more expensive
 - Need more iterations because the conditioning of the system becomes worse as the matrix grows
- Material stiffness depends on the cell size
 - lots of wrinkles for fine meshes when using 1-rings as cells

Acceleration using Subspace Techniques

- Subspace created by influence weight functions for each handle
- Drastically reduces the number of degrees of freedom in the optimization

Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. <u>"Fast Automatic Skinning Transformations,"</u> 2012.

Acceleration using Subspace Techniques

- Subspace created by influence weight functions for each handle
- Drastically reduces the number of degrees of freedom in the optimization

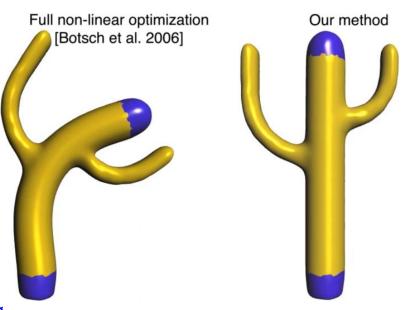


Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. <u>"Fast Automatic Skinning Transformations," 2012.</u>

Acceleration using Subspace Techniques

- Subspace created by influence weight functions for each handle
- Drastically reduces the number of degrees of freedom in the optimization

Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. <u>"Fast Automatic Skinning Transformations," 2012.</u>



Demo

Libigl demo 406

