
Deformable Objects Alive!

Stelian Coros1 Sebastian Martin1 Bernhard Thomaszewski1 Christian Schumacher2 Robert Sumner1

Markus Gross1,2

1Disney Research Zurich 2ETH Zurich

Figure 1: Our method for controlling deformable characters allows animators to bring passive elastic objects, such as this tea cup, to life.

Abstract

We present a method for controlling the motions of active de-
formable characters. As an underlying principle, we require that
all motions be driven by internal deformations. We achieve this by
dynamically adapting rest shapes in order to induce deformations
that, together with environment interactions, result in purposeful
and physically-plausible motions. Rest shape adaptation is a pow-
erful concept and we show that by restricting shapes to suitable
subspaces, it is possible to explicitly control the motion styles of
deformable characters. Our formulation is general and can be com-
bined with arbitrary elastic models and locomotion controllers. We
demonstrate the efficiency of our method by animating curve, shell,
and solid-based characters whose motion repertoires range from
simple hopping to complex walking behaviors.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: physically-based simulation, animation control

Links: DL PDF

1 Introduction

Simulating deformable objects is a well-studied problem, but con-
trolling the way they move is a completely different challenge.
While most characters are articulated, many are inherently de-
formable and have no rigid internal structure. Examples range from
simple jelly creatures to complex cartoon characters with stylized
deformation behavior such as walking carpets, singing candelabra,

or diligent broomsticks. Regardless of their nature, these virtual ac-
tors have to be active: they must walk, creep, roll or propel in some
manner—and these motions need to be directable.

In order to animate articulated figures such as humanoids or ani-
mals, animators can resort to physics-based locomotion controllers
that translate high-level commands (walk left, crouch, or jump) into
sequences of joint torques that yield the desired behavior. While the
problem of articulated motion control has been studied extensively,
relatively little work has been done to create automatic methods that
support the animation of active deformable characters.

Passive deformable objects can be easily animated using physics-
based simulation, and, in general, external control forces can be
used in order to achieve desired motion objectives. These external
forces, however, typically do not sum up to zero and have non-
vanishing rotational components. They can therefore change linear
and angular momenta in arbitrary, non-physical ways, which may
lead to unrealistic motions.

In this work, we present a new approach for intuitive control of
elastically deformable characters. As an underlying principle, we
allow characters to propel using only internal energy, which is gen-
erated by dynamically adapting the characters’ rest shapes. Because
the internal control forces generated by our framework are derived
from an elastic potential, they automatically preserve momentum.
The problem formulation we propose is aware of the forces arising
from interactions with the environment, and therefore rest shape
adaptations lead to desired locomotion behaviors.

Rest state adaptation is a powerful concept that provides animators
with various levels of control over the resulting motion styles. In
particular, we investigate two rest-pose adaptation strategies:

• Cage-based adaptation: the deformation of the rest state is
driven by a coarse mesh that embeds the rest pose. This ap-
proach results in a very flexible parameterization of the rest
shape that promotes low-frequency deformations. In addition,
this strategy requires very little user input and is quick to set
up.

• Example-based adaptation: this approach allows for artistic
control over the resulting motions. In this setting, the space
of rest shape deformations is restricted to an interpolation of
a set of input poses, which results in a parameter space that
is typically much smaller than when using cage-based adap-
tation.

http://doi.acm.org/10.1145/2185520.2185565
http://portal.acm.org/ft_gateway.cfm?id=2185565&type=pdf

To the best of our knowledge, our method is the first to enable sim-
ulated deformable characters to autonomously propel themselves
using only internal energy. We believe that rest shape adapta-
tion, paired with appropriate rest pose parameterizations and con-
trol laws will allow artists to easily animate a much wider class of
characters than previously possible.

2 Related Work

The ways in which objects and characters move play a vital role in
the creation of believable virtual worlds for video games, animated
movies and training applications. The problem of creating realis-
tic motions has been studied extensively, resulting in a wealth of
literature that is relevant to our work.

Physics-based techniques provide a particularly appealing approach
to animating deformable objects and characters. Starting with
the pioneering work of Terzopoulos et al. [1987], many research
projects have been aimed at increasing the diversity, efficiency, and
accuracy of physical simulations. Since space does not permit us to
review a representative set of related works, we only mention the
two methods which found direct application in our framework: the
discrete shell model by Grinspun et al. [2003] for deformable sur-
faces and the finite element model by Irving and colleagues [2007]
for volumetric solids.

Simulating physical objects efficiently is only half the battle how-
ever. A great deal of control over the resulting motions is also re-
quired in order to provide artists with the power needed to create
compelling visual scenes. At the same time, it is very important
that the resulting motions remain physically plausible. Despite re-
ceiving a great deal of attention from the research community, this
remains to a large extent an open problem [O’Brien 2011]. We aim
to address this challenge, and to help position our work with respect
to previous methods, we group existing approaches as follows:

Control of passive objects: It is oftentimes desirable to simu-
late seemingly passive objects whose behaviors are, in fact, user-
controlled. To this end, Twigg and James [2007] present a method
that exploits the speed of multi-body simulations. By simulating
numerous variations of the same scene in parallel, the proposed sys-
tem lets users interactively chose desirable outcomes and therefore
control the motions of the simulated objects. The system proposed
by Popović et al. [2000] automatically manipulates various simula-
tion parameters, such as masses, moments of inertia, surface nor-
mals and elastic coefficients in order to allow simple dynamically-
simulated objects to achieve user-set goals. Twigg and Kačić-
Alesić [2011] perform off-line optimizations of the rest lengths of
springs in a deformable object simulation in order to maintain the
look of artist-modeled objects once gravity is applied to a scene.
Martin et al. [2011] describe a framework that allows users to steer,
through examples, the behavior of passive deformable objects as
they interact with their environments. In contrast to this line of re-
search, we are interested in animating deformable objects as if they
were alive, autonomous characters.

Control of soft objects using external forces: A popular approach
to controlling the behavior of deformable objects is through the
use of external forces. Barbič and Popović [2008] use a time-
varying Linear Quadratic Regulator controller to compute forces
that steer simulated deformable objects or fluids towards desired
target configurations, and Jeon and Choi [2007] use a combinatorial
discrete optimization approach to obtain physically-plausible, user-
controlled motions for cloth. Barbič et al. [2009] present a space-
time optimization method that operates in a low-dimensional sub-
space defined by input keyframes. The optimization aims to elimi-
nate errors in tracking the input keyframes while minimizing errors
in the dynamics. These errors can be interpreted as the influence

of applied external forces. This method was applied to FEM and
mass-spring simulations of deformable objects. TRACKS [Bergou
et al. 2007] enforces the low-frequency motions of thin shells using
constrained Lagrangian mechanics, while allowing high-frequency
motions to naturally appear due to the object’s dynamics. The ad-
joint method, a non-linear gradient-based optimization approach,
was successfully applied to control the behavior of fluid simula-
tions [McNamara et al. 2004] and particle systems [Wojtan et al.
2006]. Our work shares many of the goals of these existing meth-
ods. However, instead of using non-conservative external forces,
the motions we generate are the result of an internal potential field
that is automatically modulated.

Control of articulated rigid figures: The concept of using forward
dynamics simulations in conjunction with control policies for the
purpose of character animation was introduced over two decades
ago [Girard and Maciejewski 1985; Raibert and Hodgins 1991].
Since then, a large number of control frameworks applicable to
characters represented by articulated rigid body hierarchies have
been presented. Examples include, among others, control meth-
ods for legged locomotion [Yin et al. 2007; Wu and Popović 2010;
Coros et al. 2010; Lee et al. 2010; de Lasa et al. 2010] (and many
others), athletic activities [Hodgins et al. 1995], swimming [Tu and
Terzopoulos 1994; Tan et al. 2011] and flying [Wu and Popović
2003]. These control policies generate joint torques that, when ap-
plied to the joints of the articulated figures, result in purposeful mo-
tions. This approach has been shown to generalize well to charac-
ters that are simulated using two-way coupling between articulated
rigid bodies and deformable objects [Jain and Liu 2011; Kim and
Pollard 2011]. The joint torques applied to the articulated figures
are used to actively drive the motions, while the deformable objects
are simulated passively. In contrast, in this paper we investigate
the problem of generating desirable internal forces for continuously
deforming characters that have no well-defined internal or external
rigid structure. In this setting, concepts such as torques and joints
do not exist. We therefore use a different, more general approach to
motion control that works by automatically adjusting the objects’
rest configurations.

Control of soft objects using internal forces: Real creatures move
around their environments using only internal energy, which is gen-
erated through muscle contractions. Simulating muscles and their
effects on the motions of virtual characters is a topic that has re-
ceived much attention from the academic community. This line
of research holds the promise of creating virtual characters whose
motions are indistinguishable from the motions of real humans and
animals. While this goal is not yet within reach, significant progress
has been made. For instance, Sueda et al. [2008] introduced a con-
trollable strand-based muscle model that was used to create real-
istic animations of a human hand. Teran et al. [2005] used finite
elements to simulate muscles of a virtual human torso whose mo-
tions were kinematically controlled. Tu et al. [1994] modeled fish
as mass spring systems, and their motions were controlled by ad-
justing the springs’ rest lengths. Here we extend the concept of
muscles to arbitrary deformable objects. Our approach is related
to the work of Ijiri et al. [2009], who introduced a system that lets
users manually specify deformation fields for the rest poses of solid
deformable objects. In contrast to this work, our method automati-
cally computes appropriate rest pose configurations that allow sim-
ulated rods, shells and solids to walk, crawl and hop autonomously.

3 Method Overview

In the framework we propose, rest state adaptations provide the
means of actuation and propulsion for deformable characters. The
goal of our method is therefore to automatically compute changes to
the rest configuration of the objects in a way that results in directed

Figure 2: Overview of our method: Our solver takes as input a
dynamic model which describes an object’s internal energy, a set
of objectives, a parameterization of the rest pose and a regularizer.
The output consists of an appropriate rest pose and the correspond-
ing state of the dynamic model at the next time step.

motion. In this section we describe the essence of our approach and
its different components, which are also illustrated in Fig. 2.

Dynamic Models We start directly in the discrete setting and let
X and x denote vertex positions of a deformable object (curve,
shell or solid) in the undeformed and deformed configurations re-
spectively. The deformation behavior of the object is governed by
an elastic potential W (X,x), which gives rise to internal forces
fint = −∂W/∂x. Together with external forces fext (gravity,
contacts, friction), the dynamic behavior is described by the well-
known equations of motion

Mẍ− fint(X,x)− fext = 0 , (1)

where M is the mass matrix and ẍ are nodal accelerations. For the
purpose of motion control, we dismiss the option of adding external
forces that are not the result of correct physical interactions with the
environment. Instead, we require that all motions be a direct result
of internal deformations. To this end, we consider X as the sole
control parameters. In other words, we adapt the rest shape of the
object to yield the required deformations for motion control. This
approach is similar in spirit to the way muscles work and, as for
muscles, the resulting control forces are always momentum con-
serving.

In order to formalize this approach, let g(x, t) denote a vector-
valued objective function whose components measure the deviation
from a given set of (to be defined) time-dependent motion goals. We
seek to find undeformed and deformed configurations that minimize
the distance to the motion objectives while satisfying the equations
of motions (1). This can be cast as a constrained optimization prob-
lem of the form

min
x,X

1

2
|g(x, t)|2 s.t. c(X,x, ẍ) = 0 , (2)

where we use c to encode (1) as a hard constraint. In summary, we
seek to find optimal control parameters X that best achieve the mo-
tion objectives g while exactly satisfying the physics constraints c.
We solve this problem numerically using Lagrangian optimization
but postpone details to Sec. 6.

The optimization problem above can be combined with any time
integration scheme. Using the well-known implicit Euler method,
Equation (1) is discretized in time as

M
(xn+1

h2
− xn
h2
− vn

h

)
− fint(X,xn+1)− fext = 0 , (3)

for a given time step n. In this form, the hard constraints can be
interpreted as an implicit map X 7→ xn+1 that parameterizes the

space of possible solutions. From this space, our solver chooses the
solution that minimizes the objective function.

Rest State Parametrization In the most general setting, every
vertex of the rest shape is an independent control variable for the
optimization problem described by Equation (2). For deformable
objects with a large number of vertices, this can lead to optimiza-
tion problems with an unwieldy number of parameters. To address
this, we show that using reduced linear subspaces for rest pose de-
formations is a simple, yet very powerful strategy. In particular, we
choose the rest state configuration X(p) as

X(p) = X0 + Lp, (4)

where X0 is the initial rest state, p describes generalized displace-
ments, and L is a linear map between changes in rest state coordi-
nates X and the reduced control variables p. With this representa-
tion, we can restate our optimization problem in terms of the state
variables x and the reduced control parameters p as

min
x,p

1

2
|g(x, t)|2 + r(p) s.t. c(X(p),x) = 0 , (5)

where it is implied that, as per Equation (3), nodal accelerations ẍ
are an explicit function of x. The additional regularizing term r(p)
will be described shortly. The linear map L determines the space
of allowable rest shapes, and implicitly, the capabilities of the de-
formable objects we seek to control. Selecting appropriate linear
maps is, therefore, of great importance for our framework. We dis-
cuss two practical approaches to choosing flexible and efficient rest
pose parameterizations in Sections 4 and 5.

Contacts and Friction We implement contact and friction forces
using implicit springs that are active only when vertices of the sim-
ulation mesh are in contact with external objects. For each collid-
ing (deformable) vertex i, we first compute the point of contact ci
by projecting onto the external triangles. We then apply a contact
force that is proportional to deviations from ci in the triangle’s nor-
mal direction and a friction force that is proportional to in-plane
deviations from ci. The contact and friction forces are added to the
fext term in equation (3), which then becomes an explicit function
of xn+1.

Adapting the rest shape affects the motion of all vertices and thus
the forces generated at the contact points. The implicit nature of
the friction and contact forces makes them visible to our optimiza-
tion method, which automatically exploits them in order to help the
characters propel.

Controller Having established the basic means for deformable
object actuation, we now describe a simple controller that trans-
lates high-level motion goals (walk left, hop, etc.) into sequences
of objectives that can be cast into algebraic functions of the state
variables via g(x, t). This vector-valued objective function is the
result of concatenating an arbitrary number of constraints that are
linear in the positions of the vertices:

g(x, t) = [w1g1(x, t), w2g2(x, t), ..., wngn(x, t)]T , (6)

gi(x, t) =
∑
j

wxjxj − si(t), (7)

where s(t) indicates a time varying goal target. The weight wi is
used to scale the importance of goal gi relative to the other goals.
Each goal constraint gi affects a subset of the object’s vertices, as

indicated by the weights wxj . As an example, for the center-of-
mass constraints we use throughout the paper, the vertex weights
wxj are chosen as mj/

∑
imi. For the vertices not affected by a

specific goal, we simply set the weights wxj to zero.

It is often convenient to represent constraints as a function of ve-
locity, rather than positions. For instance, to get an object to hop,
a controller can simply output a desired upwards velocity for the
center of mass. The goal targets are therefore exposed as:

ĝi(x, t) = kp(
∑
j

wxjxj−sxi(t))+kd(
∑
j

wxjvj−svi(t)) (8)

where kp, kd, sxi(t), and svi(t) are provided by the controller. By
expressing the velocity of each vertex as a function of the positions
at the previous time step xn, v = (x − xn)/h, we represent the
goal target from Equation (7) as:

si(t) =
h

hkp + kd
(kpsxi + kdsvi +

kd
h

∑
j

wxjxnj) (9)

and the goal weight from Equation (6) as:

wi(t) =
hkp + kd

h
(10)

We note that solving Equation (5) is equivalent to simultaneously
solving for the internal control forces that minimize the objective
g and integrating the system state forward in time. As a result,
the effective planning horizon of our method is equal to the simu-
lation time step. Nevertheless, this simple control strategy is both
effective and intuitive. As described in more detail in Section 7, we
used it to create hopping and rolling motions for deformable ob-
jects of various shapes and sizes. We also used it successfully to
control more complicated behaviors such as bipedal walking. For
these motions, control strategies that output high-level motion fea-
tures such as targets for the positions of the center of mass and feet
[Coros et al. 2010; de Lasa et al. 2010] are a natural fit for our
controller.

Regularizer A rest shape which is optimal with respect to Equa-
tion (2) is not necessarily desirable in all regards. For example,
we generally prefer smoothly deformed rest shapes over ones with
large isolated distortions. Such preferences can be expressed for-
mally in terms of a regularizing potential r(p) that is added to the
objective term as in Equation (5). The concrete form of the regu-
larizer depends on the rest pose parametrization and we postpone
details to Sections 4 and 5.

4 Subspaces for Rest Shape Adaptations

The previous section has laid out the basis for controlling de-
formable objects by adapting their rest shapes. As we will show,
the way in which this adaptation occurs greatly impacts the result-
ing motion. Conceptually the simplest case is to consider each ver-
tex of the rest shapes as a control parameter in the optimization
problem (5). For this case, the linear map L from Equation (4) is an
identity matrix of appropriate dimensions. Fig. 3 (a) demonstrates
this approach on a simple example in which an I-shaped deformable
character is asked to hop to the left. While this adaptation strategy
can reveal unexpected but plausible means of locomotion, it also
has disadvantages. First, it results in larger problems, which are
more difficult and expensive to solve. Second, it can potentially
lead to large, non-smooth changes of the rest shape.

Regularizer Undesirable distortions can be counteracted by in-
troducing an adequate regularizer. Visually, if two solutions are
similar in terms of Equation (5) we prefer the one that is closer to
the initial rest shape X0. This can be formalized by introducing a
regularizer based on the elastic potential between the current and
initial rest poses:

r(p) = Wreg(X0,X(p)) , (11)

where we choose the regularizing potential Wreg to be of the same
form as the elastic potential W but allow for different material pa-
rameters. This is convenient if, for instance, changes in volume
should be penalized more severely than other deformations.

Coarse-Scale Adaptation It is often not necessary or even de-
sirable to leverage all degrees of freedom in order to create pur-
poseful motions. For example, having the center of mass of a char-
acter follow a given trajectory can often be achieved using only
low-frequency deformations.

A common approach for applying coarse-scale deformations to
high-resolution geometry are spatial deformation methods. Har-
monic coordinates [Joshi et al. 2007] are particularly attractive for
our setting: the deformation field is defined by the vertices of an en-
closing polygonal cage (no vertices on the inside), it is linear with
respect to the cage vertices, and it is smooth (no isolated distortions
or intersections). More concretely, let Cj ∈ R3 denote the cage
vertices and let hj be the associated harmonic coordinate function.
The deformed position of a given rest state vertex Xd,i ∈ R3 is
then defined as

Xd,i = X0,i +
∑
j

hj(X0,i)Cj = X0,i +
∑
j

hijCj .

The harmonic coordinates hij are directly identified with the entries
of the linear map in (4) as Lij = hij , and the control parameters p
become the cage vertices Cj . The coordinates have to be computed
numerically but since they are defined over the initial rest state X0,
these computations have to be done only once.

Fig. 3 (b) shows the result of the cage-based adaptation scheme
applied to the I-character. It can be noted that the deformations of
the rest state are much smoother than for the case of unrestricted
rest shape adaptation. This effect translates directly into smoother
deformed shapes and, thus, a notably different style of motion.

The cage-based scheme introduced here allows us to restrict rest
shape adaptations to lower frequency deformations. This signifi-
cantly reduces the search space, thus making the optimization prob-
lem easier to solve. However, this method still lacks direct control
over the type of deformations the rest shape may undergo. We ad-
dress this by resorting to example-based deformation subspaces, as
described next.

5 Example-Based Adaptation

Being able to exert control over the rest shape adaptation is an im-
portant feature since the ways in which a character moves deter-
mine its personality. In order to further structure the space such as
to reflect a characteristic style of motion, we turn towards example-
based techniques.

The concept of example-based rest shape control can be summa-
rized as follows: we let the artist choose a set of example poses that
describe desirable character deformations; we then convert these
poses into a representation suitable for interpolation and use con-
vex combinations of the examples as the subspace for rest shape
adaptations.

Figure 3: Different rest state adaptation strategies lead to different locomotion styles: unrestricted (a), cage-based (b), example-based with
a bent (c) and a compressed (d) input pose (shown as inset figures in the upper left corners).

A central question in this context is how to best interpolate between
shapes. While the number of existing methods is abundant, most
of them follow a common scheme: the input shapes are first con-
verted into an intermediate representation such as Laplacian coor-
dinates, deformation gradients or Green strains. The interpolated
data is then obtained as a weighted (convex) combination of the in-
put data. Finally, interpolated geometry is reconstructed by solving
a system of (nonlinear) equations. From a practical point of view,
having an implicit and possibly nonlinear relation between the input
and interpolated rest shapes can make the computation of rest state
derivatives that are required to solve Equation (5) quite complex.
Ideally, we would like to avoid the reconstruction step altogether
and directly work on interpolated representations. Fortunately, this
can be achieved in a simple and efficient manner as described next.

5.1 Incompatible Shape Interpolation

We start by pointing out two important facts: first, discrete elastic
energies are usually computed by summing up elemental contribu-
tions. Second, these elemental contributions are typically based on
rotation-invariant deformation measures such as the Green strain.
As a consequence, cutting the rest state of a given deformed object
into disjoint elements and applying a random rotation to each of
them does not change the elastic energy or its derivatives.

Motivated by these observations, we resort to an incompatible dis-
cretization and model the rest state as an assembly of disjoint el-
ements. Similar approaches have been pursued before, albeit for
different purposes such as geometric modeling [Botsch et al. 2006]
or remeshing [Wicke et al. 2010]. Compared to the compatible set-
ting, it has the striking advantage that shape interpolation reduces
to element interpolation which is much simpler: we first register
each element in its different poses to a common reference frame by
factoring out the rotations of the individual poses. In this common
frame, interpolating between different element poses is then simply
a matter of interpolating vertex positions. Using this interpolation
scheme for example-based rest shape adaptations, we can compute
energies and their rest state derivatives in a simple and efficient way.

In order to translate this concept to the formal setting of Equa-
tion (4), we let Xe

0 denote the vector of concatenated vertex po-
sitions Xe

0,i ∈ R3, i = {1, . . . , 4}, for a given undeformed tetra-
hedral element e and encode all its example poses as correspond-
ing vectors Xe

k. We then compute the deformation gradient Fek =
SkS

−1
0 between the undeformed element and each example, where

Sk,S0 ∈ R3×3 are matrices with columns Sk,j = Xk,j − Xk,4,
with j = {1, 2, 3}, holding the elements’ edge vectors. Finally, we
apply a polar decomposition to Fek to obtain the rotation Re

k that
aligns example k with the reference frame as X̂e

k,i = (Re
k)TXe

k,i.
The concatenations of these elemental vectors then defines an inter-
polated rest shape as

X(p) = X0 +
∑
k

(X̂k −X0)pk . (12)

This incompatible rest state interpolation is very efficient since the
unrotated positions X̂e

j stay constant over time and can thus be pre-
computed. Equation (12) can be cast into the form of (4) by choos-
ing the entries of the linear operator as Lij = (X̂j−X0)i. It should
be noted that, compared to unrestricted and cage-based adaptation,
the dimension of X(p) is higher since vertices are no longer shared
among the elements. Computation times are, however, largely gov-
erned by the size of p, which is now determined by the number of
example poses. Since the latter is typically much smaller than the
number of control parameters used for unrestricted or cage-based
adaptation, the example-based approach is more efficient in this re-
gard as well.

Using examples to define a subspace for rest shape adaptation pro-
vides an animator with explicit control over the styles of the result-
ing motions. Fig. 3 (c) and (d) illustrate this technique applied to
the I-character. The example space is defined by the initial unde-
formed pose and one additional example, a pose where the I is bent
(c), respectively, compressed (d). In both cases, it can be noticed
that the character makes heavy use of the example pose to gather
enough energy for the jump. The different example poses lead to
substantially different yet plausible jumping styles that respect the
artistic intent.

Regularizer Although example-based interpolation behaves ro-
bustly for moderate extrapolation, the behavior in this regions is
typically less intuitive and we therefore require the rest shape to
remain within the convex hull of the examples. In the case of
global examples that extend over the entire domain of the object,
this is achieved by introducing a regularizing term as r(p) =
1
2
(
∑
i pi − 1)2. Similarly, negative values of the control param-

eters are penalized by the regularizer.

It is sometimes more convenient to define example poses that only
affect localized regions of a deformable object. This is the case, for
instance, when specifying poses that control the range of possible
deformations of individual legs. We treat these cases by setting up
convexity constraints on the corresponding subsets of the control
parameters.

5.2 Extension to Curves and Shells

The interpolation described by Equation (12) applies equally for
both 2D and 3D finite elements. For the case of elastic curves and
shells, we additionally have to account for bending deformation.
We will only describe the approach for shells here since the formu-
lation for curves is completely analogous. Following Grinspun et al.
[2003], we measure the difference between a discrete undeformed
triangle mesh and its deformed counterpart in terms of differences
in edge lengths and dihedral angles. Recent work [Winkler et al.
2010; Fröhlich and Botsch 2011] already demonstrated that linear
interpolation in this length-angle strain space leads to appreciable
and intuitive behavior.

In analogy to the 3D case, we resort to an incompatible rest state
and represent a shell surface with ne edges by a set of ne disjoint
hinge elements, each consisting of two edge-adjacent triangles. We
first register the different example poses of each hinge element to
a common frame by applying affine transformations that align the
center edges with their reference counterpart. This setting allows
us to linearly interpolate vertex positions between hinge elements
and then extract lengths and angles from the interpolated geometry.
Note that for stretch deformation, doing so is exactly equivalent to
interpolating edge lengths between the disjoint hinge elements. For
bending deformation, this approach leads to a different interpola-
tion speed compared to angle interpolation but is otherwise equiv-
alent. As for the 3D case, the central advantage of this incompat-
ible approach is that the element-wise reconstruction is analytical
whereas the compatible setting requires a (nonlinear) reconstruc-
tion step.

5.3 Validation

We have used example-based rest shape adaptations for several of
the animations presented in Sec. 7 and observed desirable behavior
both in terms of directability and numerical performance. In or-
der to better isolate the behavior of our incompatible interpolation
scheme, we additionally compare with two reference solutions: the
method by Martin et al. [2011] for solids and the one by Fröhlich
and Botsch [2011] for shells. Both use a strain space representation
for interpolating between examples poses: Green strain for solids,
edge lengths and angles for shells. Note that, while each geomet-
ric configuration has its strain space counterpart, the reverse is not
true, which is why both methods perform a closest point projection
in a least squares sense. Similarly, our incompatible configurations
do not generally have exact compatible analogues. For comparison,
we reconstruct compatible meshes by solving a static problem with
the interpolated incompatible mesh as rest state.

For solids, we interpolate between two poses of a bar, one straight
the other twisted, using 100 uniformly-sampled weights αi ∈ [0, 1]
and reconstruct the corresponding geometries. Our results match
the reference solution very closely for all α values. Since differ-
ences in geometry are hardly perceptible, we only show interpola-
tion results obtained with our method in Fig. 4.

Figure 4: Interpolation between two poses of a solid bar (orange)
using our incompatible scheme (blue).

To test the incompatible interpolation scheme for shells, we applied
our method to one of the examples used by Fröhlich and Botsch
[2011], consisting of a straight and a helically-twisted tube. Fig. 5
shows the results of our method compared to the reference solution
for three sample weights. We obtained good overall shape approx-
imation without any stretching artifacts, which can be attributed to
the constant-rate interpolation of the edge lengths. Note that, as ex-
pected, the geometries do not match exactly since our interpolation
speed for angles is different from the reference solution.

Figure 5: Interpolation between two poses of a shell (orange) using
our method (blue) and a reference implementation (yellow).

6 Lagrangian Optimization

The motion of our controlled deformable characters is governed
by the optimization problem (5), which is nonlinear in both ob-
jective function and constraints. In order to solve Equation (5)
in every time step, we employ Sequential Quadratic Programming
(SQP) [Nocedal and Wright 2000] and solve the arising linear sys-
tems with a custom-tailored block solver.

SQP Formulation Following the SQP algorithm, we start by
defining a Lagrangian function for the optimization problem as

L(x,p, λ) =
1

2
|g(x, t)|2 + r(p) + λT c(X(p),x) .

Using a Newton-Raphson method, we iteratively solve the first or-
der optimality conditions

0 =
∂L

∂x
= g(x, t)

∂g

∂x
+ λT (

1

h2
M− ∂ftot

∂x
(X(p),x))

0 =
∂L

∂p
=
∂r
∂p

(p)− λT ∂fint
∂X

(X(p),x)
∂X

∂p

0 =
∂L

∂λ
= Mẍ− ftot(X(p),x)

where we used ftot(X(p),x) = fint(X(p),x)+fext(x) to account
for the fact that fext includes position-dependent contact forces. In
each iteration, we compute corrections ∆x, ∆p and ∆λ by solving
a linear system of the form A BT DT

B C ET

D E 0

 ∆x
∆p
∆λ

 =

 a
b
c

 , (13)

whose matrix blocks A = ∂xxL, B = ∂pxL, C = ∂ppL, D =
∂λxL and E = ∂λpL correspond to the partial Hessians of the
Lagrangian and the vectors a = ∂L/∂x, b = ∂L/∂p and c =
∂L/∂λ are the partial gradients of L. Having solved for the search
direction, we determine an admissible step size using a linesearch
method as xn+1

pn+1

λn+1

 =

 xn
pn
λn

− α
 ∆x

∆p
∆λ

 . (14)

Starting with a full step of α = 1.0, we successively half the step
size if the trial solution increases the value of the merit function

ψ(x,p) =
1

2
|g(x, t)|2 + r(p) + γ |c(X,x)|L1 .

The parameter γ allows us to adaptively control the importance of
constraint satisfaction. We start with a small value of γ to allow
for larger steps in the beginning and then progressively increase its
value to obtain accurate constraint satisfaction upon convergence.

Block Solver The linear system (13) is symmetric, indefinite, and
has a special block structure: B, C and E are dense, whereas A
is sparse. While there are efficient direct solvers for symmetric
indefinite problems, the dense blocks significantly deteriorate the
performance of factorization methods.

Fortunately, we can solve (13) efficiently with a factorization
method by using Gaussian block elimination. This step takes ad-
vantage of the fact that D = 1/h2M − ∂(ftot)/∂x is invertible.
From the last row of (13) we deduce ∆x = D−1(c − E∆p) and,
rearranging terms, obtain

(BT −AF)∆p + DT∆λ = a−Ad

(C−BF)∆p + ET∆λ = b−Bd ,

where F = D−1E and d = D−1c. We solve the first equation
symbolically for ∆λ and substitute the resulting expression into
the second equation to obtain a linear system for ∆p as

K∆p = b−Bd− FTa + FTAd , (15)

where K = (C−BF−FTBT + FTAF). Having precomputed
F and d, we numerically solve for ∆p and use the result to succes-
sively compute the remaining corrections

DT∆λ = a−Ad + (AF−BT)∆p (16)
x = d− F∆p . (17)

Note that this block-based formulation can be implemented very ef-
ficiently using a sparse factorization solver: prefactoring the (sym-
metric) matrix D once, we can compute F and d using backsubsti-
tution and solve (16) in the same manner. The linear system (15) is
dense, but since it is only of size dim(p) the computation costs are
insignificant compared to the sparse solve for D.

7 Results

We demonstrate the versatility of our approach by creating crawl-
ing, rolling, hopping and walking motions for various deformable
objects. Our results, which are best seen in the accompanying
video, are summarized in Table 1, and snapshots of some of the
objects we controlled are shown in Fig. 6. We apply our method to
2D curves and solids, as well as thin shells and volumetric solids in
3D. The elastic potentials that we used for the various deformable
models are described in Appendix A.

Control The simplest approach to controlling the behavior of de-
formable objects is to prescribe desired values for the center of
mass position or velocity. Note, however, that our optimization
framework cannot guarantee that these objectives are always well-
satisfied. For instance, if an object is in mid-air, changing the rest
pose configuration has no effect on the position of the center of
mass or its rate of change. Indeed, our characters can only propel
by purposefully interacting with their environment through friction
and contact forces—a strategy that is automatically discovered. The
Tea Cups, 3D Cross, Ace and letters S, G, I and P were controlled
using this strategy.

Center-of-mass control is well suited to rolling and hoping motions.
For more difficult control problems, however, this strategy starts to
become ineffective. For instance, ensuring that a character lands on
its feet after a hop requires specific initial conditions for the take-
off, which may not be sufficiently well represented by the objectives
placed on the center of mass. This is also the case for the walking
behaviors we implemented. For these, we add additional soft con-
straints that act on vertices on the feet of the characters in order to

control foot placements. Similarly, constraints on vertices on the
body are used to control the character’s orientation. The targets for
the positions of the feet and the center of mass are computed using
a strategy similar to the one described by Coros et al. [2010]. The
use of foot-placement feedback is particularly important to ensure
that characters do not lose their balance. We applied the walking
controllers to the letters A, R and H, the Castle, Pirate and Cheesy
characters.

Rest Pose Parameterization The cage rest pose parameteriza-
tion that we describe provides a great deal of flexibility (depending
on the resolution of the cage, of course), making it useful for all
the types of controllers we implemented. However, it does not al-
low users to explicitly affect the deformations that the characters
undergo. In the spirit of [Martin et al. 2011], we address this lim-
itation by allowing the space of rest-pose deformations to be ex-
plicitly specified through examples. A static solver or mesh editing
software was used to create the inputs.

For the 3D Cross character shown in Fig. 6 we used one example
for each leg, which allowed for stretching motions. For Pirate, we
provided groups of example poses that locally deformed the feet,
hips and the length of each leg. These poses were designed to allow
the character to control its center of mass and foot placements. We
also used examples to animate Ace, a 3D shell character.

The Crusty characters (Fig. 6) were created to illustrate the dif-
ference between cage-based and example-based rest shape adapta-
tion. The dark Crusty character was controlled using the cage-based
strategy. The side-to-side motion emerges naturally. The second
Crusty character is controlled using the example-based strategy.
Through the example rest poses we provided, the side-to-side mo-
tion was removed, and instead, a desirable slight twist about the
vertical axis was introduced. The kinematic objectives were identi-
cal for the two tests.

Timing Information The results we described here run in real-
time or at interactive rates. The average time spent computing one
second of simulated motion for each example is given in Table 1.
All simulations were performed with a step size between 0.01s and
0.033s, on a single core of an Intel Core i7 960, 3.2 GHz. For
visualization purposes, we used high-resolution meshes embedded
in relatively low-resolution simulation meshes.

Model #x #p RPP DM time (s)
Sphere 246 24 cage 3D solid 2.6
Ace 1 231 3 examples 3D shell 9.2
Ace 2 231 42 cage 3D shell 14.1
Castle 1 142 22 cage 2D solid 1.1
Castle 2 64 22 cage 2D rod 0.57
Tea Cups 228-375 24 cage 3D solid 5.64-16.5
S and G 100-130 8-36 cage 2D solid 0.8-2.1
I and P 54-64 3 ex 2D solid 0.8-0.9
A, R, H 66-104 20-28 cage 2D solid 0.8-1.9
3D Cross 1128 6 ex 3D solid 21.7
Pirate 188 12 ex 2D solid 3.16
Cheesy 243 150 cage 3D solid 8.6
Crusty 1 114 12 ex 3D solid 7.8
Crusty 2 114 57 cage 3D solid 9.8

Table 1: Summary of results with columns indicating the number
of DOFs, number of control parameters, adaptation scheme, elastic
model and average computation time for one second of animation.

Figure 6: Deformable objects in action. In row order: Letters
moving towards their designated locations. 3D Cross uses his ex-
tendable legs for fast locomotion. Two Crusty characters race each
other. Cheesy runs away from a bunch of rampaging grapes. Pirate
walks around in a 2D world. Ace’s trick.

8 Limitations and Future Work

The control framework that we propose automatically changes the
rest configuration of deformable objects to allow them to propel
themselves through purposeful physical interactions with the en-
vironment. We demonstrate the effectiveness of our approach by
animating a variety of characters that can crawl, roll, hop and walk.

Our method is not without limitations. The evolution of the state of
the dynamical system is currently coupled with the control method.
As such, our controller always uses a planning horizon that is equal
in length with the time step of the simulation. Characters that are
exceedingly soft cannot be well-controlled by our framework, as
the effect of changing the rest pose may be too weak over one time
step. Adapting a space-time optimization method to work with our
problem formulation is one way in which we can increase the plan-
ning horizon.

Adapting the rest pose is one way of modulating the internal energy
of deformable objects. An alternative is to change the material stiff-
ness parameters. This is a very interesting extension to our work.
Currently, for instance, if a character is too soft for its weight, then
it would be unable to stand or walk. Automatically adjusting stiff-
nesses in a non-homogeneous way could address this limitation.

The example-based rest shape adaptation strategy we propose al-
lows users to control the range of internal deformations that the ob-
jects are allowed to undergo. This is a key ingredient in controlling
the motions of a character, but the motion objectives output by the
controllers play an equally important role. The timing of a walk cy-
cle, the motions of the arms or the facial expressions, for instance,
can add to the personality conveyed by a character. In future work
we plan to further investigate ways in which we can increase the
level of artistic control over the resulting motions.

9 Acknowledgements

We would like to thank Alec Jacobson, Fabian Hahn, Joe Schmid,
Olga Sorkine and the anonymous reviewers for their useful com-
ments and suggestions. Many thanks to Maurizio Nitti and Alessia
Marra for creating the Cheesy and Pirate characters.

References

BARBIČ, J., AND POPOVIĆ, J. 2008. Real-time control of phys-
ically based simulations using gentle forces. In Proc. of ACM
SIGGRAPH Asia ’08.

BARBIČ, J., DA SILVA, M., AND POPOVIĆ, J. 2009. Deformable
object animation using reduced optimal control. In Proc. of ACM
SIGGRAPH ’09.

BERGOU, M., MATHUR, S., WARDETZKY, M., AND GRINSPUN,
E. 2007. TRACKS: Toward Directable Thin Shells. In Proc. of
ACM SIGGRAPH ’07.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006.
PriMo: Coupled prisms for intuitive surface modeling. In Proc.
of Symp. on Geometry Processing (SGP ’06).

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2010. Gen-
eralized biped walking control. In Proc. of ACM SIGGRAPH
’10.

DE LASA, M., MORDATCH, I., AND HERTZMANN, A. 2010.
Feature-based locomotion controllers. In Proc. of ACM SIG-
GRAPH ’10.

FRÖHLICH, S., AND BOTSCH, M. 2011. Example-driven defor-
mations based on discrete shells. Comput. Graph. Forum 30, 8,
2246–2257.

GIRARD, M., AND MACIEJEWSKI, A. 1985. Computational mod-
eling for the computer animation of legged figures. In Proc. of
ACM SIGGRAPH ’85.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRÖDER,
P. 2003. Discrete shells. In Proc. of ACM SIG-
GRAPH/Eurographics Symp. on Computer Animation (SCA
’03).

HODGINS, J., WOOTEN, W., BROGAN, D., AND O’BRIEN, J.
1995. Animating human athletics. In Proc. of ACM SIGGRAPH
’95.

IJIRI, T., TAKAYAMA, K., YOKOTA, H., AND IGARASHI, T.
2009. Procdef: Local-to-global deformation for skeleton-free
character animation. In Proceedings of Pacific Graphics ’09.

IRVING, G., SCHROEDER, C., AND FEDKIW, R. 2007. Volume
conserving finite element simulations of deformable models. In
Proc. of ACM SIGGRAPH ’07.

JAIN, S., AND LIU, C. K. 2011. Controlling physics-based char-
acters using soft contacts. In Proc. of ACM SIGGRAPH Asia
’11.

JEON, H., AND CHOI, M.-H. 2007. Interactive motion control
of deformable objects using localized optimal control. In IEEE
International Conference on Robotics and Automation, 2582 –
2587.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND
SANOCKI, T. 2007. Harmonic coordinates for character articu-
lation. In Proc. of ACM SIGGRAPH ’07.

KIM, J., AND POLLARD, N. S. 2011. Fast simulation of skeleton-
driven deformable body characters. ACM Trans. Graph. 30.

LEE, Y., KIM, S., AND LEE, J. 2010. Data-driven biped control.
In Proc. of ACM SIGGRAPH ’10.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS,
M. 2011. Example-based elastic materials. In Proc. of ACM
SIGGRAPH ’11.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J.
2004. Fluid control using the adjoint method. In Proc. of ACM
SIGGRAPH ’04.

NOCEDAL, J., AND WRIGHT, S. J. 2000. Numerical Optimization.
Springer.

O’BRIEN, J., 2011. Thoughts on physically based animation.
Keynote talk, Symposium on Computer Animation (SCA).

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND
WITKIN, A. 2000. Interactive manipulation of rigid body simu-
lations. In Proc. of ACM SIGGRAPH ’00.

RAIBERT, M. H., AND HODGINS, J. K. 1991. Animation of dy-
namic legged locomotion. In Proc. of ACM SIGGRAPH ’91.

SUEDA, S., KAUFMAN, A., AND PAI, D. K. 2008. Musculoten-
don simulation for hand animation. In Proc. of ACM SIGGRAPH
’08.

TAN, J., GU, Y., TURK, G., AND LIU, C. K. 2011. Articulated
swimming creatures. In Proc. of ACM SIGGRAPH ’11.

TERAN, J., SIFAKIS, E., BLEMKER, S. S., NG-THOW-HING, V.,
LAU, C., AND FEDKIW, R. 2005. Creating and simulating
skeletal muscle from the visible human data set. IEEE Transac-
tions on Visualization and Computer Graphics 11, 317–328.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. In Proc. of ACM SIG-
GRAPH ’87.

TU, X., AND TERZOPOULOS, D. 1994. Artificial fishes: physics,
locomotion, perception, behavior. In Proc. of ACM SIGGRAPH
’94.

TWIGG, C. D., AND JAMES, D. L. 2007. Many-worlds browsing
for control of multibody dynamics. In Proc. of ACM SIGGRAPH
’07.

TWIGG, C. D., AND KAČIĆ-ALESIĆ, Z. 2011. Optimization for
sag-free simulations. In Proc. of ACM SIGGRAPH/Eurographics
Symp. on Computer Animation (SCA ’11).

WICKE, M., RITCHIE, D., KLINGNER, B. M., BURKE, S.,
SHEWCHUK, J. R., AND O’BRIEN, J. F. 2010. Dynamic local

remeshing for elastoplastic simulation. In Proc. of ACM SIG-
GRAPH ’10.

WINKLER, T., DRIESEBERG, J., ALEXA, M., AND HORMANN,
K. 2010. Multi-scale geometry interpolation. In Proc. of Euro-
graphics ’10.

WOJTAN, C., MUCHA, P. J., AND TURK, G. 2006. Keyframe
control of complex particle systems using the adjoint method.
In Proc. of ACM SIGGRAPH/Eurographics Symp. on Computer
Animation (SCA ’06).

WU, J.-C., AND POPOVIĆ, Z. 2003. Realistic modeling of bird
flight animations. In Proc. of ACM SIGGRAPH ’03.

WU, J., AND POPOVIĆ, Z. 2010. Terrain-adaptive bipedal loco-
motion control. In Proc. of ACM SIGGRAPH ’10.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. SIMBI-
CON: Simple biped locomotion control. In Proc. of ACM SIG-
GRAPH ’07.

A Elastic Models

The elastic potentials used in this work are standard except for a few
modifications made to obtain more efficient higher-order deriva-
tives. We use a computer algebra software to automatically gen-
erated code for all required derivatives and therefore only list the
energy expressions here. In order to compute the energy of a given
element, we first compute its energy density using its deformed and
undeformed positions x and X and then integrate over its initial ge-
ometry defined by X̄. While x and X change during simulation, X̄
is assumed constant.

For curves in 2D-space, we define the elastic potential as

WCurve2D =
∑
i

1

2
kl(l

2
i − L2

i)
2 1

L̄3
i

+
∑
a

1

2
kb(θa −Θa)2T̄a ,

where li/Li is the deformed/undeformed length of edge i, θa/Θa is
the deformed/undeformed angle enclosed by two adjacent edges i
and j, and T̄a = 1

2
(L̄i+L̄j). Note that the division by L̄3

i accounts
for the proper scaling of the energy with respect to mesh resolution.
We use an analogous formulation for thin shells, replacing θ and
Θ with the dihedral angle between two edge-adjacent triangles (see
[Grinspun et al. 2003]).

The potential for 2D solids is modeled using Finite Elements and
a modified St.Venant-Kirchhoff material similar to [Martin et al.
2011],

WSolid2D =
∑
e

1

2
kl||Ee||2Āe +

1

2
ka(ae −Ae)2

1

Āe
,

with the Green strain E = 1
2
(FtF − I) and a/A denoting the area

of the deformed/undeformed triangle. The deformation gradient F
is computed as described in Sec. 5.

We also use a straightforward extension of this formulation for 3D
volumetric solids but, though tractable, computations become quite
intense. For this reason, we constructed a simplified energy that
quantifies the distortion of a tetrahedron by measuring the change
in edge lengths as

WSolid3D =
∑
e

6∑
j=1

1

12
kl(l

2
ej −L2

ej)
2 V̄e

L̄4
ej

+
1

2
kv(ve− Ve)2

1

V̄e
.

