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Payload-aware trajectory optimisation for
non-holonomic mobile multi-robot manipulation

with tip-over avoidance
Florian Kennel-Maushart1, Stelian Coros1

Abstract—Cooperative mobile manipulation is an increasingly
important topic in robotics: Just as humans need to collaborate
on many tasks, robots need to be able to work together, e.g.,
to transport heavy or unwieldy objects in unstructured environ-
ments. But mobile multi-robot systems pose unique challenges,
such as a much larger configuration space for motion planning,
stability concerns and, especially for wheeled mobile robots, non-
holonomic constraints. To tackle these challenges, we propose
a multi-robot, bi-level optimization system, based on a direct
transcription formulation for wheeled mobile manipulation. Our
formulation uses static forces, calculated for stability objectives
at the lower level to inform the wheeled trajectory planning at
the higher level. This allows for effective planning, while ensuring
safe execution, and improving the open-loop performance on real
robots. We demonstrate our model’s ability to tackle challenging
motion-planning tasks and evaluate its improved real-world per-
formance on the Clearpath Husky mobile platform. Finally, we
integrate the system with our previously presented Mixed-Reality
interface. Index Terms—Multi-Robot Systems, Path Planning for
Multiple Mobile Robots or Agents, Cooperating Robots, Robotics
and Automation in Construction, Wheeled Robots

I. INTRODUCTION

Industrial automation has long been focused on building
specialised facilities around large, fixed-base robots that stead-
fastly repeat the same task with remarkable precision. Mean-
while, outside of these large, structured facilities, many jobs
and tasks require mobility, agility and cooperation. While co-
operative mobile manipulation involves numerous challenges,
the focus of this work is on trajectory optimization for multiple
non-holonomic mobile manipulators transporting an object
cooperatively through a restricted environment, while avoiding
tip-over. Being able to provide robust and safe solutions to
this problem is highly beneficial for a wide variety of jobs
and tasks, such as the installation of prefabricated pieces on
construction sites (cf. Fig. 1). Wheeled mobile manipulators
typically offer some redundancy in their degrees of freedom
and theoretically are able to access an infinite workspace.
However, for non-holonomic wheeled bases, e.g., skid-steering
vehicles, the system is under-actuated, as it cannot directly
move sideways. This makes the problem of finding a collision-
free path in constrained environments challenging [1]. An
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Fig. 1: Render of a multi-robot system cooperatively installing
a prefabricated element on a construction site.

interesting additional problem that arises in mobile robots as
opposed to fixed-base robots, is the danger for them to tip
over when a moment is imposed on the base. Aside from the
danger of a robot tipping over, imbalance will also lead to
an uneven distribution of the normal forces on the wheels,
which in turn highly affects the steering behaviour of the
robot [2]. While these problems are already non-trivial to
solve in the single-robot case, solving them for a multi-robot
system adds additional complexities: Collaborative motion-
planning highly constrains the available range of motion for
each robot, and can easily lead to the trajectory optimization
getting stuck in sub-optimal configurations. This is especially
true for shooting-based methods, whereas direct transcription
offers more flexibility by only introducing pairwise coupling
between control and state variables [3]. We present a novel
combination of all of these aspects into a unified method in
the context of cooperative multi-robot transport. In detail, the
contributions of this work are:

• A bi-level optimisation approach, in which we first calcu-
late the normal forces at the wheels according to the robot
configuration, and then use these forces to formulate our
steering and tip-over avoidance constraints.

• Evaluation of our system in simulation, including difficult
obstacle avoidance scenarios with multi-robot setups and
an ablation study on optimization factors.

• Evaluation of our system on a real robot, showing how
the force-aware model is able to significantly improve the
open-loop real-world fidelity over the baseline controller
which is normally deployed on the robots.

• Deployment on a real multi-robot system and discussion
of the open-loop performance as well as the system’s
ability to cooperatively carry a payload.
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Finally, we discuss our results and summarise our learnings
and shortcomings of the presented system. In the accompany-
ing video material, we also show an implementation of this
system within a Mixed-Reality (MR) interaction framework.

II. RELATED WORK

Cooperative Fixed-Base Manipulation While we focus
on cooperative mobile manipulation, looking at cooperative
manipulation for fixed-base systems can be instructive. In
[4], Adorno et al. introduce a cooperative dual task-space
formulation using quaternion algebra, which lets them effi-
ciently represent dual-arm manipulation tasks. They formulate
a control law and show applications such as holding a balloon
and pouring a glass of water on a small humanoid platform.
While not relying on relative pose control, extending our
method with quaternion algebra could enable more involved
manipulation tasks in future work. Laha et al. [5] present a
flexible task planner that uses heuristics to switch between
trajectories while executing dual-arm manipulation tasks. This
lets them avoid singularities, even with cluttered environments
or dynamic obstacles, but requires fast re-planning. Finally,
using force regulation feed-back control [6] allows for com-
pensation of deviations between expected and measured forces
at the end-effector, which would be interesting for future work.

Skid-steering As skid-steering mobile robots (SSMRs) have
low mechanical complexity, they offer advantages such as
affordability, ease of maintenance, and ruggedness. Unfortu-
nately, they are complex to model compared to omnidirectional
or differential-drive vehicles. As the name implies, the wheels
are not in perfect rolling contact with the floor, but are
skidding when the vehicle turns. Simplifying assumptions
can be made, e.g., reducing the skid-steering formulation to
that of a differential-drive vehicle [2]. These formulations,
however, neglect the complex wheel-ground interactions and
break down as soon as the payload is not evenly distributed on
the base [7]. An extensive treatment of kinematic and dynamic
steering models for skid-steering is presented by Kozłowski et
al. in [8]. They present a tracking controller, and validate it in
a Matlab/Simulink simulation. A motion model based on the
Instantaneous Center of Rotation (ICR) and its experimental
validation is later introduced by Mandow et al. in [9]. The
ICR offers a way to reason about the turning behaviour of
skid-steering vehicles. The shift of the center of mass (COM)
introduced by a manipulator is treated by Liu and Liu in [2].
Their model is parametrised by the ICR offset d0 as well as
wheel-slip parameters sr, sl. Our approach, detailed in Sec. III
is in-part based on this work. Finally, a lot more recent work
has been done on skid-steering, introducing inertia-based [10],
MPC [11] or learning-based [12] approaches to improve path
tracking, which lie beyond the scope of this paper, as our focus
currently lies on improving the open-loop motion planner.

Tip-over avoidance The risk of tipping over can usually
be neglected for systems with favorable payload to base
weight ratios. However, smaller systems offer advantages e.g.,
more agility and typically a smaller footprint, allowing them
to move through cluttered environments and be transported
between locations more easily. In [13], Ding et al. present an

online dynamic tip-over avoidance algorithm. They derive the
moments acting on the base due to end-effector and wheel
motion. They then present simulation results and verification
on an omnidirectional robot. They do not use their method in
the trajectory optimisation, but switch to tip-over-avoidance
during execution if their criterion is met. We would like to
avoid unexpected behaviour from an operator point-of-view by
including these considerations already in the motion planning.
Pankert et al. present a perceptive model predictive controller
for continuous mobile manipulation in [14]. They use a Zero
Moment Point objective for stability, while tracking an end-
effector target force. Using a penalty method, they can deal
with tracking errors of the non-holonomic base, but they
don’t consider these forces for steering. Finally, Petrovic et al.
recently presented an extended model for tip-over stability on
uneven terrain [15]. While we do not consider sloped terrain
yet due to the lack of sensing capabilities on the robot, we
could include a similar objective into our system in the future
with slight adjustments of the formulation.

Cooperative Transport A cooperative transport system
with mobile robots can take many different forms, depending
on the robot systems and transport strategies. Extensive re-
views of different approaches have been conducted in [16] and
[17]. While these reviews include strategies such as pushing
and caging, for our application domain we are most interested
in grasping. The above mentioned reviews also differentiate
between centralised and decentralised planners. While decen-
tralised planners offer better scalability and robustness, cen-
tralised planners are often significantly simpler to implement.
A system to cooperatively grasp and lift a payload is presented
in [18]. The authors focus on the distribution of the robots
around the payload and the interaction forces. The mobile
manipulator itself is based on a differential-drive system with
a low center of mass. Therefore, tip-over considerations or
complex steering are not addressed. Zhao et al. present the
stability analysis of a more complex towing system in [19],
focusing on payload stability and tip-over avoidance. A limited
numerical analysis of the proposed model with pre-determined
joint-angles is presented. Two examples of motion-planners for
mobile manipulator teams which rely on formation control as
a policy for the mobile bases are [20] and [21]. These systems
a priori try to stay close to a target formation, which limits the
range of maneuvers they can exhibit. An MPC formulation for
a similar setting has been presented and evaluated in [22] and
a similar setup, using dual-quaternion algebra is presented in
[23]. While these systems were deployed on omnidirectional
robot bases, a more recent extension to this for non-holonomic
agents has been proposed in [24]. A system that more closely
matches the system we want to examine has been used by
Xu et al. in [25]. Although using similar robots, the proposed
method only takes care of force tracking, based on the position
of the payload following a predetermined trajectory. Finally, a
system that most closely matches our setup has been proposed
quite recently by Zhang et al. in [26] in an arXiv preprint.
Their robot team exhibits some impressive maneuvers, but
relies on omnidirectional bases and a leader-follower scheme
to transport the payload to a given goal position. They also do
not consider the influence of the payload weight on steering.
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III. METHOD

A. Force Model

We consider a multi-robot system with the forces depicted
in Fig. 2. A detailed model of all the transforms as well as the
URDF model used in our simulation can be found in [27].

Fig. 2: Force diagram of the multi-robot system, with sup-
porting forces (blue), robot weight (orange), external payload
(green) and internal forces at the end-effector (yellow).

We are developing our model under two main assumptions:
1) All robots can meet their end-effector targets, i.e., the

only forces acting at the end-effectors are due to the
weight of the payload and the manipulator self-weight.

2) The system is in quasi-static equilibrium, i.e., inertial
effects due to base or arm acceleration are not considered.

This limits how quickly our robots can accelerate to not
violate these assumptions. In practice, we achieve this by
adding smoothing to our optimisation (cf. Osm in Eq. 5).

B. Skid-steering

A model that integrates the skidding of the wheels, as well
as the ICR axis offset as a function of a manipulator pose is
presented by Liu and Liu in [2]. To summarize, the equations
of motion are described as follows:

ẋ =
[r(ul + ur) + (sl + sr)] cos(ϕ)

2

+
d0 [r(ur − ul) + (sr − sl)] sin(ϕ)

dm

ẏ =
(r(ul + ur) + (sl + sr)) sin(ϕ)

2

− d0 [r(ur − ul) + (sr − sl)] cos(ϕ)

dm

ϕ̇ =
r(ur − ul) + (sr − sl)

dm
,

(1)

with ur, ul being the wheel speed commands, d0 the offset of
the ICR axis from the geometric center of the robot in local
x-direction, sr and sl the right and left slip-velocities, i.e., the
speeds at which the wheels slip against the driving direction.
Finally, x, y and ϕ are the base position and orientation, dm
the robot base width and r the wheel radius. A representation
of these parameters can be seen in Fig. 3, where the offset of
the ICR compared to the geometric center is also visualized.

C. Bi-level optimization formulation

We want to optimise the following system:

Fig. 3: Steering and model parameters (adapted from [2]).

min
q∗

OU (q
∗, f)

s.t. fi,⊥(q) ≥ 0 ∀fi ∈ f

− fi,⊥(q) · µ ≤ fi,∥(q) ≤ fi,⊥(q) · µ ∀fi ∈ f

where

f(q) = argmin
f∗

OL(q, f
∗)

(2)
with lower- and upper-level objectives OL and OU respec-
tively. We discretize the problem into t timesteps of length dt,
but in the following we will only indicate the discretization
where useful, for conciseness. The first decision variable is
q := (q0, . . . ,qn), where q0 represents the payload. The n
robotic agents follow as q1 to qn. We simultaneously optimize
over the state and input, using a direct transcription scheme
[28]. For this, we assemble the full vector qi := [θi,ui]

T

for each robot, where θi are the state variables, namely the
base pose and arm joint angles, and ui := [ul, ur] are the
wheel velocity inputs for the left and right wheel-pairs. For
q0 there are no velocity inputs. The second decision variable,
f := (f1, . . . , fn), contains the supporting forces for each robot
as fi := (fFL, fFR, fRL, fRR), with front-left to rear-right
wheel forces as indicated in Fig. 2. In our concrete example,
the lower level OL solves the quasi-static force and torque
equilibrium, which gives us the normal forces at the wheel
contact points ri in a differentiable formulation:

OL(q, f) =
∣∣∣∣∑

i

fi − f̄
∣∣∣∣2
2
+
∣∣∣∣∑

i

(ri × fi)− τ̄(q)
∣∣∣∣2
2

+ ωR∥f∥,
(3)

where f̄ and τ̄ are the total forces and moments generated by
the weight of the robot and external payload, and the last term
is used to regularize the forces towards a smaller norm with
regularisation weight ωR. The upper level, OU , can be split
into three terms, which either depend on q, f or both.

OU (q, f) = O1(q) +O2(q, f) +O3(f). (4)

The first term,

O1(q) = OEE(q) + ωsmOsm(q)

+ ωlimOlim(q) +ODCA(q)
(5)
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contains sub-objectives that purely depend on q. In detail, the
end-effector sub-objective OEE(qi,q0)

OEE,t(qi,q0) = ∥p(Fee(qi,t))− p(Fa,i(q0,t))∥2 +
∥R(Fee(qi,t))−R(Fa,i(q0,t))∥2 ,

(6)

minimizes the error in position p(·) and rotation R(·)
between the forward-kinematic solution F for the end-
effector of each robot and the respective attachment point
on the payload, indicated as Fa,i. For the full OEE(q) =

ωEE

∑n
i=1

∑T
t=0 OEE,t(qi,q0) + ωtarOEE,T (q0, ptar), we

add the terms for all robots over all time steps as well as
an additional term to drive the payload pose q0 at the final
step T towards the user-defined target pose ptar. The smooth
acceleration sub-objective

Osm(q) =

T∑
t=0,t>2

1

dt2
∥qt − 2qt−1 + qt−2∥2 (7)

minimizes the acceleration, i.e. the rate of change for each
entry in q, over all time steps. As in [29], the joint-limits
objective Olim(q) is implemented as a soft barrier function.
We define the unilateral quadratic functions:

B+
b (a) =

{
0 a ≤ b+ ε

σ(a− b)2 a > b+ ε
(8)

B−
b (a) =

{
0 a ≥ b+ ε

σ(a− b)2 a < b+ ε
(9)

such that for each joint angle qi,j at timestep t we get term:

Olim,i(qi,j) = B+
qmax,i,j

(qi,j) +B−
qmin,i,j

(qi,j).

with maximum and minimum joint angles qmax and qmin,
stiffness σ and limit ε. We then sum up all joint angle objec-
tives Olim,i over all timesteps t for the full objective Olim.
Finally, for the differentiable collision-avoidance sub-objective
ODCA(q), we formulate self-collision, world-collision and
inter-agent collision terms for each robot, with their respective
weights ωDCA,self , ωDCA,world, ωDCA,inter−agent . These
terms are based on differentiable distance formulations be-
tween pairs of collision primitives. For conciseness we refer
the reader to [29] for more detail. The second term,

O2(q, f) = ωsteerOsteer(q, f) + ωtipOtip(q, f) (10)

contains sub-objectives, which depend both on q and f . We
formulate Otip(q, f) as a soft-barrier function, with a pre-
determined threshold at the minimal supporting force we want
to ensure, similarly to Olim above. In theory, as long as the
force remains positive, the vehicle will not tip over, although in
practice we typically establish a positive threshold to account
for dynamic effects that our model does not cover. It is worth
noting, that this formulation is conceptually very similar to
Zero-Moment Point formulations as used for example in [14],
where the center of gravity of the robot is constrained to stay
within a convex geometric boundary. The steering objective
Osteer(q, f) ensures that the change of robot state variables
x, y and ϕ (see Fig. 3) matches the dynamics from Eq. 1 as:

Ot,steer(q, f) = ||ẋt · dt− (xt+1 − xt)||2

+||ẏt · dt− (yt+1 − yt)||2

+||h( ˙ϕt) · dt− (h(ϕt+1)− h(ϕt))||2
(11)

at each timestep t of duration dt. For the heading angle ϕ we
use a vector formulation, indicated by h(ϕ), which ensures that
we do not encounter problems when changing from negative to
positive heading angles. Finally, we formulate the constraints
on the forces from Eq. 2 as soft barrier functions,

O3(f) =
(
S+
1 (f) + S−

1 (f)
)
+ S2(f). (12)

Specifically, this constrains the normal forces fi,⊥(q) to re-
main positive (supporting the vehicle) and the tangential forces
fi,∥(q) to remain within a very small friction cone with friction
coefficient µ, which we therefore set to µ = 10−2:

S+
1 =

∑
i

{
(fi,∥ − µ · fi,⊥)2, if fi,∥ ≥ µ · fi,⊥,
0, otherwise

(13)

S−
1 =

∑
i

{
(fi,∥ − µ · fi,⊥)2, if fi,∥ ≤ −µ · fi,⊥,
0, otherwise

(14)

S2 =
∑
i

{
(fi,⊥)

2, if fi,⊥ ≤ 0,
0, otherwise.

(15)

D. Solving the optimization problem
Having formulated Eq. 2 as an unconstrained bi-level opti-

misation problem, we can use Newton’s method, for which we
require the first and second-order derivatives dOU

dq and d2OU

dq2 .
We can use sensitivity analysis [30] to find df

dq , by defining
(omitting dependency of f on q for conciseness)

g(q, f) :=
d

df
OL(q, f) = 0 (16)

and then take the derivative

dg

dq
=

∂g

∂f

df

dq
+

∂g

∂q
= 0 (17)

which gives us

df

dq
= −

(
∂g

∂f

)−1
∂g

∂q
. (18)

We can ensure that ∂g
∂f can be inverted by adjusting ωR in

Equation 3. Finally,

dOU

dq
=

∂OU

∂f

df

dq
+

∂OU

∂q
= −∂OU

∂f

(
∂g

∂f

)−1
∂g

∂q
+

∂OU

∂q
,

(19)
For conciseness, we omit the details of the derivation here, but
using the same method as presented in [29] we get the second
order derivative approximation

d2OU

dq2
≈
(
df

dq

)T
∂OU

∂f2

(
df

dq

)
+

(
df

dq

)T
∂OU

∂f∂q
+

(
∂OU

∂f∂q

)T
df

dq
+

∂2OU

∂q2
.

(20)
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Fig. 4: System Architecture

With the first- and second-order derivatives established, we
use Newton’s method to find a solution to Eq. 2. To do this,
we also need the derivative

dOsteer

dq
=

∂Osteer

∂q
+

∂Osteer

∂s

(
∂s

∂f

df

dq
+

∂s

∂q

)
(21)

where

s = s(f(q)) = (d0, sl, sr), (22)

considers the dependence of the steering parameters on f(q).
As shown above, the steering parameters consist of d0, sl and
sr, where d0 is the axis offset of the ICR and sl and sr are
the left and right skidding velocities, which we model as

d0 =
dw(fFL + fFR − fRL − fRR)

2
∑

f
(23)

with wheelbase dw and, using slip factor c,

sl = −c · ul, sr = −c · ur. (24)

The same can be done for the derivatives of the tip-over
objective dOtip

dq and (without having to go through the nested
partial derivatives) for Eq. 12. Similarly, following Eq. 20 the
Hessians can be obtained.

Remark. Eq. 18 requires us to take the derivatives of the
cross product in Eq. 3. Excluding trivial factors for brevity, we
examine only c(q, f) := d

df

∣∣∣∣∑
i (ri × fi)− τ̄(q)

∣∣∣∣2
2

in detail.
We get

∂c

∂f
= 2

[r1]
T
×[r1]× . . . [r1]

T
×[r4]×

...
. . .

...
[r4]

T
×[r1]× . . . [r4]

T
×[r4]×



∂c

∂q
= 2


∑

rb([rrb × frb]×J1 − [r1]
T
×[frb]

T
×Jrb)

...∑
rb([rrb × frb]×J4 − [r4]

T
×[frb]

T
×Jrb)

 ,

where Jrb is the Jacobian for the centre of gravity of each
rigid body, whose weight contributes to τ̄ and [v]× is the skew-
symmetric matrix for the cross-product with vector v.

Fig. 5: Results of fitting d0.

E. System
Our system is depicted in Fig. 4. We are using two Clearpath

Husky skid-steering robots with UR5e robot arms, equipped
with a Robotiq 2f-85 and 3-finger gripper, respectively. A
centralised server communicates with the robots via websocket
and receives back information about the current joint state
from the joint state publisher of each robot, as well as their
global position from an Optitrack System, which we use to
track the trajectories for evaluation. Finally, we can connect
to the server with our HoloLens app, which lets us visualise
trajectories and input a payload goal via hand gestures. A
depiction of the HoloLens system can be found in the video.

IV. RESULTS

A. Simulation
In order to evaluate the validity of the parameter fits

(Equations 23 - 24) we run multiple trajectories on a real
Husky, with different arm configurations. We record the center
of mass by measuring the normal forces on the wheel before
each run, using four scales. We fit our simulation results using
the Python symfit module (v. 0.5.6) and find a good agreement
with a linear fit for d0 between −0.275 and 0 (cf. Fig. 5) as
well as a constant negative slip factor c = −0.04 for sr, sl. The
limits for d0 correspond to half of the wheelbase, as expected.

B. Tip-over avoidance
Our tip-over avoidance objective, which effectively enforces

that no supporting forces drop below a pre-defined threshold,
allows the robot to plan paths that keep the robot in (static)
balance throughout the trajectory. A result with a highly
restrictive lower threshold of 170N per wheel can be seen
in Fig. 6. This keeps the robots from assuming unfavourable
configurations, like the one that would be a straight-forward
solution for the system as the one in the top part of Fig. 6.

Type Weight Value Stiffness (σ) limit (ε)

System ωDCA,inter−agent 5 25 0.25
ωEE 1e5 - -

Payload
ωDCA,world 200 5 0.05

ωsm 0.05 - -
ωtar 1e4 - -

Husky
ωDCA,world 200 5 0.25
ωDCA,self 200 25 0.15

ωsteer 2e5 - -
ωtip 10 5 10
ωsm 0.1 - -
ωlim 1e4 25 0.005

OL(q, f) ωR 0.01 - -

TABLE I: Objective Weights and Parameters
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Trajectory µerr,pos σerr,pos µerr,yaw σerr,yaw

90° rotation off 0.185m ± 0.147m 4.73° ± 1.23°
90° rotation on 0.1m ± 0.071m 2.77° ± 0.68°
forward-right off 0.146m ± 0.117m 9.75° ± 24.18°
forward-right on 0.021m ± 0.005m 5.36° ± 2.9°
forward 180° off 0.172m ± 0.116m 11.97° ± 10.48°
forward 180° on 0.048m ± 0.039m 11.54° ± 9.1°

TABLE II: Results of the force-aware trajectory optimisation
(on) over planning without load considerations (off ).

C. Force-aware steering

In order to show the effects of the improved steering
objective in isolation, we run multiple trajectories on a single
robot, and summarize tracking performance in Table II. An
example of the corresponding tracking of the real robot motion
compared to the predicted trajectory can be seen in Fig.
7. The 90° rotation objective defines a target for the base
only, while the forward-right objective defines only an end-
effector target, and forward 180° defines separate base and
arm goal poses. Especially in scenarios with an extended arm
and large rotations, we have a significantly improved open-
loop performance compared to the base model. We want to
point out that the optimization takes advantage of the coupling
between the steering and the arm pose, even when there is no
explicit target given for the arm, which can be seen in the
accompanying video. It is also visible that, while our system
shows a clear improvement, offsets still do occur, e.g., due
to uncaptured dynamic effects or small angular offsets in the
initial configuration.

D. Multi-robot trajectory optimization

We run multiple optimizations for two and three robot
teams, cooperatively carrying a payload from an initial to
a goal location, while avoiding obstacles. For each of these
experiments, we enable the force-aware steering objective as

Fig. 6: Comparison of the calculated forces over planned
trajectories without (top) and with a 170N lower threshold
on the force per wheel (bottom).

Fig. 7: Trajectory optimization without (left) and with payload-
aware steering (right). The planned trajectory is depicted in
blue, the motion capture of the real robot in green. Here, the
start config. is front-heavy, as shown on the bottom right.

well as the tip-over limits. A planned trajectory for two robots
can be seen in Fig. 8. The trajectory requires the robots to
lift a payload over an obstacle, indicated by a red sphere.
The starting position of the base and the planned base path is
indicated by bright red cuboids, whereas the end-effector path
is indicated by small spheres. The graphs show the calculated
forces per wheel as well as the change of the d0 parameter over
the trajectory. It can be seen that changes in the parameter d0
are clearly reflected in the force distribution across the wheels.

A planned trajectory for three robots carrying a payload
through a door can be seen in Fig. 9. The collision primitives
for the door, robot and payload collision primitives are drawn
as transparent red cuboids and capsules. For clarity, the base
path is only visualised with small spheres, the same as for the
end-effector paths. More real-world trajectories such as the
one in Fig. 10 as well as an MR interface visualisation can be
found in the accompanying video material.

Fig. 8: Values for d0 and calculated forces per wheel for a
two-robot trajectory with obstacle avoidance and a per-wheel
threshold of 100N and payload-aware steering enabled.
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Objective ω factor Min F [N] SC [mm] WC [mm] Max EE [mm] Avg EE [m] Target [mm] Steer [-]

Baseline - 109.82 - 25 - 179 - 0.31 - 3.35e-5 - 4.4 - 6.1e-3 -

Otip
x10 109.93 ↑ 25 - 180 - 0.32 - 3.38e-5 - 4.3 - 6.3e-3 -

x0.1 109.59 ↓ 25 - 178 - 0.34 - 3.27e-5 - 4.2 - 5.6e-3 ↓

Osteer
x10 109.52 ↓ 25 - 197 ↑ 0.38 - 4.44e-5 ↑ 4.4 - 6.4e-3 -

x0.1 109.83 - 25 - 179 - 0.32 - 3.02e-5 ↓ 4.2 - 5.2e-2 ↑

OEE(qi,q0)
x10 109.82 - 25 - 179 - 0.035 ↓ 3.3e-6 ↓ 4.4 - 6.4e-3 -

x0.1 109.83 - 25 - 178 - 2.9 ↑ 2.5e-4 ↑ 3.8 ↓ 4.7e-3 ↓

OEE(q0, ptar)
x10 109.79 - 25 - 182 ↑ 0.6 ↑ 5.3e-5 ↑ 0.7 ↓ 9.9e-3 ↑
x0.1 109.91 ↑ 25 - 170 ↓ 0.14 ↓ 1.5e-5 ↓ 21 ↑ 1.6e-3 ↓

ODCA,self
x10 109.83 - 25 - 174 ↓ 0.35 - 4.5e-5 ↑ 4.4 - 6.3e-3 -

x0.1 109.83 - 23 ↓ 183 ↑ 0.35 - 3.32e-5 - 4.3 - 6.0e-3 -

TABLE III: Parameter ablation study. Comparison after 100 optimisation steps of minimum supporting force (Min F), minimum
self-collision (SC) and world-collision (WC) distances, maximum and average end-effector distance to payload (Max/Avg EE),
final distance of payload to target (Target) and steering objective residual (Steer). The baseline uses the parameters described
in Tab. I and a 100N lower threshold on Otip, and computes 35 time steps with dt = 0.2s.

E. Ablation Study and Computational Efficiency

For the experiments in Section IV-D we tune the weights to
the values in Table I. These weights ensure that all constraints
are solved to a small residual and collisions are avoided. As is
well-known for optimisation-based methods, changes to these
weights will influence the overall convergence point of the
system. To illustrate some of the trade-offs, we conduct an
ablation study for a configuration similar to the one shown in
Fig. 8. The threshold force is set to 100N and we calculate
35 steps with dt = 0.2s. We change the tip-over, steering,
end-effector (OEE(qi,q0)), payload target (OEE(q0, ptar))
and self-collision weights by a factor of 10 and 0.1. The
results are shown in Tab. III.: The minimal force over all
wheels of all robots (Min F) as well as self-collision distance
(SC) and world-collision distance of the payload (WC) are
always respected. A collision would be indicated by a negative
value for SC or WC. With the exception of lowering the
weight for OEE(q0, ptar), the maximum distance of the end-
effectors to their attachment points (Max EE) stays below
1mm, on average (Avg EE) even below 0.1mm. The distance
of the payload to the target on the final step (Target) can be
lowered by increasing the weight of OEE(q0, Ptar), however,
at the cost of slightly worse convergence of the end-effector
objective. Finally, the steering objective residual (Steer) could
generally be improved at the cost of a slightly worse Otip,
which would however still stay above the defined threshold.
On the computational cost: For this scenario, one solver

Fig. 9: Results of the trajectory optimization for a system of
three Husky robots carrying a frame piece through a narrow
passage. The collision primitives are highlighted in red.

iteration took on average 1470ms ± 150ms. Computing the
gradient and Hessian for one robot takes between 39%-41%
of that time. When lowering the number of time steps to 20,
the average optimizer step takes 701ms, while increasing to
50 time steps increases that time to 1860ms.

V. DISCUSSION

As shown in Sec. IV-C, especially Fig. 7, the payload-
aware steering allows us to achieve an open-loop precision
which the implementation without awareness does not. The
inclusion of payload-aware steering also allows the optimizer
to make use of the arm to actively influence the steering, e.g.,
to make tighter turns possible, as seen in the forward 180°
scenario. Our system also allows for the optimisation in more
complex scenarios, with obstacles (cf. Fig. 8) and any number
of robots cooperating (cf. Fig. 9). One current limitation of
the system is that we do not include dynamic effects like
wheel acceleration and the associated torque. As outlined in
Sec. III-A, we assume that end-effector targets can perfectly
be met (which is verified through the results in Tab. III), and
therefore don’t currently model the force that a robot exerts on
the payload, and thereby on other robots. This would certainly
be an interesting avenue for future evaluation, as it is clearly
visible from experiments on the real robots (cf. Fig. 10) that
they do not follow the planned trajectory perfectly, which puts
stress on the payload. Furthermore, considering these forces
might stabilize the system even when individual robots are in
an unstable state. Another future avenue is to now combine

Fig. 10: Trajectories on two real Husky robots
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our trajectory planner with a feedback-controller, e.g., a force-
tracking solution such as presented in [6]. While we evaluated
our parameter mapping in simulation (cf. Sec. IV-A), the data
does seem to be quite noisy and there are potentially strong
dynamic and nonlinear effects which could influence d0 as
well as sr and sl (cf. [2]). One way to improve this would
be to learn the parameters, e.g., as proposed by Sukhija et
al. in [31]. Finally, another interesting future avenue would
be the evaluation of the MR user interface, as our goal is to
eventually deploy such systems on construction sites to help
with installation and transportation tasks.

VI. CONCLUSION

We have presented a novel method for trajectory opti-
misation of multiple skid-steering mobile robots, enabling
non-trivial trajectory planning for cooperative transport. Our
system achieves good open-loop performance by considering
forces at the wheels induced by the arm state. We have shown
the derivations for our bi-level optimization scheme, and how
we can use it to optimize for complex multi-robot systems
with a common payload and obstacle avoidance scenarios in
simulation. Finally, we presented a real-world implementation
complete with a MR user interface, and have conducted
multiple experiments on real hardware, as well as an ablation
study on our simulation results. For future work, we would
like to additionally integrate our method with a closed-loop
controller for longer-horizon problems and bring our system
closer to real applications in construction and warehousing by
studying the MR user interface in more detail.
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