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Fig. 1. Automated design of a pneumatic gripper using our method. An initial design (a, bottom) fails to produce the target deformation (blue) when inflated
(top). Our method produces an optimized reinforcement pattern (b, bottom) such that the inflated shape (top) closely approximates the target deformation. A
physical prototypes (c) reproduces the predicted deformation, allowing it to grasp and lift an object conforming to the target shape (d).

Soft robotics offers unique advantages in manipulating fragile or deformable
objects, human-robot interaction, and exploring inaccessible terrain. How-
ever, designing soft robots that produce large, targeted deformations is
challenging. In this paper, we propose a new methodology for designing
soft robots that combines optimization-based design with a simple and
cost-efficient manufacturing process. Our approach is centered around the
concept of robotic skins—thin fabrics with 3D-printed reinforcement pat-
terns that augment and control plain silicone actuators. By decoupling shape
control and actuation, our approach enables a simpler and cost-efficient man-
ufacturing process. Unlike previous methods that rely on empirical design
heuristics for generating desired deformations, our approach automatically
discovers complex reinforcement patterns without any need for domain
knowledge or human intervention. This is achieved by casting reinforce-
ment design as a nonlinear constrained optimization problem and using a
novel, three-field topology optimization approach tailored to fabrics with
3D-printed reinforcements. We demonstrate the potential of our approach by
designing soft robotic actuators capable of various motions such as bending,
contraction, twist, and combinations thereof. We also demonstrate applica-
tions of our robotic skins to robotic grasping with a soft three-finger gripper
and locomotion tasks for a soft quadrupedal robot.
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1 INTRODUCTION
The emergence of soft robotics has given rise to a large and diverse
range of robots that, in many ways, surpass the limitations of their
rigid counterparts. Their soft structure provides unique advantages
when it comes to robotic manipulation of fragile or deformable
objects, human-robot interaction, and even exploration of otherwise
inaccessible terrain. Regardless of their application, soft robots must
produce targeted deformations for functioning. While there are
many different approaches [El-Atab et al. 2020], pneumatic actuation
remains the most widely used option [Rus and Tolley 2015]. Several
ways of controlling the inflated shape of pneumatic actuators have
been explored. One approach is to adjust the shape of internal
air chambers embedded in a volumetric silicone matrix [Shepherd
et al. 2011]. Another option is to structure plain actuators made
from synthetic rubber membranes with strain-limiting materials
such as fibers [Bishop-Moser et al. 2012; Hirai et al. 2000] or sheets
[Mosadegh et al. 2014; Sun et al. 2013] that can bend but not stretch.
While these existing approaches can produce reasonable results,
they rely on expert designers and trial-and-error strategies with
physical prototypes.
In this work, we propose a novel computational approach for

creating soft robots that combines optimization-based design with
a simple and cost-efficient manufacturing process. We decouple
shape control and actuation by augmenting plain silicone actuators
with robotic skins—thin, stretchable fabrics structured with flexible,
3D-printed reinforcements. Our robotic skins enable an entirely
planar fabrication process, thus greatly reducing manufacturing
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complexity. The central challenge, then, is to find reinforcement
layouts that lead to desired deformations upon inflation. While
topology optimization is a natural choice in this setting, we show
through examples that conventional methods perform poorly and
fail to generate useful designs. Specific problems include checker
boarding artifacts, non-binary solutions, and islands of material
that are difficult to manufacture. To address these problems, we
propose a topology optimization approach tailored to the specific
challenges of robotic skin design, including geometric nonlinearities,
complex material behavior, as well as manufacturing constraints.
Our approach builds on a so called three-field formulation that builds
smoothing, filtering for minimum thickness, and material binarity
directly into the optimization process. We furthermore introduce
a new perimeter penalty that identifies and eliminates material
islands, which improves both manufacturability and performance.
Finally, whereas conventional methods require the user to prescribe
a material budget, our method does not impose such constraints and
thus enjoys more flexibility in finding designs that best approximate
performance goals.
We demonstrate the potential of our approach on a series of

examples including reinforced fabrics with desiredmacromechanical
properties and soft actuators that can bend, twist, and contract. We
further show applications to robotic grasping with a soft three-
finger gripper and locomotion tasks for a soft quadrupedal robot.
To validate the feasibility of our simulation results, we build and
evaluate physical prototypes for all our designs.

2 RELATED WORK
Designing soft actuators and robots is a problem that overlaps with
several active fields of research in the graphics and robotics com-
munities. We review the most immediately related works below.

Designing Soft Robots. Soft robots are structures made of flexible
materials with the aim of mimicking living organisms. In compar-
ison to conventional robots made of rigid materials, they provide
greater flexibility for deformation at the cost of increased design
complexity. While many strategies for actuating soft mechanisms
exist, including shape-memory alloys [Buckner et al. 2020], cables
[Bern et al. 2017] and magnets [Zou et al. 2018], pneumatic actu-
ation is arguably the most widely used option. Regardless of the
mechanism used, controlling the deformations resulting from ac-
tuation is a challenging problem. To this end, [Grossi et al. 2021]
mimic caterpillar locomotion by pressurizing auxetic structures,
[Bern et al. 2017; Min et al. 2019] find optimal routing of muscle
fibers to achieve desired deformations and [Buckner et al. 2020]
enrich textiles with actuation and sensing abilities. The medium in
which the device operates opens new challenges. [Ma et al. 2021]
find controllers for swimmer robots and [Branyan et al. 2022] mod-
ulate friction such as to mimick the locomotion pattern of snakes.
For a more comprehensive review on soft robot design we refer to
Pinskier and Howard [2022].

Active Robotic Skins. Closer to our work, a variety of methods
aim to provide multiple functionalities to a single device. Shah et
al. [2021] design robotic structures that can change their shape
such as to adapt to changes in their environment. Using the same

design for multiple gaits, Shepherd et al. [2011] control the motion
of a pneumatic crawler by changing the topology of its internal
channels. Zou et al. [2018] emulate the motion of a caterpillar by
rearranging a set of chambered magnets. Case et al. [2019] use the
concept of robotic skins, where the actuation of a device is driven by
a replaceable skin worn by a passive structure. Different skins allow
a single structure to implement multiple functionalities. Booth et
al. [2018] demonstrates this concept for soft-memory alloys and
pneumatic devices. While the aforementioned works rely on manual
design, we propose an automated approach to designing robotic
skins via topology optimization.

Computational Design for Deformation. Controlling deformations
that result from internal actuation is a core capability for soft ro-
botics applications. With the widespread availability of 3D printers,
designing materials that deform into desired shapes has moved into
the focus of the graphics community. One line of work explores the
use of multimaterial printers for this purpose [Bickel et al. 2010;
Skouras et al. 2012; Zehnder et al. 2017] while others rely on mi-
crostructures to modulate macromechanical properties [Panetta
et al. 2015; Schumacher et al. 2015, 2018; Tricard et al. 2020; Zhu
et al. 2017]. Using the concept of structured fabrics, Jordan et al.
[2020] print reinforcement patterns to encode desired curvature
into pre-stretched textiles. Similarly, Montes et al. [2023] optimize
for stripe-shaped reinforcement patterns to control the mechanical
response of reinforced fabrics. While stripe patterns are tailored to
high-stiffness-ratio materials—compliant in one direction, stiff in
the orthogonal one—the design space of our topology optimization
approach is much larger, providing the flexibility needed to discover
complex designs for functioning soft robots.

Inflatables with Desired Shapes. A number of graphics works has
investigated the design of pneumatic structures. For example, Sk-
ouras et al. [2012] optimize for rest shapes of silicone balloons that
inflate into desired shapes. Follow up work from the same group
considered the design of inflatable structures made from planar
patterns of inextensible material [Skouras et al. 2014]. Another line
of work has focused on controlling inflatables with metamaterial
designs such as kirigami [Branyan et al. 2022; Jin et al. 2020]. Panetta
et al. [2021] compute channels that, when pressurized, deploy into
desired shapes.

Fabricating Pneumatic Actuators. Manufacturing soft robots and
actuators is a challenging task, often involving multiple steps, mate-
rials, and processes; see, e.g., Schmitt et al. [2018] for an overview.
Digital manufacturing technologies such as 3D printing can auto-
mate these tasks, and consequently greatly increase design possi-
bilities [Tawk and Alici 2021; Wallin et al. 2018; Yirmibesoglu et al.
2018]. However, existing processes require complex and specialized
3D-printing setups to create multi-material distributions [Byrne
et al. 2018; Coulter and Ianakiev 2015; Schaffner et al. 2018]. In addi-
tion, 3D printing of ultra-soft elastic materials is still in its infancy.
An alternative approach to manufacturing reinforced plain actuators
is to separately fabricate a soft elastic bladder [Shepherd et al. 2011]
and 3D printed reinforcements, and then assemble them [Baum-
gartner et al. 2020; Chen et al. 2021a]. Such actuators are simple to
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manufacture but assembling reinforcement structures can be diffi-
cult and cumbersome. Techniques to ease reinforcement assembly
on inflatables include heat transfer [Nguyen and Zhang 2020] and
selective cutting [Pikul et al. 2017]. Sewing reinforcing components
together is another option [Yap et al. 2017] and programmable knit-
ting machines [Luo et al. 2022] can be used to integrate reinforcing
fibers into fabrics. While all these strategies are promising, they
remain complex and constrain design options in terms of shape and
materials.

Topology Optimization. Topology optimization has become an
important tool in the design of structures that are stiff but light-
weight [Allaire et al. 2005, 2004; Andreassen et al. 2011; Bendsøe
and Sigmund 1995; Bendsoe and Sigmund 2013; Zehnder et al. 2021].
While most works have focused on linear problems, another line
of research has studied nonlinear topology optimization for finite
deformation problems. Kemmler et al. [2005] tackle the problem
of instabilities related to buckling using a geometrically nonlin-
ear approach. Caasenbrood et al. [2020] propose a computational
framework for designing pressure-driven soft robots using nonlinear
topology optimization. Recent work by Chen et al. [2021b] likewise
used topology optimization to design skeletons for soft bladders
such as to best approximate given displacement targets. While their
method leads to three-dimensional designs that are fabricated using
custom-made molds, the two-dimensional patterns generated by
our approach can be printed directly onto the fabric substrate. As
another key difference, the method by Chen et al. [2021b] produces
designs for user-prescribed material budget and pressure, whereas
our approach automatically determines optimal values for these
parameters.
A central problem of topology optimization is to deal with low-

density elements that are prone to large distortions. Wang et al.
[2014] address low stiffness problems that arises in nonlinear topol-
ogy optimization with an energy-interpolation approach that uses
a linear material model for low-density elements. Our method does
not suffer from such problems since the textile substrate automati-
cally regularizes low stiffness regions. However, our setting intro-
duces the new challenge of isolated material islands that are hard
to manufacture. Whereas such disconnected components do not
appear in gravity-regularized problems that seek filled-void mate-
rial assignments, our fabric-reinforcement material distributions are
prone to such artefacts. We address this problem using a three-field
topology optimization approach with a novel perimeter regularizer
that eliminates these artefacts.

Perimeter Control in Topology Optimization. Several works have
used descriptions of the perimeter as a tool to constrain the shape
of the optimized design. In his work, Sigmund [2007] noted that
the perimeter of a design could be extracted by eroding a design
and subtracting it from the original design. Luo et al. [2019] used
this idea to identify the interface of a shell. In contrast, our work
penalizes the perimeter in order to discourage unnecessary additions
of material.

3 COMPUTATIONAL MODEL
The goal of our method is to compute reinforcement patterns for
textile panels that, when assembled and pressurized, produce a
prescribed deformation. Fig. 2 shows a high-level overview of our
automated design loop. Starting from a random density field (Fig.
2a), we compute its deformation under static equilibrium (Fig. 2b),
perform sensitivity analysis to find the gradient (Fig. 2c), and update
the mesh density of the design (Fig. 2d). We use three-field topol-
ogy optimization along with the perimeter regularizer to generate
manufacturable designs (Fig. 2e). We describe each of these steps in
the following.

3.1 Forward Simulation
Our robotic skins are 3D printed reinforcements on thin layers of
fabric, motivating us to model them as discrete shells made of linear
triangular elements. Pneumatic devices experience extreme defor-
mations involving a complex mechanical response that requires
accurate material modeling. To this end, we perform a characteri-
zation of the fabric (Fig. 3), which demonstrates that it shows an
initial linear stress-strain behavior followed by a sudden exponential
stiffening. We model this phenomenon by fitting a hyper-elastic ma-
terial based on Gent’s model [Gent 1996]. The strain energy density
function is given per-element (𝑒) as

𝜓𝑒
stretch (𝜆1, 𝜆2) = −𝜇 (𝑐1 − 1)2ln

(
1 − (𝜆1 − 1)2

(𝑐1 − 1)2

)
− 𝜇 (𝑐1 − 1)2ln

(
1 − (𝜆2 − 1)2

(𝑐1 − 1)2

)
− 𝜆

2
(𝑐2 − 1)2ln

(
1 − (𝜆1 + 𝜆2 − 2)2

(𝑐2 − 1)2

)
,

(1)

where 𝜆1 and 𝜆2 are the principal stretches of the Biot strain tensor
B =

√
F𝑇 F and F = 𝜕𝒙

𝜕�̄� is the 3× 2 deformation gradient relating the
deformed configuration of the shell 𝒙 to the undeformed configu-
ration 𝒙 given by flat patterns. Furthermore, 𝜆 and 𝜇 describe the
Lamé parameters, whereas 𝑐1 and 𝑐2 determine the shape of the log
barrier. This material can be viewed as a St.Venant-Kirchhoff (StVK)
model augmented with a logarithmic barrier. Indeed, for values of 𝑐1
and 𝑐2 approaching infinity, the energy density function converges
to the standard StVK solid. We fit these parameters to experimental
data obtained from uniaxial stretch experiments (Sec. 4.2). As shown
in Fig. 3, the resulting model closely tracks the measured behavior
of the real fabric for deformations up to 180%. As an additional
benefit, the log barrier acts as a regularizer for designs with sparse
reinforcement distributions, preventing the pressure energy from
overcoming the elastic energy of the fabric.

We assign materials on a per-element (𝑒) basis through linear in-
terpolation of the fitted Lamé parameters of the textile (𝜆textile,𝜇textile)
and reinforcement (𝜆reinforcement,𝜇reinforcement) materials as

𝜆𝑒 = (1 − 𝜌𝑒 )𝜆fabric + 𝜌𝑒𝜆reinforcement and (2)
𝜇𝑒 = (1 − 𝜌𝑒 )𝜇fabric + 𝜌𝑒𝜇reinforcement , (3)

where 𝝆 defines a density field that describes the density distribution
of reinforcement material.
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Fig. 2. Simulation and topology optimization workflow. Given initial param-
eters and a target shape (a), our automated design loop repeats three steps.
First, the inflated shape for the current design is simulated (b). Second,
sensitivity analysis is used to evaluate the gradient of the design objective
wrt. per-element material parameters (c). Third, this gradient is used to
compute an update for material parameters (d). The converged design is
manufactured (e).

Fig. 3. Hyper-elastic material for the textile fitted (orange) from uni-axial
stretch data (blue). The fitted parameters lead to accurate stresses (left) and
lateral compression (right) for up to 180% stretch.

Bending energy. Since our parameterization defines different ma-
terials per element, we discretize the curvature operator using the
triangle-averaged model by Grinspun et al. [2006], allowing us to
use per-triangle material properties to compute bending stiffness.
The curvature operator is computed for every triangle as the sum
of the contributions of each edge 𝑖 of the triangle as

𝚲𝑒 =
∑︁
𝑖

𝜃𝑖

2𝐴𝑙𝑖
�̄�𝑖 �̄�

𝑇
𝑖 , (4)

where𝜃𝑖 is the average signed angle of the normals of the triangles
neighboring the edge in the deformed configuration. The remaining
quantities are computed in the undeformed configuration, with 𝐴

corresponding to the area of the triangle, 𝑙𝑖 the length of the edge
and 𝑡𝑖 the vector perpendicular to the edge with length 𝑙𝑖 facing
outwards the triangle.
Next we define our bending energy based on this operator. We

describe our strain energy density function using Hooke’s law as

𝜓𝑒
bending =

1
2

∫ ℎ
2

− ℎ
2

𝜖bending (𝑧)𝑇𝑫𝑒𝜖bending (𝑧)𝑑𝑧, (5)

where 𝑫𝑒 = (1−𝜌𝑒 )𝑫fabric +𝜌𝑒𝑫reinforcement is the 3×3 stiffness
tensor expressed in Voigt notation, with 𝑫fabric and 𝑫reinforcement
the tensors representative of the linear regime of both materials
respectively, and

𝜖bending (𝑧) = (−𝑧Λ𝑒𝑥𝑥 ,−𝑧Λ𝑒𝑦𝑦,−2𝑧Λ𝑒𝑥𝑦)𝑇 (6)
is the strain induced by curvature along the thickness of the

material 𝑧. The energy density is integrated across the thickness of
the material ℎ.

Pressurization. We model pressure energy using the ideal gas
assumption

𝐸inflation = −𝑃𝑉 , (7)
where 𝑃 is a given pressure and 𝑉 the volume enclosed by the

robotic skin.

Force equilibrium. The total energy of the pressurized shell is
given by

𝐸 (x, 𝝆) = ℎ
∑︁
𝑒

𝐴𝑒𝜓
𝑒
stretch +

∑︁
𝑒

𝐴𝑒𝜓
𝑒
bending + 𝐸inflation . (8)
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The forces of the shell are computed as the negative gradient of
this energy with respect to the deformed nodal positions as

𝒇 (𝒙) = − 𝜕𝐸

𝜕𝒙
. (9)

The system is at force equilibrium when 𝒇 (𝒙) = 0. Therefore, we
find the nodal positions for which the equilibrium configuration is
satisfied (𝒙eq) as the solution to the energy minimization problem

𝒙eq = arg min
𝒙

𝐸 (𝒙), (10)

which we solve using Newton’s method with diagonal regular-
ization [Nocedal and Wright 2006].

3.2 Three-Field Topology Optimization
Based on our simulation framework, we build an optimization model
to find optimal reinforcement patterns that lead to an ideal approx-
imation of the target shape. Finding optimal distributions of rein-
forcement material on a textile substrate is a challenging problem.
Differentiable topology optimization methods such as SIMP cre-
ate patterns of material with intermediate densities that are not
meaningful from a physical point of view, i.e., they cannot be manu-
factured. Additionally, we must take into account manufacturability
constraints that rise from our fabrication process. Reinforcements
that are too thin or small may break or delaminate under actu-
ation. To address these issues, we turn to a three-field topology
optimization approach [Zhou et al. 2015]. This approach eliminates
intermediate densities and enforces manufacturability constraints
through convolutional filters and a novel regularizer that encourages
compact designs.

Three-field filtering. We begin by laying out the three-field fil-
tering approach. Given a field of design densities 𝝆, we obtain a
smoothed field by applying a filter per element 𝑖 as

𝜌𝑖 =

∑
𝑗∈𝑁𝑖

𝜔 (𝒙𝑖 , 𝒙 𝑗 )𝐴 𝑗𝜌 𝑗∑
𝑗∈𝑁𝑖

𝜔 (𝒙𝑖 , 𝒙 𝑗 )𝐴 𝑗

, (11)

where𝜔 (x̄𝑖 , x̄𝑗 ) = 𝑅− ∥x̄𝑖 − x̄𝑗 ∥ for ∥x̄𝑖 − x̄𝑗 ∥ ≤ 𝑅 and 0 otherwise is
a locally supported weighting function describing a neighborhood
of elements 𝑗 for x̄𝑖 within a radius 𝑅, and 𝐴𝑖 is the area of the
element. The purpose of this filter is to enforce a minimum width 𝑅

for reinforcements by smoothing densities within the given radius.
In our experiments we choose 𝑅 = 0.6mm.
Since values for these densities are not binary, they are further

processed by a smooth Heaviside filter,

𝜌𝑖 =
tanh(𝛽𝜂) + tanh(𝛽 (𝜌𝑖 − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽 (1 − 𝜂)) , (12)

which projects the smoothed density field �̃� to a quasi-binary dis-
tribution. In this expression, 𝛽 is a smoothing coefficient for the
Heaviside function and 𝜂 describes the cut-off value between the
two materials. We set these parameters to 𝛽 = 20 and 𝜂 = 0.5 for
all experiments. It should be noted that this filter alone does not
guarantee entirely binary distributions, as the Heaviside function
must be smooth enough to allow differentiability.
The design field 𝝆 together with the two filtered fields �̃� and 𝝆

compose the three-field topology optimization approach (Fig. 4).

Fig. 4. The three-field filtering approach is composed of an input density
field 𝝆, a smoothed field �̃� and a Heaviside projected field 𝝆.

Density Constraints. In order to obtain strictly binary distribu-
tions from these fields, Zhou et al. [2015] propose the following
constraints:

𝑔𝑟 =
1∑
𝑖 𝐴𝑖

∑︁
𝑖

𝐴𝑖 𝐼
𝑟
𝑖 [min(𝜌𝑖 − 𝜂𝑟 , 0)]2 < 𝜖 and (13)

𝑔𝑡 =
1∑
𝑖 𝐴𝑖

∑︁
𝑖

𝐴𝑖 𝐼
𝑡
𝑖 [min(𝜂𝑡 − 𝜌𝑖 , 0)]2 < 𝜖 , (14)

where 𝐼𝑡
𝑖
= 𝜌exp(−𝑐 ∥∇𝜌 ∥2) and 𝐼𝑟

𝑖
= (1 − 𝜌)exp(−𝑐 ∥∇𝜌 ∥2) are

locally-supported descriptors that quantify how drastically the smoothed
densities �̃� change spatially, weighted by their current projected
value, where the parameter 𝑐 controls the length of window. The
purpose of this approach is to ensure that densities are not arbi-
trarily distributed between 0 and 1. Specifically, we ask that no fill
ratio is within the range [𝜂𝑡 , 𝜂𝑟 ]. For concreteness, using thresholds
𝜂𝑡 = 0.3 and 𝜂𝑟 = 0.7 will lead to density values for which material
assignment is unambiguous. Without these constraints, density val-
ues close to 0.5 (or 𝜂) could still arise and material assignments for
such values are all but arbitrary. Due to numerical errors introduced
by the use of discrete elements, these constraints can not be strictly
enforced to be 0. As a consequence, they are framed as inequality
constraints with 𝜖 = 10−3. In our experiments, the value of 𝑐 = 100
produced satisfying results.

Perimeter Regularizer. The three-field filtering approach together
with the density constraints guarantee minimum-width reinforce-
ments patterns with binary material distributions. However, in our
initial experiments, we observed that the standard version of this
algorithm tends to produce small regions (islands or dots) of isolated
material. Whereas such disconnected components do not appear in
gravity-regularized problems that seek filled-void material assign-
ments, our fabric-reinforcement material distributions are prone
to such artefacts. While these islands can improve the design ob-
jective nominally, they generally do not improve functionality and
impede clean manufacturing. To discourage these artefacts, we pro-
pose a new regularizer that penalizes the total perimeter of the
reinforcement (Fig. 5).

We compute the perimeter of the reinforcement material by erod-
ing the projected densities 𝝆 using a smooth-minimum filter as

𝐹 (𝜌𝑖 ) = 1 − 1
𝑤

log ©« 1
𝑛

𝑛∑︁
𝑗∈E

exp[𝑤 (1 − 𝜌 𝑗 )]ª®¬ , (15)

where E are densities in the convolution window of 𝜌𝑖 and𝑤 is a
smoothing parameter. Larger values of𝑤 result in better approxima-
tions of the min function but decrease smoothness and thus affect
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Fig. 5. Our perimeter penalty encourages compact distributions of reinforce-
ment material. We show optimized densities without perimeter penalization
(a), the corresponding density field used to compute the perimeter (b), and
the optimization with perimeter penalization (c).

the stability of simulation derivatives. We obtained satisfying results
by using𝑤 = 0.5 in our examples. Visually, the operation described
by Eq. (15) first inflates the current density field, then subtracts if
from the result to obtain a contouring field (Fig. 5b). Summing up
all values in the resulting field yields an estimate for the boundary
length of the reinforcement material. The per-element perimeter
field is given by 𝑃 (𝜌𝑖 ) = 𝜌𝑖 − 𝐹 (𝜌𝑖 ) and the regularizer is the sum
of the contribution of all elements,

𝑅perimeter =
∑︁
𝑖

𝑃 (𝜌𝑖 ) . (16)

Objective Minimization. We evaluate the performance of a given
design 𝝆 using a simple 𝐿2 objective that measures the distance
between the simulated static equilibrium xeq and the target shape
xtarget as

𝑇 (x(𝝆), 𝝆) = 1
2
∥xeq (𝝆) − xtarget∥2 . (17)

With this objective, we define our optimization problem as

�̂� = arg min
𝝆

𝑇 (𝒙 (𝝆), 𝝆) + 𝑅perimeter s.t.

0 ≤ 𝜌𝑖 ≤ 1,
𝒇 (𝒙 (𝝆)) = 0,

𝑔𝑟 (𝝆) ≤ 𝜀 and 𝑔𝑡 (𝝆) ≤ 𝜀 .

(18)

We find solutions to this minimization problem via the gradient-
based method of moving asymptotes (MMA) [Svanberg 1995]. The
gradient of the objective 𝑇 with respect to the design parameters 𝝆
is given by

d𝑇
d𝝆

=
𝜕�̃�

𝜕𝝆

𝑇 𝜕𝝆

𝜕�̃�

𝑇
(
𝜕𝑇

𝜕𝝆
+ 𝜕𝒙

𝜕𝝆

𝑇 𝜕𝑇

𝜕𝒙

)
, (19)

where x(𝝆) is computed using sensitivity analysis. The gradient is
computed efficiently using the adjoint method. The constraints 𝑔𝑟
and 𝑔𝑡 are automatically enforced by MMA.

Target Meshes. All of our actuators are designed as developable
3D meshes, from which the flat panels are automatically generated
using a planar parameterizationmethod such as ABF++ [Sheffer et al.
2005]. The target mesh is then generated by manually deforming the
3D mesh. In this way, the target mesh shares the same connectivity
to the pressurized shell.

4 RESULTS
We evaluate our method on set of examples that include simple
fabrication modulation tasks and designs of pneumatic actuators
that can bend, twist and compress. We furthermore demonstrate
potential use cases by designing a pneumatic crawler and a soft
robotic gripper.

4.1 Manufacturing
Our method augments textiles with 3D-printed reinforcements. This
approach is compatible with a wide range of filament and textile
materials. For actuation, we use generic pneumatic bladders than
can be fabricated using standard silicone techniques. To ensure
robust and clean manufacturing, islands and other small features
must be avoided. To this end, we impose a minimum reinforcement
width of 0.6 mm and print with a 0.4 mm nozzle.

Fabrication. Soft robots and actuators were made using a 5 step
manufacturing process (Fig. 6). First, the robotic skin design is gen-
erated (Fig. 6a) taking into account fabrication constraints. Then,
reinforcement patterns are directly 3D printed on soft stretchable
fabric (Fig. 6b). The printed design is then cut and sewn (Fig. 6c) into
the desired 3D shape of the soft actuator. Meanwhile, the pneumatic
bladder for the actuator is fabricated by casting silicone into the
desired shape, with tubing and sealing added (Fig. 6d). Finally, the
robotic skin is dressed onto the pneumatic bladder and fixed at the
extremities using sewing thread (Fig. 6e). The same process was
used for fabricating all actuators and robots.

Materials. Robotic skins were made of stretchable jersey (no.
72326, 86% Polyamide, 14% Elasthane) from ExtremTextil. Rein-
forcements use TPU 95A filament from 3Djake. A Prusa MK3S+ 3D
printer was used with the Prusa slicer v2.5. Robotic skin parts were
assembled using a standard sewing machine configured in a 4mm
zig-zag stitch and using standard cotton thread. Bladders were made
by stacking 500𝜇𝑚 thick layers of Dragon skin 20 silicone from
Smooth-On. Devices are actuated using a medium sized FlowIO
platform [Shtarbanov 2021]. Pneumatic connections and robotic
feet were made of standard PLA filament from 3Djake and silicone
tubing and glue.

4.2 Characterization
A custom pull tester setup was use to characterize the fabric from 2D
samples. It uses a linear rail with a closed loop stepper motor NEMA
17, controlled using a CNC shield and an Arduino UNO with GRBL
installed. Forces were measured using a DYLY-109 0 − 5kg force
sensor connected to a strain gauge amplifier HX711 and an Arduino

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.



ToRoS: A Topology Optimization Approach for Designing Robotic Skins • 7

Fig. 6. Design (a) and manufacturing process (b) of 3D printed TPU rein-
forcements on stretchable textile substrates to create a cylindrical robotic
skin (c). The manufactured skin is mounted onto a tubular silicone bladder
(d) to serve as a pneumatic actuator (e) that bends under inflation.

UNO. Pneumatic actuator and robot movements were tracked by
video recording in front of a 1cm pitch grid background.

4.3 Mechanical Modulation of Fabric
Our model generates designs that produce desired large deforma-
tions by locally modulating the properties of a base material. To
validate our model, we design reinforcement patterns that produce
desired macromechanical properties. To this end, we consider a
square patch of fabric with side lengths of 1cm. In order for this
patch to be tileable, we impose periodic boundary conditions on
both reinforcement and displacement DoFs during optimization. We
targeted 2 anisotropic profiles: the first orthotropic and the second
tetragonal, both at 10% strain. The orthotropic tile generated by the
model (Fig. 7b) contains geometrical patterns resembling two wavy
lines intersecting at 90°. Samples made of 50 tiles were manufactured
to experimentally verify the mechanical properties of the design
depending on the orientation. Following the simulation model, the
fabricated sample exhibits orthotropic behavior (Fig. 7b). Despite an
offset, the measured values still show acceptable trend and accuracy.
Experimental characterization results for the tetragonal tile (Fig. 7c)
show acceptable agreement with the simulation. In summary, the
results of these experiments suggest that our approach is able to

Fig. 7. Design and characterization of fabric reinforcement patterns. (a)
A blank textile substrate exhibits an isotropic stiffness profile for uniaxial
stretching. (b) Optimized orthotropic patterns modify the textile stiffness
(blue) at 10 % strain depending on direction and show qualitative agreement
with the target behavior (red). (c) The optimized pattern achieves a direction-
dependent stiffness at 0°, 45° and 90° and 10 % strain (blue), showing good
agreement with the tetragonal target profile (red).

predict the high-level mechanical response of reinforced fabrics, and
to automatically design reinforcement layouts that lead to desired
mechanical behavior. This ability is a prerequisite for designing
robotic skins for soft robots, which we investigate next.

4.4 Programmable Pneumatic Actuators
We use our method to design a set of robotic skins that, when
mounted onto a plain silicon actuator, produce desired deforma-
tions upon inflation. As the initial shape, we designed a 15 cm long
2 cm diameter straight cylinder for the pneumatic actuator (Fig. 8a).
We used an ultra-thin silicone bladder with negligible stiffness com-
pared to the textile material. We first inflated the actuator without
reinforcement. As expected, it inflates into a straight tubular shape,
increasing in diameter and length. This behavior is also observed
in simulation. As a proof of concept, we programmed different
deformations for the same base actuator. First, we prescribe a tar-
get shape corresponding to a constant-curvature bend of 180° (Fig.
8b). Our method finds a reinforcement pattern that achieves this
target at a pressure of 5kPa in simulation. Experimentally, the man-
ufactured actuator generated the same motion, but lagging behind
the simulation, bending up to a maximum of 150° at a pressure of
13kPa. Remarkably, the resulting pattern differs from most human-
designed actuators, which tend to use straight-line reinforcements
[Elmoughni et al. 2021; Luo et al. 2022; Yap et al. 2017]. In con-
trast, our model generated hollow, diamond-shaped reinforcement
structures on the inner side, with ribs extending upward.
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Fig. 8. Evaluation of reinforced pneumatic actuators. (a) Inflation of a 2×15
cm cylindrical balloon without reinforcement. Simulation and measurement
predict that its diameter and length increase under low pressure and then
saturate above 10kPa. (b) Bending, (c)) contracting, and (d) twisting actua-
tors once inflated. Simulated and measured deformations are shown on the
right.

As a second experiment in this series, we designed a robotic
skin that produces an axial contraction upon actuation (Fig. 8c).
The optimized reinforcement pattern exhibits two sets of parallel
lines, crossing at an angle between 60 and 70 which is conceptually
similar to McKibben pneumatic artificial muscles [Al-Ibadi et al.
2017; Aliseichik et al. 2022; Daerden et al. 2002].

We asked for a contraction of 8%. The physical prototype achieves
7.8% contraction at a pressure of 10kPa. For a third experiment,
we prescribe a twisting deformation as the target shape (Fig. 8d).
Our algorithm finds a pattern that is composed mainly of tilted
stripes. This pattern is similar to existing twisting actuators [Chen
et al. 2021b; Connolly et al. 2017; Nguyen and Zhang 2020; Schaffner
et al. 2018], but with some vertical connections between the tilted
lines that restrict its elongation under inflation. Experimentally, the

Fig. 9. Pneumatic walker. Our method generates a design that enables the
inflated robot to stand in simulation (a). The physical prototype qualitatively
tracks the simulated deformation (b). Actuating the three chambers of the
robot in coordination leads to successful locomotion (c) with forward motion
of approximately 2.5cm per cycle (i-ii and iii-iv showing two subsequent
cycles, respectively).

fabricated actuator twists by 300° at a pressure of 15 kPa, lagging
slightly behind the predicted behavior in simulation.
In summary, these results suggest that our method is able to de-

sign robotic skins that qualitatively track the behavior of prescribed
basic actuation tasks. The patterns computed by our algorithm are
geometrically complex and exploit the design freedom offered by
digital manufacturing.

4.5 Soft robot skin
To illustrate the potential of our method for generating design with
more complex functions, we design a quadruped walking robot
[Morin et al. 2012; Shepherd et al. 2011; Tolley et al. 2014] and a
three fingered gripper [Ilievski et al. 2011; Lee et al. 2017; Shintake
et al. 2018]. For the soft robotic walker, we start from an X -shaped
layout and ask that its legs should bend to 90° at 20kPa (Fig. 9b). Due
to the symmetry of the prescribed motion, we optimize for one leg.
Similar to our bending actuator (Fig. 8b), the resulting design show
hollow, diamond-shaped reinforcement structures below the limbs
and ribs extending upward. The middle part of the walker, joining
the four legs, is covered with large areas of reinforcement such as
to contain its inflation and stiffen its structure. A bladder with three
individually controlled chambers was used for pneumatic actuation,
one for the front limbs, back limbs and the middle body. Finally, we
added unidirectional nonslip feet to improve grip. As best seen in
the accompanying video, the manufactured robot was able to move
forward at a speed of 2.5cm per actuation cycle (Fig. 9c).
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Fig. 10. A flat four legged pneumatic bladder (a) can perform different
motions upon inflation depending on its robotic skin.Without reinforcement
(b) the soft robot lays flat. With a crawling reinforcement pattern (c) the
robot crawls. And with a standing reinforcement pattern (d) the robot can
stand up on its legs.

As shown in Fig. 10, our method offers flexibility to design robots
for various applications or obstacles. For example, a soft swimmer
may need to perform a specific stroke (Fig. 10c), which can be
employed as a target shape to our method to adapt the design.

The model can also design grippers (Fig. 1c), a highly demanded
task in soft robotics. In this context, a key advantage of our auto-
mated design approach is that it can easily adapt the gripper to
grasp objects of different sizes, shapes and stiffness.

5 CONCLUSIONS
We presented ToRoS, a new method to automatically design robotic
skins reinforced with strain limiting patterns to control the mo-
tion of soft pneumatic robots. Our approach enables us to explore
and take advantage of new design spaces offered by 3D printing.
To automatically generate designs that optimally approximate tar-
get behaviors, we have addressed several key challenges. First, we
developed a manufacturing process that enable us to fabricate mod-
ular soft robots using standard filament-based 3D printers. Second,
to explore this new design space, we developed a computational
method that automatically designs optimized robotic skins, taking
into account fabrication constraints. Lastly, we improve on an ex-
isting three-field topology optimization scheme to encourage fully
connected reinforcement layouts using a novel regularization term.
Our experimental results illustrate the potential of our method for
designing functional soft robots on demand, and to adapt them to
new scenarios using simple deformation targets.

5.1 Simulation Accuracy
Our simulation framework is able to predict the high-level behavior
of the manufactured devices but achieving numerical agreement
between simulation and physical experiments remains a challenge.
This is in part due to the fact that our pressurized actuators undergo
extreme deformations, leading to highly nonlinear stress-strain re-
sponses. Furthermore, we model textiles as perfectly isotropic and

elastic materials. Real-world textiles exhibit anisotropy and plastic-
ity, which are not accounted for by our model. Additional simplifi-
cations made in our simulation framework include the assumption
of perfect bonding of fabric and reinforcement as well as the lack of
a friction model between the silicone bladder and the robotic skin.
While all these aspects affect the nominal accuracy of our simula-
tions, our model nevertheless predict the overall performance of
our manufactured designs sufficiently well.

5.2 Limitations and Future Work
The current computational model generates reinforcements using
only one flexible material. Nevertheless, using additional material
for reinforcements would enable better control over deformation.
More complex targets could be achieved by combining several rein-
forcement materials having different properties. We also imagine in
future that more complex structures with specific properties could
be added onto robotic skin like compliant mechanisms and meta-
materials [Fan et al. 2021; Schumacher et al. 2018]. While we have
demonstrated basic locomotion capabilities for our soft robots, the
control signals were programmed manually. In the future, it would
be interesting to co-design robotic skins and control algorithms.
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