252-0538-00L, Spring 2017

## Shape Modeling and Geometry Processing

**Space Deformations** 



## **Space Deformation**

Defined on the ambient space

$$\mathbf{d}: \mathbb{R}^3 \to \mathbb{R}^3$$

Evaluate on points of shape embedded in space

Displacement

$$\mathbf{x}' = x + d(\mathbf{x})$$

Mapping x' = d(x)







## Works with many shape reps!



Daniel Sieger, PhD dissertation, 2016



## **Freeform Deformation**

[Sederberg and Parry 86]

Control lattice Basis functions  $B_i(\mathbf{x})$  are trivariate tensor-product splines:



$$\mathbf{d}(x, y, z) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \mathbf{d}_{ijk} N_i(x) N_j(y) N_k(z)$$



http://dl.acm.org/citation.cfm?id=15903





## Volumetric Energy Minimization

[Real-Time Shape Editing using Radial Basis Functions, Botsch and Kobbelt, EUROGRAPHICS 2005]

#### Minimize similar energies to surface case

$$\int_{\mathbb{R}^3} \|\mathbf{d}_{xx}\|^2 + \|\mathbf{d}_{xy}\|^2 + \ldots + \|\mathbf{d}_{zz}\|^2 \, dx \, dy \, dz \to \min$$

#### How to minimize this in the space of all functions?



## **Radial Basis Functions**

[Real-Time Shape Editing using Radial Basis Functions, Botsch and Kobbelt, EUROGRAPHICS 2005]

#### Represent deformation by RBFs

$$\mathbf{d}(\mathbf{x}) = \sum_{j} \mathbf{w}_{j} \varphi(\|\mathbf{c}_{j} - \mathbf{x}\|) + \mathbf{p}(\mathbf{x})$$

#### **RBF** fitting

Interpolate constraints

Solve linear system for  $\mathbf{w}_i$  and  $\mathbf{p}$ 





## Deformation as an interpolation problem



 $\sum \mathbf{w}_i f_i(\mathbf{p}_i) = \mathbf{q}_i, \forall i$ 



## Example: Thin Plate Spline

#### Solve the problem

$$\min E_{\text{TPS}}(\mathbf{f}) = \iint \left[ \left( \frac{\partial^2 \mathbf{f}}{\partial x^2} \right)^2 + 2 \left( \frac{\partial^2 \mathbf{f}}{\partial x \partial y} \right)^2 + \left( \frac{\partial^2 \mathbf{f}}{\partial y^2} \right)^2 \right]$$

Bending energy

s.t.  $\mathbf{f}(\mathbf{p}_i) = \mathbf{q}_i, \forall i$ 

#### General solution

$$\mathbf{f}(\mathbf{p}_i) = \mathbf{c}_0 + \mathbf{c}_x \mathbf{x} + \mathbf{c}_y \mathbf{y} + \sum_{i=1}^{n} \mathbf{c}_i \phi(\|\mathbf{x} - \mathbf{p}_i\|)$$
  
$$\phi(r) = r^2 \log r$$
  
ETH zürich

#### Hermite interpolation

Interpolate derivatives





#### Hermite interpolation

#### Interpolate derivatives





#### Hermite interpolation

#### Interpolate derivatives



#### Local & Global Deformations

[Real-Time Shape Editing using Radial Basis Functions, Botsch and Kobbelt, EUROGRAPHICS 2005]





#### Local & Global Deformations

[Real-Time Shape Editing using Radial Basis Functions, Botsch and Kobbelt, EUROGRAPHICS 2005]





1M vertices movie



#### MLS Deformation [Schaeffer et al. '06]



1. Handles  $p_i$  2. Target locations  $\hat{p}_i$ 

3. Find best affine transformation that maps  $p_i$  to  $\hat{p}_i$ 

$$\min_{M,T} \sum_{i} \|Mp_i + T - \hat{p}_i\|^2$$

4. Deform f(v) = Mv + T



#### MLS Deformation [Schaeffer et al. '06]



1. Handles  $p_i$  2. Target locations  $\hat{p}_i$ 

3. Find best affine transformation that maps  $p_i$  to  $\hat{p}_i$ 

$$\min_{M,T} \sum_{i} \left\| \frac{1}{\|p_{i} - v\|} (Mp_{i} + T) - \hat{p}_{i} \right\|^{2}$$

4. Deform f(v) = Mv + T

Closed form solution



#### MLS Deformation [Schaeffer et al. '06]



1. Handles  $p_i$  2. Target locations  $\hat{p}_i$ 

3. Find best affine transformation that maps  $p_i$  to  $\hat{p}_i$ 

$$\min_{M,T} \sum_{i} \left\| \frac{1}{\|p_{i} - v\|} (Mp_{i} + T) - \hat{p}_{i} \right\|^{2}$$

4. Deform f(v) = Mv + T

Closed form solution



# Affine Transformations?





## Similarity Transformations



3. Find best **similarity** transformation that maps  $p_i$  to  $\hat{p}_i$ 

$$\min_{M,T} \sum_{i} \left\| \frac{1}{\|\boldsymbol{p}_{i} - \boldsymbol{v}\|} (M\boldsymbol{p}_{i} + T) - \hat{\boldsymbol{p}}_{i} \right\|^{2} \qquad M = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$$

4. Deform f(v) = Mv + T

Closed form solution



## Similarity Transformations



3. Find best similarity transformation that maps  $p_i$  to  $\hat{p}_i$ 

$$\min_{M,T} \sum_{i} \left\| \frac{1}{\|\boldsymbol{p}_{i} - \boldsymbol{v}\|} (M\boldsymbol{p}_{i} + T) - \hat{\boldsymbol{p}}_{i} \right\|^{2} \qquad M = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$$

4. Deform f(v) = Mv + T

Closed form solution



## **Rigid** Similarity Transformations?





## **Rigid Transformations**



3. Find best **rigid** transformation that maps  $p_i$  to  $\hat{p}_i$ 

$$\min_{M,T} \sum_{i} \left\| \frac{1}{\|p_{i} - v\|} (Mp_{i} + T) - \hat{p}_{i} \right\|^{2}$$

$$M = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$$
$$c^{2} + s^{2} = 1$$

21

ETH zürich

4. Deform f(v) = Mv + T

## Comparison





#### Examples





Before

After



#### Examples



Giraffe



#### Limitations

#### Deforms all space - is not "shape aware"





#### The "Pants" Problem

Small Euclidean distance Large geodesic distance





#### The "Pants" Problem





## Solution: Cages

#### Enclose the shape in a "cage" $\Omega \subset \mathbb{R}^n$ Deformation function defined only on cage

$$f: \Omega \to \mathbb{R}^n$$

New problem: how to build the cage?













#### Stages:

- Source shape
- Polygonal cage
- Coordinates



$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i(\mathbf{x}) \mathbf{q}_i$$



#### Stages:

- Source shape
- Polygonal cage
- Coordinates
- Manipulate cage
- Apply deformation







#### 3D Example





#### 3D Example

$$\mathbf{x}' = \sum_{i=1}^k w_i(\mathbf{x}) \mathbf{p}'_i$$







Data interpolation from the vertices of a boundary polygon to its interior

- Boundary value problems
- Shading
- Space deformations
- Parametrization







Hzürich
Required properties

Translation invariance (constant precision)

$$\sum_{i=1}^n w_i(x) = 1$$

Reproduction of identity (linear precision)

$$\sum_{i=1}^n W_i(x) x_i = x$$

 $g(x) = \sum_{i=1}^{n} w_i(x) f_i$ 

g(x)

f<sub>i</sub>

#### Constant + linear precision = affine invariance

$$g_{Ax+T}(x) = \sum_{i=1}^{n} w_i(x)(Ax_i + T) =$$



#### Constant + linear precision = affine invariance





#### Constant + linear precision = affine invariance





Required properties Smoothness - at least C1

Interpolation (Lagrange property)

$$f(x_{j}) = f_{j}$$

$$w_{i}(x_{j}) = \delta_{ij}$$





Not unique. Many recipies proposed. We will show three main coordinates:

Wachspress

Harmonic

Mean Value



ETH zürich

# Wachspress Coordinates

Only apply to convex polygons Three points construction:

$$w_i = \frac{A_{i+1} + A_i - B_i}{A_{i+1}A_i}$$

The areas are signed!





ETH zürich

# Wachspress Coordinates

#### Rephrasing the expression:

 $\frac{A_{i} + A_{i+1} - B_{i}}{A_{i}A_{i+1}} = \frac{\sin(\alpha_{i-1} + \beta_{i}) \|v_{i} - v_{i-1}\| \cdot \|v_{i} - v_{i+1}\|}{\sin(\alpha_{i-1}) \|v_{i} - v_{i-1}\| \|v_{i} - p\|^{2} \sin(\beta_{i}) \|v_{i} - v_{i+1}\|} = \frac{\sin(\alpha_{i-1} + \beta_{i})}{\sin(\alpha_{i-1}) \sin(\beta_{i}) \|v_{i} - p\|^{2}} = \frac{\cot(\alpha_{i-1}) + \cot(\beta_{i})}{\|v_{i} - p\|^{2}}$ 

Every coordinate depends on the vertex its neighbors

Such coordinates are called **three**-**point coordinates**.



## Wachspress Interpolation





## Wachspress Interpolation



# Coordinates blow-up for non convex polygons



## Mean Value Coordinates





Closed form!





## Mean Value Coordinates

#### Defined anywhere in the plane





# Example: 3D Mean Value Coords







# **MV** - Limitations

## Back to the pants problem MV negative on concave polygons





## **MV** - Limitations

### Other leg moves in opposite (!) direction







# Positivity

#### Additional property required:

 $w_i(x) > 0$ 

#### Mean value coords only positive on convex polygons



#### Harmonic Coordinates [Joshi et al '07]

Solve for  $w_i(x)$ :

 $\nabla^2 w_i(x) = 0$ 

subject to:  $w_i$  linear on the boundary and

$$W_i(x_j) = \delta_{ij}$$





## Harmonic Coordinates







MVC

HC



## Harmonic Coordinates





MVC



HC



## Harmonic Coordinates

#### **Properties:**

#### All required properties Smooth, translation + rotation invariant

Positive everywhere

No closed form, need to solve a PDE



## More Examples



## References

"On Linear Variational Surface Deformation Methods" [Botsch & Sorkine '08]

Tutorial: "Interactive Shape Modeling and Deformation" [Sorkine & Botsch '09]

"Image deformation using moving least squares" [Schaefer et al '06]

"Mean Value Coordinates for Closed Triangular Meshes" [Ju et al '05]

"Harmonic coordinates for character articulation" [Joshi et al '07]

Excellent webpage on barycentric coordinates: http://www.inf.usi.ch/hormann/barycentric/























## Challenges with LBS

Weight functions  $w_j$ Need intuitive, general and automatic weights Degrees of freedom  $T_j$ Decide via optimization? Richness of achievable deformations

Want to avoid common LBS pitfalls - candy wrapper, collapses





## Challenges with LBS





## Challenges with LBS

Problem of standard skinning methods





Alec Jacobson, Ilya Baran, Jovan Popović, S ACM SIGGRAPH 2011; selected for Research Highlights in CACM (2014)

## **Bounded Biharmonic Weights**





#### Weights must be smooth everywhere, especially at handles





Bounded Biharmonic Weights

Extension of Harmonic Coordinates [Joshi et al. 2005]



#### Weights must be smooth everywhere, especially at handles



Bounded Biharmonic Weights



Extension of Harmonic Coordinates [Joshi et al. 2005]



# Shape-awareness ensures respect of domain's features



Bounded Biharmonic Weights

Non-shape-aware methods e.g. [Schaefer et al. 2006]



# Non-negative weights are necessary for intuitive response

Bounded Biharmonic Weights







## Weights must maintain other simple, but important properties

$$\sum_{j \in H} w_j(\mathbf{x}^0) = 1$$

Handle vertices 
$$w_j \Big|_{H_k} = \delta_{jk}$$

 $w_j$  is linear along cage faces

Partition of unity

Interpolation of handles


## How about $w_j(\mathbf{x}^0) = d(\mathbf{x}^0, H_j)^{-1}$ ?





















# Bounded biharmonic weights enforce properties as constraints to minimization

$$\underset{w_{j}}{\operatorname{arg\,min}} \frac{1}{2} \int_{\Omega} |\Delta w_{j}|^{2} dV$$

$$w_{j} \Big|_{H_{k}} = \delta_{jk}$$

$$w_{j} \text{ is linear along cage faces}$$



Bounded biharmonic weights enforce properties as constraints to minimization

$$\underset{w_{j}}{\operatorname{arg\,min}} \frac{1}{2} \int_{\Omega} |\Delta w_{j}|^{2} dV$$

$$w_{j} \Big|_{H_{k}} = \delta_{jk}$$

$$w_{j} \text{ is linear along cage faces}$$

Constant inequality constraints  $0 \le w_j(\mathbf{x}^0) \le 1$ Partition of unity  $\sum_{j \in H} w_j(\mathbf{x}^0) = 1$ 



# Bounded biharmonic weights enforce properties as constraints to minimization

$$\underset{w_{j}}{\operatorname{arg\,min}} \frac{1}{2} \int_{\Omega} |\Delta w_{j}|^{2} dV$$

$$w_{j} \Big|_{H_{k}} = \delta_{jk}$$

$$w_{j} \text{ is linear along cage faces}$$

Constant inequality constraints  $0 \leq w_j(\mathbf{x}^0) \leq 1$ 

Solve independently and normalize  $w_j(\mathbf{x}^0) = \frac{w_j(\mathbf{x}^0)}{\sum_{i \in H} w_i(\mathbf{x}^0)}$ 



#### Weights optimized as precomputation at bind-time

 $\begin{aligned} \arg\min_{w_j} \frac{1}{2} \int_{\Omega} |\Delta w_j|^2 dV \\ w_j \Big|_{H_k} &= \delta_{jk} \\ w_j \text{ is linear along cage faces} \\ 0 &\leq w_j(\mathbf{x}^0) \leq 1 \end{aligned}$ 

FEM discretization 2D  $\rightarrow$  Triangle mesh 3D  $\rightarrow$  Tet mesh





### Some examples of BBW in action





### Some examples of BBW in action





### Some examples of BBW in action





### **3D** Characters







### Mixing different handle types





### Thank You!

