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Space Deformation

Defined on the ambient space

Evaluate on points of shape embedded in space

𝐝:ℝ3 → ℝ3

Displacement

x′ = 𝑥 + 𝑑 x

S S’
𝑓 (𝑥, 𝑦) = (2𝑥, 𝑦)

Mapping

x′ = 𝑑 x



Works with many shape reps!

Daniel Sieger, PhD dissertation, 2016

point cloud triangle mesh

tet mesh
hex mesh



Freeform Deformation 
[Sederberg and Parry 86]

Control lattice

Basis functions Bi (x) are 

trivariate tensor-product splines:

http://dl.acm.org/citation.cfm?id=15903

http://dl.acm.org/citation.cfm?id=15903
http://tom.cs.byu.edu/~tom/papers/ffd.pdf
http://dl.acm.org/citation.cfm?id=15903


Volumetric Energy Minimization

Minimize similar energies to surface case 

How to minimize this in the space of all functions?

[Real-Time Shape Editing using Radial Basis Functions, Botsch and Kobbelt, EUROGRAPHICS 2005]



Radial Basis Functions

Represent deformation by RBFs

RBF fitting

Interpolate constraints

Solve linear system for wj and p

[Real-Time Shape Editing using Radial Basis Functions, Botsch and Kobbelt, EUROGRAPHICS 2005]



Deformation as an interpolation 

problem

𝐟 𝐩𝑖 = 𝐪𝑖 , ∀𝑖

𝐟 𝐩𝑖 =෍𝐰𝑖𝑓𝑖 𝐱

𝐰𝑖 =?

෍𝐰𝑖𝑓𝑖 𝐩𝑖 = 𝐪𝑖 , ∀𝑖

𝐩𝑖

𝒒𝑖



Example: Thin Plate Spline

Solve the problem

min𝐸TPS(𝐟) = ඵ
𝜕2𝐟

𝜕𝑥2

2

+ 2
𝜕2𝐟

𝜕𝑥𝜕𝑦

2

+
𝜕2𝐟

𝜕𝑦2

2

s.t. 𝐟 𝐩𝑖 = 𝐪𝑖 , ∀𝑖

𝐟 𝐩𝑖 = 𝐜0 + 𝐜𝑥𝒙 + 𝐜𝑦𝒚 +෍𝐜𝑖ϕ ‖𝐱 − 𝐩𝑖‖

ϕ 𝑟 = 𝑟2 log 𝑟

General solution

Bending energy



Hermite interpolation

Interpolate derivatives



Hermite interpolation

Interpolate derivatives



Hermite interpolation

Interpolate derivatives

𝐟 𝐩𝑖 = 𝐪𝑖 𝐃𝐟 𝐩𝑖 = 𝐃𝑖෍𝐜𝑖𝑓𝑖 𝐩𝑖 = 𝐪𝑖 ෍𝐜𝑖𝛻𝑓𝑖 𝐩𝑖 = 𝐃𝑖



Local & Global Deformations
[Real-Time Shape Editing using Radial Basis Functions, Botsch and Kobbelt, EUROGRAPHICS 2005]



Local & Global Deformations
[Real-Time Shape Editing using Radial Basis Functions, Botsch and Kobbelt, EUROGRAPHICS 2005]

1M vertices

movie



MLS Deformation 
[Schaeffer et al. ‘06]

1. Handles 𝒑𝒊

pi

2. Target locations Ƹ𝑝𝑖

pi

4.  Deform

3. Find best affine transformation that maps  pi  to Ƹ𝑝𝑖

14

min
𝑀,𝑇

෍

𝑖

𝑀pi + 𝑇 − Ƹ𝑝𝑖
2

𝑓 (𝑣) = 𝑀𝒗 + 𝑇



MLS Deformation 
[Schaeffer et al. ‘06]

pi
pi

Closed form solution

15

1. Handles 𝒑𝒊 2. Target locations Ƹ𝑝𝑖

4.  Deform

3. Find best affine transformation that maps  pi  to Ƹ𝑝𝑖

min
𝑀,𝑇

෍

𝑖

1

pi − 𝑣
𝑀pi + 𝑇 − Ƹ𝑝𝑖

2

𝑓 (𝑣) = 𝑀𝒗 + 𝑇



MLS Deformation 
[Schaeffer et al. ‘06]

pi
pi

Closed form solution

16

1. Handles 𝒑𝒊 2. Target locations Ƹ𝑝𝑖

4.  Deform

3. Find best affine transformation that maps  pi  to Ƹ𝑝𝑖

min
𝑀,𝑇

෍

𝑖

1

pi − 𝑣
𝑀pi + 𝑇 − Ƹ𝑝𝑖

2

𝑓 (𝑣) = 𝑀𝒗 + 𝑇



Affine Transformations?

Shears!

Similarity 

17



Similarity Transformations

pi
pi

Closed form solution

18

1. Handles 𝒑𝒊 2. Target locations Ƹ𝑝𝑖

4.  Deform

3. Find best similarity transformation that maps  pi  to Ƹ𝑝𝑖

min
𝑀,𝑇

෍

𝑖

1

pi − 𝑣
𝑀pi + 𝑇 − Ƹ𝑝𝑖

2

𝑓 (𝑣) = 𝑀𝒗 + 𝑇



Similarity Transformations

pi
pi

Closed form solution
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1. Handles 𝒑𝒊 2. Target locations Ƹ𝑝𝑖

4.  Deform

3. Find best similarity transformation that maps  pi  to Ƹ𝑝𝑖

min
𝑀,𝑇

෍

𝑖

1

pi − 𝑣
𝑀pi + 𝑇 − Ƹ𝑝𝑖

2

𝑓 (𝑣) = 𝑀𝒗 + 𝑇



Similarity Transformations?

Scales!

Rigid

20



Rigid Transformations

pi
pi

21

1. Handles 𝒑𝒊 2. Target locations Ƹ𝑝𝑖

4.  Deform

3. Find best rigid transformation that maps  pi  to Ƹ𝑝𝑖

min
𝑀,𝑇

෍

𝑖

1

pi − 𝑣
𝑀pi + 𝑇 − Ƹ𝑝𝑖

2

𝑓 (𝑣) = 𝑀𝒗 + 𝑇



Comparison

Thin-Plate

[Bookstein ’89]
Affine MLS Similarity 

MLS
Rigid MLS
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Examples

Before After

23



Examples

Horse Giraffe

24



Limitations

Deforms all space - is not “shape aware”

25



The “Pants” Problem

Small Euclidean 

distance

Large geodesic

distance

26



The “Pants” Problem

Don’t care about 

distortion outside the 

shape

27



Solution: Cages

Enclose the shape in a “cage” Ω ⊂ ℝ𝑛

Deformation function defined only on cage

New problem: how to build the cage?

f :   ℝ𝑛


28



fi

F

xi

S

Deformation with a Cage

x
g(x)

S = {x1,x2,...,xn} 

Source polygon

xi  fi

Target polygon

g(x) = ?    Interior?
29



( )iw x

x
xi

fi

F

xi

S

x

wi(x) :  ℝn

Barycentric Coords Function

30

Generalized barycenric coordinates



( )iw x

x
xi

1

( ) ( )
n

F i i

i

g x w x f




fi

F

xi

S

x
g(x)

31

Generalized barycenric coordinates



Stages:

• Source shape

• Polygonal cage

• Coordinates

𝛼𝑖(𝑥)

𝑓 𝐱 =෍

𝑖=1

𝑛

𝛼𝑖 𝐱 𝐪𝑖

Generalized barycenric coordinates



Stages:

• Source shape

• Polygonal cage

• Coordinates

• Manipulate cage

• Apply deformation

𝛼𝑖(𝑥)𝐪𝑖

𝑓 𝐱 =෍

𝑖=1

𝑛

𝛼𝑖 𝐱 𝐪𝑖

Generalized barycenric coordinates



3D Example

34



3D Example

35



Generalized barycenric coordinates

Data interpolation from the vertices of a 

boundary polygon to its interior

Boundary value problems

Shading

Space deformations

Parametrization



Required properties

Translation invariance (constant precision)

Reproduction of identity (linear precision)

fi

g(x)

xi x

37

Generalized barycenric coordinates



𝑔𝐴𝑥+𝑇 𝑥 =෍

𝑖=1

𝑛

𝑤𝑖 𝑥 𝐴𝑥𝑖 + 𝑇 =

= 𝐴෍

𝑖=1

𝑛

𝑤𝑖 𝑥 𝑥𝑖 + 𝑇෍

𝑖=1

𝑛

𝑤𝑖 𝑥 𝑥𝑖 =

Constant + linear precision = affine 

invariance

38

Generalized barycenric coordinates



𝑔𝐴𝑥+𝑇 𝑥 =෍

𝑖=1

𝑛

𝑤𝑖 𝑥 𝐴𝑥𝑖 + 𝑇 =

= 𝐴෍

𝑖=1

𝑛

𝑤𝑖 𝑥 𝑥𝑖 + 𝑇෍

𝑖=1

𝑛

𝑤𝑖 𝑥 =

Constant + linear precision = affine 

invariance

39

x 1

Generalized barycenric coordinates



𝑔𝐴𝑥+𝑇 𝑥 =෍

𝑖=1

𝑛

𝑤𝑖 𝑥 𝐴𝑥𝑖 + 𝑇 =

= 𝐴෍

𝑖=1

𝑛

𝑤𝑖 𝑥 𝑥𝑖 + 𝑇෍

𝑖=1

𝑛

𝑤𝑖 𝑥 𝑥𝑖 =

= 𝐴𝑥 + 𝑇

Constant + linear precision = affine 

invariance

40

x 1

Generalized barycenric coordinates



Required properties

Smoothness – at least C1

Interpolation (Lagrange property)

41

fi

g(x)

xi x

Generalized barycenric coordinates



Not unique. Many recipies proposed.

We will show three main coordinates:

Wachspress

Harmonic

Mean Value

Generalized barycenric coordinates



Wachspress Coordinates

Only apply to convex polygons

Three points construction:

The areas are signed!

1

1

i i i
i

i i

A A B
w

A A





 




Wachspress Coordinates

Rephrasing the expression:

Every coordinate depends on the 

vertex its neighbors

Such coordinates are called three-

point coordinates.

1 1 11

2

1 1 1 1

1 1

2 2

1

sin( )

sin( ) sin( )

sin( ) cot( ) cot( )

sin( )sin( )

i i i i i ii i i

i i i i i i i i i

i i i i

i i i i

v v v vA A B

A A v v v p v v

v p v p

 

 

   

 

  

   

 



    
 

  

 
 

 



Wachspress Interpolation



Wachspress Interpolation

Coordinates blow-up for non convex 

polygons



Mean Value Coordinates

47

x

xi+1

xi-1

xi
i-1

i

Closed form!

1tan tan
2 2

( )

i i

i

i

w x
v x

    
   

   




Mean Value Coordinates

Defined anywhere in the plane



Example: 3D Mean Value Coords

49



MV - Limitations

Back to the pants problem 

MV negative on concave polygons

50



MV - Limitations

Other leg moves in opposite (!) direction

51



Positivity

Additional property required:

Mean value coords only positive 

on convex polygons

52

𝑤𝑖 𝑥 > 0



Harmonic Coordinates
[Joshi et al ’07]

Solve for wi(x):

subject to: wi linear on the boundary 

and 

53



Harmonic Coordinates

54

MVC HC



Harmonic Coordinates

55

MVC HC



Harmonic Coordinates

Properties:

All required properties 

Smooth, translation + rotation invariant

Positive everywhere

No closed form, need to solve a PDE

56



More Examples

[Li et al.]

[Li et al.][Weber et. al][Weber et al.]

[Schneider et al.]

[Lipman et al]
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Excellent webpage on barycentric coordinates: 

http://www.inf.usi.ch/hormann/barycentric/
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Linear Blend Skinning

place handles in shape



Linear Blend Skinning

place handles in shape paint weights



Linear Blend Skinning

place handles in shape paint weights deform handles



Linear Blend Skinning

place handles in shape paint weights deform handles



Linear Blend Skinning

place handles in shape paint weights deform handles



Challenges with LBS

Weight functions wj

Need intuitive, general and 

automatic weights

Degrees of freedom Tj

Decide via optimization?

Richness of achievable 

deformations
Want to avoid common LBS pitfalls –

candy wrapper, collapses



Challenges with LBS



Challenges with LBS



Bounded Biharmonic Weights

Alec Jacobson, Ilya Baran, Jovan Popović, S

ACM SIGGRAPH 2011; selected for Research Highlights in CACM (2014)



Weights must be smooth everywhere, 

especially at handles

Bounded Biharmonic Weights Extension of Harmonic Coordinates
[Joshi et al. 2005] 



Weights must be smooth everywhere, 

especially at handles

Bounded Biharmonic Weights Extension of Harmonic Coordinates
[Joshi et al. 2005] 



Shape-awareness ensures respect of 

domain’s features

Non-shape-aware methods
e.g. [Schaefer et al. 2006]

Bounded Biharmonic Weights



Non-negative weights are necessary 

for intuitive response

Unconstrained biharmonic
[Botsch and Kobbelt 2004]

Bounded Biharmonic Weights



Weights must maintain other simple, 

but important properties

Handle 

vertices

Interpolation of handlesPartition of unity

is linear along cage faces



How about wj (x0) = d (x0, Hj)
–1 ?



Inverse distance methods inherently 

suffer from fall-off effect



Inverse distance methods inherently 

suffer from fall-off effect



Inverse distance methods inherently 

suffer from fall-off effect

Approaching 0.5



Inverse distance methods inherently 

suffer from fall-off effect

Inverse-

distance

weights

BBW



Bounded biharmonic weights enforce 

properties as constraints to minimization

is linear along cage faces



Bounded biharmonic weights enforce 

properties as constraints to minimization

is linear along cage faces

Constant inequality constraints

Partition of unity



Bounded biharmonic weights enforce 

properties as constraints to minimization

is linear along cage faces

Constant inequality constraints

Solve independently and 

normalize



FEM discretization
2D  Triangle mesh

3D  Tet mesh

is linear along cage faces

Weights optimized as precomputation at bind-time

81



Some examples of BBW in action
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Some examples of BBW in action
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Some examples of BBW in action

85



3D Characters

86



Mixing different handle types

87



Thank You!


