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This paper presents a method for optimizing visco-elastic material parame-

ters of a finite element simulation to best approximate the dynamic motion

of real-world soft objects. We compute the gradient with respect to the

material parameters of a least-squares error objective function using either

direct sensitivity analysis or an adjoint state method. We then optimize the

material parameters such that the simulated motion matches real-world

observations as closely as possible. In this way, we can directly build a useful

simulation model that captures the visco-elastic behaviour of the specimen

of interest. We demonstrate the effectiveness of our method on various ex-

amples such as numerical coarsening, custom-designed objective functions,

and of course real-world flexible elastic objects made of foam or 3D printed

lattice structures, including a demo application in soft robotics.
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1 INTRODUCTION
Creating fast simulation models that accurately capture the defor-

mation behaviour of real-world objects is not an easy task. Even

if physical material parameters are known (for instance from spe-

cialized measurement tools) they may not immediately translate to

a practical simulation due to various other issues. These problems

include limitations of the chosen numerical method, necessity of

high-resolution discretizations to achieve accurate solutions, and

mismatches between the tested and simulated deformation range

for non-linear materials. Many soft materials also exhibit large

variations in visco-elastic parameters across multiple objects fab-

ricated from the same base material due to inconsistencies in the

fabrication process.

In the face of these challenges, we aim to answer the following

question: how can we find a simulation model that (a) captures the

deformation behaviour of interest, (b) for a non-linear and possibly

non-homogeneous material, (c) at a practical resolution?
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Fig. 1. Application of our method in a soft robotics design pipeline: after
fabricating a specimen (a), we capture its behaviour and estimate material
parameters; green curve showsmotion capture data, arrows show simulation
result with optimized parameters. Using these material parameters, (b) we
can now design a control strategy in simulation (right image shows motor
control curves), and then (c) execute the motion on the real-world robot
(right image shows tendons along its underside).

The classical approach to address this question is to first mea-

sure a small sample of the material using standardized tests, then

build a simulation model of sufficient resolution to reproduce the

measured data, and finally apply that model to the actual object

of interest. Achieving satisfactory results requires high accuracy

in each of these steps. Furthermore, many material testing devices,

such as rheometers, only measure the linear deformation range,

i.e. the material’s small-strain behaviour. How to generalize these

measurements to the non-linear range is not entirely clear for many

materials. Overall, even if an accurate simulation model can be

constructed in this way, it might not work for fast, low-resolution

simulations due to numerical errors and artefacts, requiring addi-

tional corrections such as numerical coarsening before reaching a

practically useful simulation.

Following recent works on parameter estimation, we propose

a framework to directly fit a general visco-elastic finite element

simulation to real-world motion data. While various factors, such

as resolution, discretization, time-integration method, etc. will in-

fluence the resulting fitted material parameters, we aim for the

best match to real-world data that a particular choice of simulation

method can achieve.
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Even if ground-truth material parameters are known, they are

useful only when applied to high-resolution models as numerical

stiffening can drastically affect simulation results. In our results, we

find physically meaningful parameters for standard material models

and reasonably small deformations. Furthermore our formulation

provides the flexibility to work on custom-designed material models

as well. With our approach, we directly obtain a simulation model

suitable for a reasonably coarse mesh, the actual specimen, and the

deformation and motion range of interest. We envision that this

work can facilitate model-based applications in soft robotics control

or soft object manipulation; see Fig. 1.

2 RELATED WORK
In this work, we employ a standard finite element method (FEM) to

simulate the behaviour of visco-elastic solid objects. In particular,

we discretize these objects in material space (i. e. the undeformed

configuration) with linear tetrahedral elements. As such formula-

tions are very common in computer graphics, we refer the reader

to Irving et al. [2004], Teran et al. [2005], Sifakis and Barbic [2012],

and Stomakhin et al. [2012] for further details.

Modelling the stress-strain response of elastic solids has led to a

large variety of constitutive equations, such as co-rotational linear

elasticity [Felippa and Haugen 2005; Georgii and Westermann 2008;

Müller and Gross 2004;Wang et al. 2015], the Saint-Venant-Kirchhoff

model [Barbič and James 2005; O’Brien and Hodgins 1999], or the

Neohookean material model [Bonet and Wood 2008; Smith et al.

2018], as well as numerous other formulations and variations; see

also [Ogden 1997]. Similarly, viscous damping effects due to internal

friction have been modelled via either linear (Newtonian) or non-

linear constitutive equations relating shear rate to viscous stress

[Bower et al. 1993]. One non-linear example is the power-law (or

de Waele-Ostwald) model. For traditional material testing methods,

the presence of viscous effects may require additional corrections

to the measurements as described by [Ngan et al. 2005].

Apart from those well-established material models, recent re-

search in computer graphics has also investigated methods for for-

mulating richer spaces of material responses, both in terms of elas-

ticity [Xu et al. 2015] as well as viscosity [Xu and Barbič 2017].

While we focus mostly on standard material models using phys-

ical parameters, we demonstrate that our method can be used in

conjunction with such a generalized model in Figure 14.

When simulating a real-world material, not only do we need to

formulate a material model, we must also choose its parameters to

best approximate experimental observations. As opposed to direct

measurements of material parameters, such as the method described

by Oliver and Pharr [1992], parameter estimation tries to identify

material parameters by matching a simulation model to observed

behaviour. The recent review by Mahnken [2017] classifies parame-

ter estimation (or identification) methods into four groups: “hand

fitting”, “trial-and-error”, neural networks, and least-squares fitting.

The focus of that work, similar to our approach, is mostly on fit-

ting material parameters by solving a minimization problem on the

squared difference between observed and simulated data. Common

formulations of the direct sensitivity analysis and adjoint method, as

well as standard optimization methods are also summarized there.

Within the computer graphics literature, Pai et al. [1999; 2001]

describe a robotic measurement system to collect data from real-

world specimens and build a linear elastic model based on boundary

Green’s functions. In contrast, Bickel et al. [2009] describe how to

estimate parameters for elastostatic non-linear materials using a

finite element method. They use an optical, marker-based surface

reconstruction method to measure the resulting deformation of the

object’s surface. Both of the aforementioned works rely on experi-

mental measurements of contact forces using custom-designed force

sensors, whereas in this paper, we aim to estimate parameters solely

based on non-intrusive observations of dynamic motion. Miguel et

al. [2012] also use a custom-built deformation capture and force mea-

surement system for cloth samples and then estimate elastostatic

parameters in a step-by-step update procedure. They describe the

non-linear material response via spline based stress-strain curves

and adapt the spline control points automatically. In their follow-

up work [Miguel et al. 2013] they extend this approach to include

internal friction using force-deformation measurements based on

weights attached to the object of interest. They also present an ex-

tension to 3D materials instead of cloth [Miguel et al. 2016], again

estimating parameters for elastostatic deformations, employing di-

rect sensitivity analysis, while using finite differencing for some

terms. Recently, Wang et al. [2015] describe a complete 3D recon-

struction and parameter estimation pipeline, where a laser-scanner

is used to capture the object’s geometry and a multi-camera setup

provides dynamic motion data. They then fit a basic co-rotational

linear elastic model as well as Rayleigh damping coefficients to

match the observed motion in simulation. In doing so, they avoid

any gradient computations and instead use a gradient-free Nelder-

Mead optimization algorithm. Consequently, their method is not

well suited to optimizing inhomogeneous parameter distributions.

Recently, Torres et al. [2016] presented a numerical coarsening

scheme for co-rotational linear elasticity including treatment of high-

resolution boundary conditions. For non-linear materials, Chen et

al. [2015] introduced a data-driven coarse numerical simulation

approach for object design and fabrication. They later included

dynamic motions as well, introducing dynamics-aware numeri-

cal coarsening [Chen et al. 2017]. Their approach matches low-

frequency modes of a high-resolution simulation by adjusting the

material parameters of a low-resolution mesh in order to preserve

the behaviour of corresponding modes up to a specified tolerance.

They also use this approach for parameter estimation to match the

oscillation frequencies and damping observed in real-world materi-

als via high-speed video capture of optical markers. Even though

they use a non-linear material model, they determine material pa-

rameters for eigenmode oscillations, which implies a linearisation

around a particular configuration (they usually choose the rest

shape). In contrast, our approach can deal with arbitrary motions,

including forced oscillations. While numerical coarsening is not our

primary goal, we show a basic example in Figure 2.

For fluid simulation, McNamara et al. [2004] solve a control prob-

lem finding minimal ghost forces such that the simulation pro-

duces a desired motion. They employ the adjoint method to derive

the gradient of an objective function with respect to these control

forces. Their derivation of the adjoint method operates on the time-

discretized update equations for advection and pressure projection.
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In this way, the time discretization must be chosen before deriving

the adjoint operations. Wojtan et al. [2006] employ a similar for-

mulation for keyframe control of particle systems, such as fluids,

flocks, and cloth modelled as a mass-spring system.

Bradley [2013], on the other hand, derives the adjoint equations in

the continuous setting, leaving the choice of discretization scheme

open at this point. We also follow this approach and summarize the

resulting equations in Section 3. Auzinger et al. [2018] also success-

fully employed a similar formulation to optimize 3D printed nanos-

tructures for desired light transport properties such as refraction.

Bern et al. [2019] use a direct sensitivity analysis approach to op-

timize for cyclic locomotion trajectories of soft robots. We use their

simulation framework combined with our parameter estimation

system for the demo application shown in Fig. 1.

In summary, we present the following contributions in this paper:

• An optimization-basedmaterial parameter estimationmethod

for arbitrary (differentiable) visco-elastic material models,

• using dynamic motion data without the need for special test-

ing equipment or force sensors,

• resulting in efficient simulation models for complex real-

world soft objects.

3 THEORY
In this section, we start from a basic finite element method (FEM)

for elastodynamic simulation. We then derive the gradient of an

objective function that measures the quality of the entire simulation

trajectory using first direct sensitivity analysis and then the adjoint

state method. As a result we obtain time-continuous, but spatially

discretized dynamical systems allowing us to compute the objective

function gradient. While these equations can in principle be solved

with any suitable time integration method, we show their time dis-

cretization using the second order backward differentiation formula

(BDF2). We choose BDF2 because it is relatively easy to implement

and reduces numerical damping compared to a standard backward

Euler (BDF1) scheme, while retaining its A-stability.

3.1 Simulation and optimization
Our starting point is a standard FEM discretization of Newtonian

mechanics. Discretizing in space first results in the following sys-

tem of first-order ordinary differential equations in time, where x
contains node positions of the mesh, v their velocities, and f the

internal forces acting on them:

Ûx := d x/d t = v,

MÛv = f(x, v) + fext,
(1)

with suitable initial and boundary conditions, which we will dis-

cuss in more detail later; see also Eq. (13). The external forces, fext,
are independent of the simulation state; in our examples, we only

consider gravity as external load.

The BDF2 integration rule [Iserles 1996] for an ODE of the form

Ûy = h(t,y) is yi+1 = 4yi/3 − yi−1/3 + 2∆th(t
i+1,yi+1)/3, where ∆t

is a constant time step. In terms of the coupled dynamics system (1),

we choose to first express the end-of-time-step positions as

xi+1 = 4xi/3 − xi−1/3 + 2∆tvi+1/3

and then solve

3

2∆t
Mvi+1 =

3

2∆t
M

(
4

3

vi −
1

3

vi−1
)

+ f(xi+1, vi+1) + fext

(2)

for the unknown velocities. The internal forces f(xi+1, vi+1) de-
pend non-linearly on the end-of-time-step state and we solve Eq. (2)

with a Newton-Raphson iteration. In each iteration the linearized

system matrix is found by differentiation with respect to the un-

known velocities vi+1, which yields S := 3M/(2∆t ) + 2∆tK/3 + D.

We define the usual tangent stiffness and damping matrices K :=

−∂f/∂x and D := −∂f/∂v. Note that K and D depend on the current

iterate for non-linear elastic or damping models respectively.

We now assume that the internal forces depend on a vector of

(material) parameters q, i. e. f(x, v, q) and consequently the simula-

tion state also becomes parameter dependent, i. e. x(t, q), v(t, q). The
ODE system (1) can be viewed as a constraint due to physics. Our

goal is to optimize an objective function subject to this constraint:

q∗ = argmin Φ(q), where

Φ(q) :=
∫ T

t=0
φ(x, v, t, q) d t,

(3)

and {x(t, q), v(t, q)} satisfy Eq. (1) for any given, time-independent

parameter vector q.
In order to solve this minimization problem, we want to compute

the objective function gradient with respect to the parameters q:

dΦ

d q
=

∫ T

t=0
(
∂φ

∂x
d x
d q
+
∂φ

∂v
d v
d q
+
∂φ

∂q
) d t . (4)

3.2 Direct sensitivity analysis
In the direct sensitivity analysis approach, as the name suggests, we

compute the above integral directly. The sensitivities sx := d x/d q,
and sv := d v/d q must satisfy an ODE that follows from differenti-

ating Eq. (1) with respect to q, which yields

Ûsx = sv ,

MÛsv = −Ksx − Dsv + ∂f/∂q.
(5)

Here we assume that the mass matrix and external forces are in-

dependent of the parameters for brevity. We can remove this as-

sumption by including the additional derivative terms outlined in

Section 4. This system of ODEs for the sensitivities can be integrated

forward in time along with the simulation of (1). The matrices K and

D are derivatives with respect to the simulation state, and therefore

assume that the physics constraint is fulfilled and the corresponding

state is known. Consequently, we can integrate the sensitivities after

computing each time step of the forward simulation, using the stiff-

ness and damping matrices corresponding to the state computed for

the end of that time step. As a result, even though the internal forces

may depend non-linearly on the state, Eq. (5) remains a system of

linear ODEs in sx and sv , and the sensitivities are always found in

a single linear solve per time step in practice.

The time discretization for the direct sensitivity approach follows

in the same way as Eq. (2), except that Eq. (5) is already linear and

the simulation states, as well as the stiffness and damping matrices,

are already known. Consequently, the BDF2 discretization results
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in the following linear system, using the same system matrix as the

forward simulation (evaluated for the end-of-time-step state):

si+1x = 4six /3 − si−1x /3 + 2∆t si+1v /3,

Ssi+1v =
3

2∆t
M

(
4

3

siv −
1

3

si−1v

)
− K

(
4

3

six −
1

3

si−1x

)
+
∂f
∂q
.

(6)

3.3 Adjoint method
The main drawback of the direct method is that the computational

cost of finding the objective function gradient in (4) increases with

the number of parameters. The adjoint method provides an elegant

way of reducing this computational cost; see also [McNamara et al.

2004] and [Bradley 2013]. In order to derive the adjoint equations,

we first write the state of the simulation as a concatenated vector

y := (xT vT)T. Then we rewrite Eq. (1) as h(y, Ûy, t, q) = 0, where

h :=

(
0 I
0 0

)
y

+

(
0

f(y) + fext

)
−

(
I 0
0 M

)
Ûy.

(7)

Bradley [2013] describes how to derive the general form of the

adjoint method for this case, which reads

∂φ

∂y

T
+

(
∂h
∂y

T
−

d

d t

∂h
∂ Ûy

T)
λ −
∂h
∂ Ûy

T
Ûλ = 0, (8)

where λ is referred to as the adjoint state. The objective function

gradient then becomes

dΦ

d q
=

∫ T

t=0

(
∂φ

∂q
+ λT

∂h
∂q

)
d t, (9)

plus a term that depends on the initial conditions of (1); see Eq. (14).

The derivatives required to evaluate Eq. (8) follow from Eq. (7):

∂h
∂ Ûy

T
= −

(
I 0
0 MT

)
,

d

d t

∂h
∂ Ûy

T
= 0, and

∂h
∂y

T
=

(
0 −KT

I −DT

)
.

(10)

Note that in the last term, we need to take derivatives of the in-

ternal forces with respect to the entire state, which means first

w. r. t. positions and then w. r. t. velocities, resulting again in the

tangent stiffness and damping matrix respectively. Furthermore,

in a Galerkin FEM discretization the mass, stiffness, and damping

matrices are symmetric. Nevertheless, we maintain transpositions

for the sake of clarity.

Finally, separating the adjoint state into two parts, analogous to

the definition of the concatenated state y, corresponding to adjoint

states for positions and velocity respectively λ =: (λTx λTv )
T
and

splitting (8) into two equations accordingly produces

−Ûλx = (∂φ/∂x)T − KTλv , and

−MT Ûλv = (∂φ/∂v)T + λx − DTλv .
(11)

Equation (11) is again a system of linear first-order ODEs for the

adjoint states. However, the “initial” conditions differ in one impor-

tant aspect: while we assume the usual initial conditions for the

forward simulation (1) of the form x(t = 0) = x0 and v(t = 0) = v0,
the derivation of the adjoint formulation requires that λx (t = T ) =
λv (t = T ) = 0 at the final time T of the simulation; see [Bradley

2013] for details. Consequently, the ODE system in Eq. (11) must

be integrated backwards in time after the forward simulation has

been completed.

Applying the BDF2 integration rule backwards in time means the

sign of the time-derivative term changes, which cancels the minus

signs on the left-hand sides of (11), while ∆t remains a positive

constant. Also note that λi−1x and λi−1v are now the unknown adjoint
states, so time indices (i − 1) and (i + 1) must be swapped.

Discretizing (11) in this way yields

λi−1x =
4

3

λix −
1

3

λi+1x +
2

3

∆t (
∂φ

∂x

T
− KTλi−1v ),

STλ
i−1
v =

3

2∆t
MT

(
4

3

λiv −
1

3

λi+1v

)
+
∂φ

∂v

T
(12)

+
4

3

λix −
1

3

λi+1x +
2

3

∆t
∂φ

∂x

T
.

All data that is required by the adjoint simulation must be stored

while performing the forward simulation, leading to a higher mem-

ory cost than the direct method described above. Themain difference

is that the direct method needs to compute and store the sensitivities

sx and sv , which are dense |x| × |q| matrices, where |x| is the num-

ber of degrees of freedom in the simulation and |q| is the number

of parameters. While these matrices need to be updated in every

time step, the memory cost remains constant over time. The adjoint

method on the other hand reduces the computation to the adjoint

states, which are only |x| × 1 vectors. The memory consumption,

however, increases linearly over time as we must store additional

data in each time step. Consequently, the direct method is preferable

for simulations that have very few parameters, but cover a longer

time span, while the adjoint method works best for reasonably short

simulations, but can deal with a large number of parameters.

3.4 Initial conditions
So far we have assumed that the initial conditions of the forward

problem are independent of the parameters q. If this is not the case
and the initial conditions can be written in the general form

g(x, v, q, t = 0) = 0, (13)

we must account for the additional influence of the parameters

on the objective function value that occurs through a change of

these initial conditions. One important instance of this situation

is starting a dynamic simulation from a state of static equilibrium,

that is f(x(t = 0), 0) + fext = 0 and v(t = 0) = 0, where the internal
forces f depend on elastic material parameters.

For the direct sensitivity analysis, Eq. (5), the initial conditions

on the sensitivities are the derivative of the initial conditions on (1)

with respect to the parameters. For the general implicit form, we

obtain

d g
d q
=
∂g
∂x

sx0 +
∂g
∂v

sv0 +
∂g
∂q
= 0,
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where subscript zero indicates quantities at t = 0, in particular

sx0 := sx (t = 0) and similarly for sv0. For the elastostatic case this
condition simplifies to sv0 = 0 and K0sx0 = ∂f0/∂q. Consequently,
if we find the initial positions by solving for elastostatic equilibrium,

we analogously find the initial sensitivities by solving the linearized

elastostatic system for the derivative of the internal forces w. r. t. the

parameters. Note that K0 must be evaluated at the configuration

x0 that satisfies the initial conditions, i. e. after solving the initial

elastostatic problem.

For the adjoint method, the objective function gradient according

to [Bradley 2013] becomes

dΦ

d q
= IT + λ

T
0

(
∂h
∂ Ûy

����
t=0

) (
∂g
∂y

0

)−1 ∂g
∂q
, (14)

where IT represents the time integral term in Eq. (9). This addi-

tional term simplifies to (K0

−Tλx0)T(∂f0/∂q) for elastostatic initial
conditions. Consequently, similar to the direct method above, we

again need to solve the linearized elastostatics problem, this time

with the adjoint state as right-hand-side vector.

Finally, note that BDF2 requires initialization of previous values

at t = −∆t . For the forward simulation and the direct sensitivity

analysis we can make the assumption that both velocity and ac-

celeration are zero before t = 0. In particular, when starting from

an elastostatic equilibrium configuration, it is natural to interpret

the initial condition v(t = 0) = 0 as v(t ≤ 0) = 0. Similarly, we

need to make an assumption on λx and λv for t ≥ T for the adjoint

states. From Eq. (11) we can see that the adjoint states basically

encode objective function gradients. Consequently, we again as-

sume zero change outside of the simulated time interval, extending

the condition on the adjoint states λx (t = T ) = λv (t = T ) = 0 to

λx (t ≥ T ) = λv (t ≥ T ) = 0.

4 METHODS AND DETAILS

4.1 Experimental methods
To collect data that captures the dynamical behaviour of our test

specimens, we use a commercial optical motion capture system,

consisting of 10 OptiTrack Prime 13 cameras. We use small hemi-

spherical reflective markers of 4 mm diameter to track the soft

specimens’ deformation. We 3D print rigid clamps that also have

motion capture markers attached and glue our specimens to these

clamps. In this way we can track the motion of the clamps and map

it to Dirichlet boundary conditions in the simulation. We usually use

groups of 4 to 6 spherical reflective markers of 1 or 1.4 cm diameter

to track the rigid transformation of these boundary clamps. This

approach allows us to freely move the clamped boundary during

capture and reproduce its motion in the simulation later. Conse-

quently, the simulation and the motion capture data share a common

coordinate system. Similar to the boundary conditions, we use the

tracked trajectories of the motion capture markers x∗i and formulate

our objective function based on the distance to “virtual markers” x̄i
in the simulation:

Φ :=
1

2

∫ T

t=0

∑
i



x∗i (t) − x̄i (t)


2

d t, (15)

whereT is the duration for which we recordedmotion data (which in

turn determines the simulated time as well) and i is the marker index.

The root-mean-square error per marker is then

√
2Φ/(NT ), where

N is the number of tracked markers. While we choose a marker-

based approach due to its ease of use and availability, the theory

presented so far would equally apply to motion data reconstructed

from any other capture system, as long as an objective function on

the simulation state can be written in terms of the collected data.

One interesting material with recent applications in soft robotics

[Somm et al. 2019] is flexible polyurethane foam. In general this

material is relatively cheap and easy to work with. In particular,

we use FlexFoam-iT III and V from Smooth-On, Inc. [2018]. These
foams are shipped as two separate liquid components that have to

be mixed before moulding; the foam then expands in the mould in

about 15 min and cures in a few hours at room temperature. The

resulting material parameters of the cured foam can vary drastically

between multiple samples of the same base material depending

on ambient temperature, precise mixing ratio, as well as the exact

amount of material filled into the mould and the resulting pressure

build-up during expansion. We produce several test specimens and

the soft robot in Fig. 1 from these foams. It is therefore imperative

to enable fast parameter estimation for a particular specimen.

We also design a sparse lattice structure using Autodesk NetFabb
and 3D print it with a flexible TPU material on a Stratasys F370
printer [Stratasys, Ltd. 2018]; see Fig. 5a. This particular lattice has

a unit cell size of 1 cm and a beam thickness of 1.6 mm.

4.2 Material models
We implement a couple of different material models to test our

simulation and optimization framework. While these models are

based on previous work, in some cases variations exist in the litera-

ture, so we briefly summarize their definitions here. In general, we

compute all derivatives using symbolic differentiation unless stated

otherwise.

We primarily employ a Neohookean elasticity model. This model

is defined via the elastic strain energy density

Ψ(F) :=
λ

2

(
(J2 − 1)/2 − ln J

)
+
µ

2

(
tr(FTF) − 3 − 2 ln J

)
.

(16)

Here λ is the first Lamé parameter, µ is the shear modulus, F is

the deformation gradient (which is piecewise-constant for a linear

tetrahedral FEM), and J := det F. The nodal force contribution per

element is then f
nh
= −Ve (dΨ/d x) = −Ve (∂Ψ/∂F)(d F/d x), where

Ve is the element’s volume. The first Piola-Kirchhoff stress ∂Ψ/∂F
is found by directly differentiating the energy density function, and

the derivative of F is given by the FEM shape function gradients.

In order tomodel viscous damping forces, i. e. history-independent

damping due to velocity, we implement a power-law viscosity model,

where the viscous stress is defined as

σ
pl
(v) := ν Ûγ (h−1)(∇v + ∇vT), (17)

where Ûγ is the shear rate Ûγ :=
√
1/2



∇v + ∇vT



F , ν is the viscosity

coefficient, and h is the power-law index. For h = 1, this model

simplifies to Newtonian viscosity, h < 1 describes a shear thinning

behaviour, whereas h > 1 corresponds to a shear thickening mate-

rial. In the shear-thinning case, the viscous forces are technically
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Table 1. Material parameters estimated for coarse meshes of the Stanford bunny given motion data from a high-resolution ground-truth simulation. Errors are
given for the simulations using first the original and then the optimized parameters. Timings were measured on a 3.9 GHz quad-core desktop CPU; the first
value gives the runtime of a single simulation (including objective function gradient evaluation), the second value gives the runtime of the entire optimization.

Ground truth (50k) 8.5k mesh 2.7k mesh 1.2k mesh

Lamé λ [Pa] 1.20E+04 5.41E+03 45% 5.92E+03 49% 6.30E+03 53%

Lamé µ [Pa] 1.10E+04 9.97E+03 91% 8.74E+03 79% 6.11E+03 56%

Viscosity coefficient [Pa s] 8 8.12 102% 6.79 85% 2.33 29%

Power-law index 0.8 0.98 123% 1.14 143% 1.76 220%

RMS error [mm] (ori/opt) 14.40 3.82 17.16 4.83 15.94 4.85

Runtime [min] (sgl/opt) 14.0 2.5 69.8 0.7 42.0 0.4 25.5

50k 8.5k 2.7k 1.2k

Fig. 2. Simulations of the Stanford Bunny on meshes of various resolutions (labelled by number of elements per mesh). Light blue curves show the ground
truth data obtained from the highest resolution mesh; purple, orange, and red curves show the trajectories of virtual markers on both ears, the head, the back,
and the tail when using optimized material parameters for each mesh. Black curves in inset images show trajectories obtained with ground-truth parameters
on coarser meshes. The motion is driven by a scripted Dirichlet boundary condition on the base; please also refer to our accompanying video.
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Fig. 3. Evaluation of the optimized parameters on the 1.2k element mesh: we
simulate a different motion (red solid lines) using the parameters optimized
for the original motion (Table 1). Blue dashes show the result obtained by
optimizing for the new motion instead, green dots show the high-resolution
ground-truth result for this new motion. Thin black lines show motion
graphs when simulating the 1.2k mesh with ground-truth parameters. All
curves refer to the bunny’s right ear. The inset image shows results for the
ground-truth (black) and Table 1 parameters (red) on the coarse mesh.

undefined for a vanishing velocity gradient, but are zero in the

limit. In our implementation we simply skip any element where the

Frobenius norm of the velocity gradient is less or equal DBL_MIN.

Figures 14 and 15 show results using a principal-stretch based

material model as described in [Xu et al. 2015].We briefly summarize

the main features of this material model here. They start by defining

the elastic energy density Ψ as a function of principal stretches ςi ,
which are computed using a singular value decomposition of the

deformation gradient: F = UF̂VT, diag(F̂) = (ς1, ς2, ς3). The energy
density is then given by Eq. (11) in [Xu et al. 2015] as

Ψ = f (ς1) + f (ς2) + f (ς3) + h(ς1ς2ς3)+

д(ς1ς2) + д(ς2ς3) + д(ς3ς1).
(18)

They show that a Neohookean model can be re-written in this form

by setting

f (x) = µ(x2 − 1)/2, д ≡ 0,

h(x) = −µ logx + λ(logx)2/2,
(19)

where (λ, µ) are the Lamé parameters as before. Consequently, we

always assume д ≡ 0 from now on, as well as in our implementation.

Finally, the components of the first Piola-Kirchhoff stress dΨ/d F
can be computed as (∂Ψ/∂ςi )(d ςi/d F), where

∂Ψ/∂ς1 = f ′(ς1) + h
′(ς1ς2ς3)ς2ς3 (20)

and analogously for the other two principal stretches.

Xu et al. [2015] also describe how to compute the required deriva-

tives of the singular value decomposition analytically, as well as

how to assemble the corresponding stiffness matrix. Recently, Smith
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(a) (b)

Fig. 4. Motion capture data (solid lines) and simulated data (arrows) for
different dynamic motion samples. The coloured cylinders show snapshots
of a simulation using optimized material parameters for a Neohookean
elastic and power-law viscous material.

et al. [2019] also investigated similar analytical derivatives. In our

implementation we represent the two stress-strain response func-

tions f ′ and h′ as cubic Hermite splines following the formulation

of [Kochanek and Bartels 1984] and we use the autodiff module of

Eigen [Guennebaud et al. 2010] to compute the derivatives of the

spline coefficients with respect to the input control point values.

These derivatives are required to describe the change of internal

forces due to a change in parameter (i. e. control point) values. For

convenience, we also use autodiff to compute the SVD derivatives in-

stead of implementing the analytical formulation of [Xu et al. 2015].

4.3 Computational methods
During forward simulation, we solve Eq. (2) with a standard Newton-

Raphsonmethod; we iterate until the residual force magnitude is less

than 10
−6

N, or atmost 20 iterations (most examples convergewithin

3 to 6 iterations per time step). We use a stabilized bi-conjugate gra-

dient solver for the sparse linear sub-problem within each iteration;

we find this solver to produce numerically more robust results com-

pared to a standard conjugate gradient version. Our implementation

builds on the linear algebra library Eigen [Guennebaud et al. 2010];

we use their default solver configuration for all of our results. We

store the solver object, which encapsulates the system matrix, at

the end of each time-step and re-use it to solve the linear problem

for either the sensitivities in Eq. (6) or the adjoint states in Eq. (12).

We use the LBFGS algorithm [Nocedal 1980] to solve the parame-

ter optimization problem, Eq. (3); our implementation is based on

the publicly available LBFGS++ library [Qiu 2019]. The optimiza-

tion algorithm is limited to at most 150 iterations, with at most 20

function evaluations (i. e. simulation runs) per iteration. In each

iteration we perform a line search using regular Wolfe conditions

with curvature coefficient 0.999.

The physical material parameters we optimize for are usually

expected to be non-negative; furthermore their values can have dra-

matically different orders of magnitude. For instance, the power-law

indexh is expected to be close to 1, whereas the shear modulus could

easily be on the order of 10
6
Pa. We found that in these situations

optimizing for the logarithm of the parameters, instead of the pa-

rameter values directly, can greatly improve the convergence of the

optimization algorithm and ensures positivity without additional

constraints. Figure 11 compares the convergence behaviour of a

homogeneous material parameter estimation with and without this

logarithm transform on a very simple example. When optimizing

(a) (b)

Fig. 5. A 3D printed soft lattice (a) with boundary clamp and motion capture
markers and (b) real-world motion trajectory (solid line) with simulation
snapshots at different times during the simulation (green: 0.17 s, blue: 0.75 s,
beige: 1.4 s). While the real-world specimen is a very complex structure, the
simulation uses less than 120 tetrahedral elements.

for the log of parameters, the objective function decreases faster and

further compared to optimizing for the parameter values directly.

For more complex, real-world motions, attempting to optimize for

the parameter values directly can sometimes fail completely. Obvi-

ously, transforming the parameters also results in a transformation

of derivatives as follows: if we replace parameter qi with q̃i := lnqi ,
then qi = exp(q̃i ) = dqi/d q̃i and consequently for any quantity y
depending on this parameter we find dy/d q̃i = (dy/dqi ) qi .
We can also treat density as an input parameter (either globally

homogeneous, or locally per element). As the density influences

both the mass matrix and the external force due to gravity, we need

to account for the additional terms d fext/d q and (dM/d q)Ûv and

add them in Eq. (5) and (9). We have skipped these terms in Section

3 for the sake of brevity; extending the derivations to include them

is straightforward.

5 RESULTS
In this section we present results obtained with our method.We start

with some basic verification tests using a ground-truth simulation

as the target motion (Figure 2). Our goal is to find parameters for

standard material models from dynamic motions. We extensively

test our method on cylindrical specimens using various motion sam-

ples, including oscillations in the first and second harmonic modes

(Fig. 4), as well as strong bending deformation (Fig. 8). Similarly, we

also match the fast oscillation of a flexible 3D printed lattice struc-

ture simulated with a very coarse mesh (Fig. 5). Finally, the adjoint

method allows us to optimize local parameters per element. We test

our approach on a manually designed deformation target (Fig. 10),

as well as on an inhomogeneous real-world specimen (Fig. 13). For

all of these examples, we usually optimize for the logarithm of the

material parameters as described in Section 4. Figure 11 shows a

comparison of convergence behaviour with and without applying

the log-transform on a simple test case.

As an introductory example, we first show how ourmethod can be

used to adjust material parameters for a sequence of coarser meshes,

counteracting increasing numerical stiffness and damping as the

resolution reduces. We first run a ground-truth, high-resolution

simulation (ca. 50k tetrahedra) on the Stanford bunny with a homo-

geneous Neohookean material and power-law viscous damping. In

this example the bunny is actuated by a moving Dirichlet boundary

condition on its base, performing a scripted motion composed of
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Table 2. Material parameters estimated from motion capture data for single-type foam cylinder specimens actuated by one boundary clamp. The simulation
uses a Neohookean elastic and power-law viscous material. Timings show the CPU time (4 × 3.9 GHz) for a single simulation with objective function gradient
evaluation first, then the runtime for the entire optimization.

Foam type III III III V V V V

Figure 4a 4b 8

Lamé λ [Pa] 1.17E+04 1.17E+04 1.18E+04 1.28E+04 1.23E+04 1.25E+04 1.67E+04

Lamé µ [Pa] 1.27E+05 1.26E+05 1.10E+05 1.50E+05 1.53E+05 1.57E+05 9.80E+05

Viscosity coefficient [Pa s] 8.74 8.64 7.28 1.94 8.51 3.65 0.20

Power-law index 0.44 0.57 0.49 0.98 0.49 0.78 2.95

Runtime [min] (sgl/opt) 1.2 / 76.5 3.8 / 263.9 1.4 / 44.9 1.5 / 111.5 1.7 / 181.1 3.5 / 209.3 1.1 / 46.6
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Fig. 6. Comparison of parameters: motion graphs for the example of Fig. 4b
simulated with parameters optimized for the motion of Fig. 4a (red solid
lines). Green dots show the recorded target motion of the physical specimen;
blue dashes show the optimal result for this motion. All curves refer to the
top marker on the unconstrained end of the specimen.

two sinusoid displacements oscillating at 17Hz and 13Hz respec-

tively. We record the motion trajectories of five “virtual” markers

due to this actuation as shown in Fig. 2. Our method then finds

optimal material parameters for three coarser meshes (8.5k, 2.7k,

and 1.2k elements respectively) such that the trajectories of these

virtual markers match the ground-truth simulation as closely as pos-

sible. Each optimization runs independently using the ground-truth

data as initial parameter values. As coarser elements introduce nu-

merical stiffness, the optimization in turn results in softer material

parameters than the ground truth, as expected.

The resulting material parameters are summarized in Table 1.

The bulk modulus drops to about 62.4%, 60.7%, and 53.7% of the

original value respectively, while the shear modulus drops to 90.6%,

79.4%, and 55.5% respectively. The damping parameters move from

the initial shear-thinning behaviour towards shear-thickening pa-

rameters while the viscosity coefficients drop to just under 30% on

the coarsest mesh as numerical damping increases. As shown in

Fig. 2, the motion trajectories of the ears are noticeably different

between the three coarse versions and the high-resolution version,

whereas the trajectories for the head, back, and tail match up quite

well. We suspect that the noticeable differences between the ear

trajectories are due to heavy numerical stiffening around the part

that has the smallest cross-section area just above the head. While

one might expect lowering the stiffness further would help to get the
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Fig. 7. Comparison of parameters: motion graphs for the example of Fig. 8
simulated with parameters optimized for the motion of Fig. 4a (red solid
lines). Green dots show the recorded target motion of the physical specimen;
blue dashes show the optimal result for this motion. All curves refer to the
marker in the middle of the specimen as in Fig. 8.

trajectories closer to the target motion, at some point the resonant

behaviour will be lost, so the optimal result shows a compromise

between these cases.

We then test whether the material parameters optimized for the

original motion (Fig. 2) generalize to a different one using the coars-

est mesh in both cases. In the original case, the boundary condition

on the base of the bunny moves in the x-y-plane, whereas the new

motion proceeds in the y-z-plane with similar oscillation frequen-

cies. Using the ground truth material parameters for the coarse mesh

leads to an RMS error of 6.7 mm, whereas the optimal result for

this motion yields 2.6 mm. Using the parameters optimized for the

original motion results in an RMS error of 2.9 mm, and a very similar

motion as the optimal parameters as shown in Fig. 3. The optimal

shear modulus differs by about 5.5% between the two motions.

Our primary goal is to estimate parameters of real-world materi-

als. We first focus on (mostly) homogeneous specimens, where we

only need to optimize for a small number of parameters. In particu-

lar, we aim to find the stiffness in terms of the Lamé parameters of a

Neohookean elastic model, as well as the parameters of a power-law

damping model.

We fabricate two cylindrical specimens, 20 cm tall and 2 cm in di-

ameter, made of FlexFoam type III and type V respectively. We place

hemispherical motion capture markers of 4 mm diameter on the

surface of the cylinders. These markers are represented by slightly
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Fig. 8. An example showing large bending deformation and fast “snap-
through” motion using two boundary clamps. For this situation the material
parameters of a Neohookean model need to be much stiffer compared to
the slower, less deformed motions in Fig.4.

elevated triangles on the surface of the simulation mesh (see also

Fig. 8). For the cylindrical specimens we use data from at most 9

markers, spaced evenly along the surface, as well as one on the

unconstrained end of the cylinder. For the soft robot in Fig. 1 we

use only 4 markers, one on the end of each leg. We have not ex-

perimented with more complex marker placement patterns as we

position them by hand in our experiments. In order to determine the

optimal material parameters, we minimize the squared distance be-

tween the simulation and real-world marker positions, as observed

by the motion capture system; see Eq. (15).

Figure 4 shows example simulations obtained for the type V

foam specimen. Note that we find very similar material parameters

independently for both motion samples: the first motion (Fig. 4a)

oscillates in the object’s base harmonic mode, whereas the second

motion (Fig. 4b) oscillates in the second harmonic mode. The root

mean square error permarker is 17.9mm in example (a) and 13.1mm

in (b); note that we do not tune possible constant offsets of marker

positions in any way. Further results are summarized in Table 2. The

initial parameter values for all these optimizations are λ = 10 kPa,

µ = 20 kPa, ν = 12 Pa s, and h = 1, which means the material is

initially simulated softer and overdamped compared to the optimal

results. For these homogeneous cases we have not observed notable

differences in the optimal results due to different initial values.

We also tested two separate small material samples of the type V

foam in a Paar Physica MCR300 rheometer to measure their shear

modulus under small-strain forced oscillations. At 15 Hz actuation

frequency the measured shear modulus was 175 kPa and 186 kPa

for the two samples respectively. In general, a higher actuation

frequency resulted in increased shear moduli, whereas lower fre-

quencies were unreliable due to limitations of the testing equipment.

In contrast the motion shown in Fig. 4a corresponds to roughly 5 Hz

and Fig. 4b to about 10 Hz. Nevertheless, our results of around

150 kPa are acceptably close to these measurements, especially con-

sidering the variations between different specimens made of the

same foam type. In Fig. 6 we compare the simulated motion of Fig. 4b

using either the parameters optimized for the motion of Fig. 4a or

4b respectively. Even though the optimal damping parameters for

these twomotions seem quite different, damping is fairly low overall,

(a) (b)

Fig. 9. A 3D printed soft hand (a) with boundary clamp and motion capture
markers and (b) simulated (arrows) and real-world motion trajectories (solid)
of the thumb andmiddle finger. The objective function measures trajectories
of all five fingers.

whereas the stiffness is quite similar for both cases and the motion

is simulated well with both parameter sets.

Fitting a two-parameter damping model to these motions con-

taining a single predominant frequency seems to be somewhat

ill-conditioned, in the sense that lowering the power-law index

while increasing the viscosity may yield very similar results. Our

third motion sample for the type-V foam specimen (see video) com-

bines oscillations at two different frequencies and yields damping

parameters in a similar range, see also Table 2. We show further

comparisons in our accompanying video, including motions using

(a) the initial guess parameters that are generally too soft and over-

damped, (b) using parameters optimized for another motion sample

as in Fig. 6, as well as (c) an example with stiffness increased by

20% over the optimal value. The latter example results in a fairly

acceptable simulation but deviations from the target motion are

visually obvious.

Using a setup with two boundary clamps, we can apply strong

bending deformations and create a “snapping” motion of the real-

world specimen. For this motion, we observe a strong increase of the

apparent stiffness, suggesting that the non-linearity of the real foam

for these deformations is stronger than predicted by the Neohookean

model. For the result shown in Fig. 8, the shear modulus is 980 kPa.

Similarly, rheometry experiments at higher oscillation frequencies

also reach these values around 50 Hz for small strains. Comparing

the optimal simulated motion for this example to a motion obtained

from material parameters optimized for the slower motion of Fig. 4a

shows that these parameters match the deformation reasonably well

overall, but fail to damp out some oscillations during the fast “snap”;

see Fig. 7 around t = 0.5 s. Please see our video for the full motion

sample and further comparison to the parameters optimized for the

motion in Fig. 4a.

We can also estimate the bulk behaviour of flexible lattice struc-

tures as shown in Fig. 5 and 9. As these structures are very complex

(the geometry file used for 3D printing the sample in Fig. 5 contains

over 130k surface triangles), we want to avoid simulating their dy-

namics at full resolution. Instead we approximate the geometry in

Fig. 5a by a simple bar, meshed with ca. 120 tetrahedral elements.

Simulating the motion illustrated in Fig. 5b then takes about 4 s,
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while the entire optimization finds suitable bulk material parameters

in about 5 minutes using 77 individual simulation runs. While the

simulation matches the observed oscillation frequency and damp-

ing quite well, the RMS error in this case is 10.2 mm. This error is

mostly due to a larger deflection orthogonal to the oscillation direc-

tion in the simulation. We surmise that the real-world structure is

not entirely isotropic, restricting this deflection more than what our

isotropic Neohookean model can capture. We leave investigations

into anisotropic material models as interesting future work.

Similarly, we only mesh the overall geometry of the hand model

in Fig. 9, without representing the lattice structure in simulation.

The fingers are made of silicone, 3D printed by SpectroPlast [2019].
We again work with a homogeneous, isotropic material in simula-

tion, whereas the real-world specimen clearly has denser regions

around the base and the fingertips. Nevertheless, we find material

parameters that capture the overall motion behaviour well using

this simple simulation model.

Finally, we show an application of our method to soft robotics

design in Figure 1. We first fabricate a soft robot prototype from

type-III foam using the technique described by [Somm et al. 2019].

Then we capture short motion samples for this particular specimen

and estimate material parameters for homogeneous Neohookean

elasticity and Newtonian viscosity for a reasonably coarse mesh.

Figure 1a shows the collected motion trajectories alongside the

best matching simulated ones. We then use the same mesh and

parameters, adding some elements representing the weight of the

motors, and design a control strategy for this robot in simulation.

The ground contact and tendon actuation forces are simulated using

the method of [Bern et al. 2019]. The use of an intentionally coarse

mesh greatly speeds up motion planning. Furthermore, the foam’s

material properties vary among different specimens, depending

on details of the fabrication process that are difficult to control.

After estimating material parameters for this particular specimen

and simulation mesh, we successfully design motion control curves

using this simulation model. Our robot then performs the designed

motion, achieving a satisfactory match between simulation and

real-world behaviour as shown in our accompanying video.

Using the adjoint method combined with the LBFGS algorithm,

we can optimize a large number of parameters simultaneously. To

demonstrate the effectiveness of this approach, we consider a cylin-

der of 5 cm radius and 2 cm height, fixed to the ceiling on the top,

(a) (b)

Fig. 10. A cylinder dropping from the ceiling under gravity. The objective
function requires the bottom face to match the green disk. We optimize for
local (per-element) elastic Lamé parameters (a), or densities (b). Insets show
bottom view.

being stretched under gravity. We manually define an objective

function that measures the position of the bottom face after a fixed

simulated time of 0.2 s. The target position of each point on this face

is set to a vertical distance of 2 cm (stretching the cylinder by 100%

along its axis) and proportionally offset towards the face’s centroid

by 20%. In this example, we use a Neohookean elastic and a Newto-

nian damping model. We first run a global parameter optimization

to find the closest solution using homogeneous material parameters.

This intermediate solution matches the target reasonably well on

average, however, the bottom face must bend as the material drops

under gravity, forming a bowl-like shape. Our objective function, on

the other hand, asks for this face to remain planar. We now optimize

per-element elasticity parameters, starting from the homogeneous

solution. As shown in Fig. 10a, the resulting local material param-

eters form a stiff core in the centre, and soften towards the edges to

approach a planar final configuration. We can similarly optimize for

local densities instead of local stiffnesses, resulting conversely in a

lighter core and a heavier rim as shown in Fig. 10b. Both examples

use the same mesh consisting of 8.7k tetrahedral elements, which

means that we optimize for 17.4k elastic parameters, or 8.7k density

parameters respectively.

In order to test the capabilities of this per-element material pa-

rameter estimation method on a real-world scenario, we fabricate a

cylinder consisting of type-III (softer) foam on one end and type-V

(stiffer) foam on the other. Figures 12 and 13 show results obtained

for this specimen. The example shown in Fig. 12 uses a single bound-

ary clamp. In this case, the optimization finds the onset of the softer

region, as well as a very stiff region where the physical sample is

glued to the rigid clamp (highlighted with a red ellipse in the image).

However, for this particular motion, the softer tip is not captured by

the optimization; this result is likely due to the fact that only one of

seven motion capture markers sits on the very end of the cylinder,

which has relatively little influence on the objective function value.

Furthermore, the range of stiffness values is unrealistically large.
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Fig. 11. Convergence of LBFGS optimizing for the logarithm of visco-elastic
material parameters. Starting from an initial guess that is too soft, we first
optimize globally homogeneous material parameters (blue) and then per-
element stiffnesses (red) arriving at the result shown in Fig. 10a. We optimize
for the logarithm of the material parameters by default and compare to opti-
mizing for their values directly during the homogeneous part (blue dashes).
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Fig. 12. Optimization result for per-element elasticity (and global viscosity)
parameters on a multi-foam cylinder specimen. Single boundary clamp.

In contrast, if we add a second boundary clamp on the other side

of the cylinder as well and optimize for the combination of both

motions simultaneously, we see a clearer distinction between the

softer part on the left of the image and the stiffer part on the right,

with a mixed region in between. The overall range of parameters is

also more reasonable, see Fig. 13. In this example we use a smoothly

rotating motion of the two boundary clamps, with noticeable, but

not excessive bending of the cylinder; please also refer to the ac-

companying video. For this motion, optimizing only for globally

homogeneous elastic parameters results in a root-mean-square error

per motion capture marker of 6.64 mm, whereas optimizing for local

per-element parameters cuts this error to less than half at 3.13 mm

(which is less than the diameter of our motion capture markers).

Our tests, as summarized in Figures 3, 6, and 7, show that ho-

mogeneous material parameters estimated with our method can

generalize to motions that exhibit a similar deformation range and

frequency. As our examples mostly capture shear wave propagation

behaviour, the material’s shear modulus is fitted best. In constrast,

optimizing for only an elastostatic snapshot, instead of a dynamic

motion, can lead to errors in the shear modulus of over 30% and

would not reproduce the desiredmotionwell in simulation (of course

damping parameters would need to be determined by some other

method in this case).

When optimizing for inhomogeneous parameters on the other

hand, we must expect to encounter many local minima. We choose

to start from the homogeneous optimal parameters, and apply a

gradient based optimization method, which means we expect to find

a local minimum near the homogeneous configuration. Nevertheless,

using only a single motion sample (Fig. 12) can lead to exaggerated

and unrealistic parameter distributions. In this case, combining two

motion samples (Fig. 13) improves the result considerably and yields

a physically plausible parameter distribution.

While our primary goal is to estimate parameters of well estab-

lished physical material models, such as Neohookean elasticity, as

well as Newtonian or power-law viscous damping, the optimiza-

tion framework is equally suited to handle more generic material

models (so long as partial derivatives of the internal forces can

be computed efficiently). To demonstrate this capability, we imple-

mented a principal-stretch-based elastic material as described by

Fig. 13. Optimization result for per-element elasticity (and global viscosity)
parameters on a multi-foam cylinder specimen. Two boundary clamps.

Xu et al. [2015]. We use a uniaxial and a volumetric strain-stress re-

sponse function and initialize the model to a Neohookean initial con-

figuration according to Eq. (25) in [Xu et al. 2015], see also Eq. (19).

We then optimize for the spline control point values, while the con-

trol point locations in strain space remain constant. As pointed out

by Xu et al., a generic spline function can easily lead to a material

model that causes unstable simulations unless some precautions

are taken. We found that adding a regularization term to our objec-

tive function that slightly penalizes negative first derivatives of the

splines is sufficient to produce acceptable results. If a simulation

becomes unstable during the optimization procedure, we simply

return DBL_MAX as objective function value, which causes the

line search to backtrack towards the previous (stable) configuration.

Figure 14 shows results using 5 and 21 control points per spline re-

spectively. The root-mean-square errors (in terms of distances from

the given target) are 0.45 mm and 0.42 mm respectively. In com-

parison, optimizing for homogeneous material parameters results

in an error of 0.81 mm, whereas local elastic parameters (Fig. 10a)

achieve a slightly lower RMS error of 0.33 mm, while optimizing

for local densities instead results in an error of just 0.08 mm.

As this model still represents a globally homogeneous material, it

cannot reach the target as precisely as a per-element optimization; it

does, however, achieve a better result than a standard Neohookean

model. In our tests we have observed some issues with our imple-

mentation of this material model, which if addressed, could further

improve results. First, representing the material response curves

as interpolating splines can lead to unwanted oscillations of the

splines for some control point values, which tend to result in unsta-

ble simulations. While the line search ensures stability of the final

result, as described above, it also limits the step size and causes the

optimization to converge more slowly. Furthermore, without addi-

tional constraints, the optimization can introduce residual forces at

the rest configuration, which is not physically meaningful. A more

carefully constructed parametrization could improve the practical

utility of this, or a similar, material model in the future.
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5 21

Fig. 14. The same simulation as in Fig. 10, now using a principal-stretch-
based elasticity model. We optimize for global spline control point values
representing the material’s strain-stress response. Image labels specify the
number of control points per spline.

10-1 100 101 102 103

Stretch ratio

-10

0

10 f ' (uniaxial)
h ' (volumetric)

Fig. 15. Resulting spline curves for the principal stretch material using 21
control points per spline, using a uniaxial and a volumetric response function
as described in [Xu et al. 2015].

6 DISCUSSION
In this paper we have introduced a new method to estimate visco-

elastic material parameters of real-world specimens from dynamic

motion data without any force measurements or specialized testing

equipment. We build upon a standard finite element simulation and

compute objective function gradients analytically through either

a direct sensitivity analysis or an adjoint state method. Using a

standard LBFGS algorithm, we find the optimal material parameters

that allow a chosen simulation model to match the observed motion

target in a least-squares sense. We fabricate our specimens by either

foam moulding or 3D printing, and we assume that the design ge-

ometry coincides with the rest pose of the fabricated objects for our

simulations. As we are interested in the viscous damping properties

as well as the elastic ones, we use BDF2 time integration (which

causes much less numerical damping than the common backward

Euler method) in all of our examples. We generally run simulations

at the same frame rate as the motion capture system, which is 180 Hz

for most examples. As this frame rate is relatively high compared

to the stiffness of our specimens, we do not require any addtional

stability aids in our FEM framework and use a standard Newton

method to solve the non-linear dynamics problem. Of course, any

existing FEM implementation including such improvements could

be used as well, as long as the derivative terms required for the

objective function gradient calculations are provided at the end of

each time step.

We have demonstrated the flexibility of our method in various ex-

amples, including real-world specimens, custom-designed objective

functions or material models, as well as numerical coarsening. The

latter example fits a low-resolution simulation to a high-resolution

one, Fig. 2, automatically adjusting the simulation parameters to

counteract the effects of numerical stiffness and dissipation.

When optimizing for a small number of homogeneous material

parameters, the advantage in terms of total run time of the adjoint

method is fairly small compared to the direct approach, while the

adjoint method consumes more memory. In terms of the resulting

gradient, the two methods are equivalent. As most of our exam-

ples use reasonably short recorded motion data, we use the adjoint

method for most of our results, using less than the available 16 GB

of memory. If memory consumption is a concern and the number

of parameters is low, or the sensitivies themselves are required

for other reasons, direct differentiation should be used instead. We

use the direct approach for the homogeneous phase of Fig. 11 for

demonstration purposes.

We also show an example using a custom-designed objective

function to find a material distribution that achieves a desired defor-

mation behaviour; Fig. 10. Furthermore, we can use more elaborate

material models with an arbitrary number of parameters as shown

in Fig. 14. However, creating real-world motion samples that result

in a generic predictive material model without further assumptions

on the type of non-linearity remains an open problem.

Another interesting direction for future work are anisotropic

material models. While extending our optimization framework to

these models should be relatively straightforward, the question

of how to obtain sufficient information about the material’s real-

world behaviour becomesmore challenging to answer. Similarly, any

history-dependent material model (such as plasticity) would require

us to track further internal state variables and their derivatives in

the simulation. We leave such models as an interesting avenue for

future research.

Our objective function definition for real-world specimens uses

motion capture data including precise timing of the observed be-

haviour. Consequently, a relatively small, yet visually noticeable,

mismatch of the recorded and simulated motion trajectories does

not incur as high an objective function penalty as, for instance, a

simulation that matches the trajectory well initially but drifts out of

phase due to mismatches of the harmonic oscillation frequencies. As

a result, we often observe noticeable differences in the trajectories

(such as in Fig. 1 and 4). This situation does, however, mean that

we do not need to calibrate the marker placement exactly, or worry

about errors introduced by the motion capture. Finally, weighting

functions emphasizing certain markers, or specific time intervals,

during optimization could be introduced into our method. As we

aim to present the capabilities of our system without further hyper-

parameter tuning we have not implemented such weights in our

results.

While we only use parameter dependent (elastostatic) initial con-

ditions in our examples and keep the boundary conditions indepen-

dent, the presented theory could be extended to cover parameter

dependent boundary conditions in an analogous way by considering

the derivatives of forces with respect to the parametrization of the

boundary data. Similarly, we have not used dynamic re-meshing in
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our examples. For cases where mesh adaption would be required dur-

ing the simulation, the sensitivities computed by the direct method

can in principle be interpolated from the old to the new mesh along-

side all other simulation state data. However, it is currently not clear

if the same approach would also work in the adjoint setting, where

the adjoint state is integrated backwards in time.

The main application of our system is to estimate physical pa-

rameters for complex visco-elastic materials, such as PU foams or

3D printed flexible structured materials. In this way, our method

circumvents the need for (a) measuring material parameters with

highly specialized testing instruments, then (b) implementing an

accurate small-scale simulation model, and finally (c) performing

numerical coarsening (or homogenization) resulting in bulk ma-

terial parameters for fast, coarse simulation models. Instead we

directly find the parameters for the coarse simulation. In the end,

the overall visco-elastic behaviour of our real-world test specimens

is approximated very well by our optimized simulation models.
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