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Fig. 1. Our method can automatically plan the assembly sequence for building a sculpture measuring 10𝑚 × 3𝑚 × 7𝑚, composed of 212 bars. Using a new

topology optimization formulation, our method generates three temporal coherent sub-assemblies, which we refer to as "landmarks", and runs a greedy

search, which selects the bar at each assembly step that minimizes the structural deformation of the next intermediate substructure, to compute the assembly

sequences between these landmarks. The plot illustrates the structural compliance of the intermediate assemblies over the number of installed bars for our

method (magenta) and the baseline sequence computed by a greedy search algorithm (black) without using our landmarks. Our approach can plan in the

long-term and is able to take more costly steps at the beginning in return for a reduction in assembly cost later. In this example, our sequence reduces the

structural compliance by 65% compared to the baseline.

We present a computational framework for planning the assembly sequence

of bespoke frame structures. Frame structures are one of the most commonly

used structural systems in modern architecture, providing resistance to grav-

itational and external loads. Building frame structures requires traversing

through several partially built states. If the assembly sequence is planned

poorly, these partial assemblies can exhibit substantial deformation due to

self-weight, slowing down or jeopardizing the assembly process. Finding

a good assembly sequence that minimizes intermediate deformations is an

interesting yet challenging combinatorial problem that is usually solved by

heuristic search algorithms. In this paper, we propose a new optimization-

based approach that models sequence planning using a series of topology

optimization problems. Our key insight is that enforcing temporal coherent

constraints in the topology optimization can lead to sub-structures with
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small deformations while staying consistent with each other to form an as-

sembly sequence. We benchmark our algorithm on a large data set and show

improvements in both performance and computational time over greedy

search algorithms. In addition, we demonstrate that our algorithm can be

extended to handle assembly with static or dynamic supports. We further

validate our approach by generating a series of results in multiple scales,

including a real-world prototype with a mixed reality assistant using our

computed sequence and a simulated example demonstrating a multi-robot

assembly application.
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Additional Key Words and Phrases: frame structure, assembly sequence

planning, topology optimization
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1 INTRODUCTION

Assemblies are important to human society as many complex ma-

chines and large-scale buildings are assembled from small and simple

elements. Recent developments in computational design offer many

tools to accelerate the assembly design process and to improve

the performance of the final designs [Wang et al. 2019; Whiting
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et al. 2012]. However, as size and complexity increase, the cost of

assembling a structure becomes more and more significant.

In this work, we focus on assembling bespoke frame structures,

which have many applications in civil and mechanical engineering

[Apolinarska 2018; Parascho 2019]. Constructing a frame structure

involves installing prefabricated bars following a given assembly se-

quence. Any such sequence inevitably includes incomplete assembly

states, and these intermediate states can exhibit large structural de-

formations due to self-weight. The order inwhich bars are assembled

strongly influences the structural deformation of its intermediate

assembly states. Among all feasible assembly sequences, there are

generally many poor ones with large structural deformation and a

few good ones with smaller deformation. Therefore, an exciting yet

computationally challenging problem is to find the optimal assembly

sequence that minimizes structural deformations of intermediate

states during assembly.

Finding the optimal sequence for constructing a given frame struc-

ture is a difficult combinatorial problem. Exhaustively enumerating

all feasible sequences is impractical for common computing devices

because of the enormous search space. Existing approaches [Huang

et al. 2021; McEvoy et al. 2014] use greedy search algorithms to solve

sequencing problems. However, as illustrated in Fig 1, the assembly

plan generated by a structurally-informed greedy search algorithm

can still exhibit unacceptably large deformations.

To address this problem, we propose a new optimization-based

approach for solving sequence planning problems in constructing

bespoke frame structures. We observe that any assembly sequence

can be represented through its intermediate assembly states. Thus,

solving sequence planning problems is equivalent to finding a set

of temporal coherent intermediate sub-assemblies with minimum

structural deformation. For illustration, consider an assembly prob-

lem in which half of the bars can be installed simultaneously. Here,

finding the optimal sequence is equivalent to computing the stiffest

sub-assembly with half of the bars, which is a classic problem in

topology optimization. To generalize this strategy to assembling

ℎ ≥ 1 bars at a time, our key insight is to use a new temporal coher-
ent topology optimization formulation that jointly solves for several

intermediate states to form an optimal assembly sequence. We cast

this new formulation as a mixed integer programming problem and

propose different strategies for its solution. Specifically, we make

the following contributions:

• We propose a new continuous relaxation of discrete sequence

planning problems inspired by topology optimization. We

solve our new formulation using mixed integer optimization.

• We provide a unified framework for assembling frame struc-

tures that install one bar at a time or multiple bars at a time.

Our method also supports assembly sequences with non-

uniform step sizes.

• Our framework can be extended to handle assembly-with-

support (static or dynamic) procedures.

• The assembly sequences generated by our method are agnos-

tic to the assembly process and can be adapted to various

setups such as mixed-reality assisted manual assembly or

robotic assembly.

We validate our method in a large data set containing 100 frame

structures. Compared to the greedy search approach, our method

can reduce up to 70% of the structural deformations in the single-

bar-at-a-time assembly process and obtain more than 10 times speed

improvement in the 6-bars-at-a-time assembly process. We validate

our sequence by physically assembling one complex frame structure

with the assistance of mixed reality. To illustrate future applications,

we show a simulated, multi-robot assembly case study using our

computed sequence. Our code and benchmark are available at https:

//github.com/KIKI007/sequencer_benchmark.

2 RELATED WORK

Frame Structure Construction is a topic that has been widely re-

searched in academia and industry. We only review works that as-

semble bespoke frame structures through computational approaches.

Early works [Doggett 2002] aim to construct frame structures in

extraterrestrial environments, where robots replace humans in as-

sembling bars according to a pre-computed sequence. Since then, re-

search projects have treated the construction of many kinds of frame

structures, such as furniture [Jacobson 2019], reciprocal frames [Song

et al. 2013], roofs [Apolinarska et al. 2016], formwork [Kumar et al.

2017], timber houses [Eversmann et al. 2017; Thoma et al. 2018],

and art installations [Brütting et al. 2021; Gandia et al. 2018; Yoshida

et al. 2015].

Planning the assembly sequence for constructing a bespoke frame

structure can be considered as part of the design process. Archi-

tects usually design their frame structures to have natural assembly

sequences. For instance, frame structures are designed to be assem-

bled in a layer-by-layer manner [Apolinarska et al. 2016; Leder et al.

2019; Naboni et al. 2021]. Modular design [Eversmann et al. 2017;

Jenett et al. 2019] is another widely applied method where mod-

ules are fabricated remotely and assembled onsite to form a large

frame structure. However, such assembly methods can limit the

users’ design freedom. Our method is not limited to certain design

typologies and can solve sequence planning problems for any input

frame structure.

Some recent works in frame structure construction aim to solve

the sequence planning problem with general inputs. McEvoy et

al. [2014] first compute the assembly sequence that minimizes the

structural deformation of the intermediate substructures during

construction using a greedy search with backtracking. Huang et al.

[2021] employ a robot to assemble frame structures. They propose a

forward and backward search framework to minimize the structural

deformation of incomplete substructures. However, both works only

support assembling one bar at a time. Bruun et al. [2022] compute

the assembly sequences for constructing frame structures using

multiple robots. They assume all bars are connected by pin joints

and can rotate around the joints. Their method ensures that their

incomplete substructures are infinitesimally rigid, which prevents

the truss structures from having extra degrees of freedom. However,

their algorithm is mainly meant for assembling frame structures

composed of tetrahedron cells, limiting their input shapes.
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Assembly Sequence Planning aims at finding a feasible assembly

plan that can be used to assemble a given design without caus-

ing deadlocks [Jiménez 2013; Tian et al. 2022; Wang et al. 2021].

Recent works also employ robots for assembly [Hartmann et al.

2020, 2023; Huang et al. 2021], and therefore need to solve both

robotic path planning and sequence planning simultaneously. If

many feasible sequences exist, we would like to compare the quality

of different sequences. Some widely-used measurements include

fabrication quality [Wu et al. 2016], uncertainty [Behdad et al. 2014],

structural vibration [Wang et al. 2022], structural stability [Deuss

et al. 2014] and structural stiffness [Hayashi et al. 2022; Huang et al.

2016]. We focus on the papers concerning structural stability and

stiffness. Both objectives measure the structural performance of

the intermediate assembly states defined by an assembly plan. The

only difference is that structural stability is used for rigid assembly,

treated as a collection of rigid blocks (e.g., masonry structure), and

structural stiffness is used for deformable assembly, treated as a

collection of elastic bodies (e.g., frame structure).

Deuss et al. [2014] present an algorithm for assembling self-

supporting shell structures with rigid blocks. They utilize external

chains to stabilize the incomplete sub-assemblies during construc-

tion temporarily. They propose a divide-and-conquer search method

to reduce the number of chains needed for construction, which

builds an intermediate sub-assembly first and then adds the remain-

ing blocks to complete the construction. Since constructing frame

structures is generally different from assembling masonry shells,

directly applying their method to solve our sequencing problem is

not trivial.

Huang et al. [2016] propose a sequence planning algorithm for

spatially extruding plastic bars using a robot arm equipped with a

3D-printing hotend. Their goal is to find a printing sequence that

limits the structural deformation of printed bars while ensuring

the hotend has a collision-free path for extrusion. They propose

a divide-and-conquer algorithm based on graph cuts to split their

final structure into several structurally stiff layers. This layering

strategy divides their sequence planning problem into several inde-

pendent sub-problems, which can be efficiently solved using a local

search. However, [Huang et al. 2016] only prints one bar at a time.

We also show in the result section that our method can solve their

layer decomposition problem with a better performance in terms of

structural stiffness.

Topology Optimization is concerned with maximizing the struc-

tural stiffness of a design under given external loads within a ma-

terial budget [Bendsoe and Sigmund 2003]. Among many types

of methods in topology optimization, the methods for designing

frame/truss structures, i.e. truss topology optimization (TTO), are

the most relevant to our work. The design variables of TTO are

the cross-section areas of the bars. Previous works can be classified

into continuous TTO and discrete TTO depending on the type of

design variables. Since our assembly planning is a discrete process,

we focus on methods for solving discrete TTO. In the survey pa-

per [Stolpe 2016], global optimization methods (e.g., mixed integer

optimization) and stochastic methods (e.g., genetic algorithm) are

listed as the two typical ways of solving discrete TTO problems.

Typical discrete TTO methods include the primal method [Kocvara

Fig. 2. The assembly procedure for a 3-bar frame structure. The left and

right ends of the structure are anchored to the ground. Transparent bars in

figures (a) and (b) depict the complete structure for reference purposes. The

intermediate structure in (b) has the highest assembly cost during assembly.

2010], which solves a mixed-integer semi-definite programming,

and the dual method [Achtziger and Stolpe 2009], which solves a

mixed-integer quadratically-constrained quadratic program.

Jiang et al. [2017] propose a design framework for generating

structurally sound truss structures for architectural applications.

Arora et al. [2019] present an algorithm to design volumetric Michell

trusses, allowing users to edit their designs parametrically. Neveu

[2022] develops a method for simplifying a curve network to min-

imize deformation under worst-case loads. Most of these works

focus on reducing the deformation of completed structures, while

our work focuses on reducing the deformation during the assembly

process. Previous works [Allaire et al. 2017; Langelaar 2017] sug-

gest additional fabrication constraints, like no overhangs, to enable

fabricating topology optimization shapes using standard additive

manufacturing methods. Wang et al. [2020] present a time-based

topology optimization method for improving the structural stiff-

ness of intermediate structures during a 3D printing process. Lan

et al. [2022] proposes a novel computational approach that further

improves the computational efficiency of optimizing the structural

stiffness during a 3D printing process. However, these methods

are mostly designed for 3D printing of continuum shapes. It is not

straightforward to adapt their method to solve our sequence plan-

ning problem in assembling frame structures.

3 PROBLEM FORMULATION

Let’s consider assembling a frame structure that has 𝑛 elastic bars

{𝑏𝑖 }; see Figure 2. We consider the sequence planning problem in

its general form, allowing at most ℎ bars to be installed at each step.

Section 3.1 explains the finite element method for evaluating the

structural deformation of an incomplete substructure. Section 3.2

introduces a graph-based representation for measuring the cost

of an assembly sequence and formulates our sequence planning

problem as a shortest-path problem using this graph.

3.1 Structural Analysis

We use the linear finite element method from [McGuire et al. 2000]

to compute the quasi-static, elastic deformation of a frame structure

during assembly. A brief introduction to this analysis method is

given to make our paper self-contained. More details about this

analysis method can be found in our supplementary.

Assuming linear elasticity, the deformed shape of an elastic bar 𝑏

is determined by a deformation vector 𝒖𝑏 describing the deforma-

tions of its two endpoints; see Figure 3(a). The deformation of each

endpoint has 6 DOFs, including 3 DOFs for translation and 3 DOFs

for rotation. The deformed bar 𝑏 generates internal elastic forces
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Fig. 3. (a) A deformed bar with a deformation vector 𝒖 = [𝒖𝑇
0
, 𝒖𝑇

1
]𝑇 and

an external force vector 𝒘 = [𝒘𝑇
0
,𝒘𝑇

1
]𝑇 . (b) A deformed incomplete sub-

structure, whose leftmost joint is anchored to the ground, so 𝑼 0 = 0. Its
global deformation vector is 𝑼 = [𝑼𝑇

1
,𝑼𝑇

2
]𝑇 and its global external force

vector is 𝑭 = [𝒇𝑇
1
, 𝒇𝑇

2
]𝑇 .

Fig. 4. (a) The state graph of a four-part assembly, when only one bar is

installed at a time (ℎ = 1). (b) The state graph of the same four-part assembly,

when at most two bars can be installed at a time (ℎ = 2). Both graphs share

the same nodes, but the state graph in (b) has more edges than the state

graph in (a).

𝒇 int
𝑏

(i.e., stretching, bending and twisting).

𝒇 int
𝑏

= −𝑲𝑏𝒖𝑏 (1)

where 𝑲𝑏 is the local stiffness matrix of the bar. The bar’s self-

weight is represented using a lumped point load𝒘𝑏 , which acts on

both ends of the bar; see Figure 3(a). The force equilibrium condition

of the bar requires:

− 𝑲𝑏𝒖𝑏 +𝒘𝑏 = 0 (2)

When two bars are connected by a rigid joint 𝑐 , their deforma-

tions at this joint are equal; see Figure 3(b). Thus, we define the

system’s degrees of freedom only at the joints. Each joint 𝑐 is as-

signed a deformation vector 𝑼𝑐 to represent the deformation of its

associated bars at 𝑐 . If a joint is fixed (e.g., anchored to the ground),

its deformation vector must be zero. We stack all non-fixed joints’

deformation vectors {𝑼𝑐 } to form a global deformation vector 𝑼 .
The point load of a joint 𝒇𝑐 is defined as the summation of its asso-

ciated bars’ loads at 𝑐 . The global external force vector 𝑭 is defined

by stacking loads of all non-fixed joints {𝒇𝑐 }. The force equilibrium
condition of the frame system can be formulated as follows:

𝑲𝑼 = 𝑭 (3)

where 𝑲 is the global stiffness matrix that is assembled from the

local stiffness matrices {𝑲𝑏 }.
We choose to use structural compliance to measure the structural

deformation of an intermediate assembly state. Compliance is a

widely-used quantity for measuring structural stiffness in topology

optimization [Bendsoe and Sigmund 2003], which is formulated as:

𝐶 =
1

2

𝑭𝑇 𝑼 (4)

A structure with a large compliance value generally has a large

structural deformation. Therefore, our goal is to find the optimal

assembly sequence whose intermediate substructures have the min-

imum amount of compliance.

3.2 State Graph

We adopt a graph representation for the sequence planning prob-

lem that allows for at most ℎ bars to be installed at each step. Our

state graph𝐺 (𝑉 , 𝐸) is a directed graph whose nodes𝑉 represent all

intermediate substructures that can be physically assembled. Such

substructures are drawn in the circles representing the nodes 𝑉 in

Figure 4. Each node 𝑣𝑖 ∈ 𝑉 stores two entries: 1) the indices of bars

that have been installed; 2) the compliance of the intermediate sub-

structure𝐶 (𝑣𝑖 ). Our state graph discards nodes that contain floating

bars. Two graph nodes 𝑣𝑖 and 𝑣 𝑗 are connected by an edge 𝑒𝑖, 𝑗 if

𝑣 𝑗 can be constructed from 𝑣𝑖 by adding at most ℎ bars. Figure 4(a)

shows the state graph for ℎ = 1. Installing more bars per step will

significantly increase the total number of graph edges, even though

it does not increase the total number of graph nodes, as shown in

Figure 4(b) for the same example structure but with ℎ = 2.

A path 𝑃 = {𝑣𝑃0 , 𝑣𝑃1 , · · · } from the start node (i.e., the empty

substructure) to the final node (i.e., the completed structure) defines

a temporal coherent assembly sequence, where partial structures

present in a given state are also contained in ensuing states. The plot

in Figure 1 provides a quantitative comparison between different

assembly sequences, which visualizes the intermediate assembly

states’ compliances over the assembly progression. In practice, we

need to define a single value metric for evaluating the assembly cost

of a given assembly sequence. In this work, we choose to use the

summation of the incomplete assembly states’ compliances:

𝐶 (𝑃) =
∑︁
𝑖

𝐶 (𝑣𝑃𝑖 ) (5)

Our sequence problem can then be formulated as a shortest-

path problem. The optimal assembly sequence is the shortest path

between the start and final node using the cost function defined

by Equation 5. The famous Dijkstra’s algorithm [Dijkstra 1959]

can find the global minimum of the problem in 𝑂 ( |𝐸 | + |𝑉 | log |𝑉 |).
However, the state graph of a medium-size frame structure (e.g.,

𝑛 ≥ 40) is already too large to be handled even by the fastest shortest

path algorithms. Theoretically, the number of graph nodes in our

state graph is 2
𝑛
for a 𝑛-bar frame structure. Even after excluding

infeasible nodes, solving the problem is still beyond the capability

of most desktop computers. Besides, the number of successors of

a graph node grows exponentially with the maximum step size ℎ.

Many search-based methods (e.g., greedy search) need to explore the

successors of the current node, which becomes extremely inefficient

for a large ℎ.

4 TEMPORAL COHERENT TOPOLOGY OPTIMIZATION

In this section, we propose a new optimization-based sequence

planning method inspired by topology optimization. In Section 4.1

we recall the basics of topology optimization and present a new
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Fig. 5. Each of the substructures in (a), (b), and (c) has the lowest compliance

among other substructures with the same number of bars. However, there

is a bar in (b) that is not in (c). Directly linking (a), (b), (c), and (f) does not

form a temporal coherent assembly sequence. A globally optimal assembly

sequence is defined by substructures (a), (d), (e), and (f).

temporal coherent topology optimization framework for solving

the single-bar-at-a-time sequence planning problem. In Section 4.2

we extend our framework to handle the installation of multiple bars

per step.

4.1 Single-bar-at-a-time Sequence Planning

By definition, every assembly sequence in the single-bar-at-a-time

setting is a permutation of the set {1, · · · , 𝑛}. Exhaustively exam-

ining all sequences is impossible for large 𝑛 because of its 𝑂 (𝑛!)
complexity. Alternatively, as described in Section 3.2, every assem-

bly sequence can be viewed as a set of intermediate assembly states

{𝐴𝑡 }1≤𝑡 ≤𝑛 . Since only one bar is installed at a time, each substruc-

ture𝐴𝑡 must contain exactly 𝑡 bars, and adjacent substructures must

be temporal coherent (i.e., 𝐴𝑡 ⊂ 𝐴𝑡+1). The minimum assembly cost

𝐸 of constructing a 𝑛-bar frame structure is:

𝐸 = min

{𝐴𝑡 }

𝑛∑︁
𝑡=1

𝐶 (𝐴𝑡 )

s.t. |𝐴𝑡 | = 𝑡,

𝐴𝑡 ⊂ 𝐴𝑡+1

(6)

where 𝐶 (𝐴𝑡 ) is the compliance of the incomplete substructure 𝐴𝑡

and | · | measures the number of bars in 𝐴𝑡 .

Applying this new formulation still requires solving a complex

discrete problem. To make this formulation more manageable, we

first exclude the temporal coherent constraints 𝐴𝑡 ⊂ 𝐴𝑡+1 in Equa-

tion 6, transforming it into multiple separate optimization problems.

𝐴∗
𝑡 = arg min

𝐴𝑡

𝐶 (𝐴𝑡 )

s.t. |𝐴𝑡 | = 𝑡

(7)

where 𝐴∗
𝑡 is the stiffest substructure with exactly 𝑡 bars.

Suppose that the set {𝐴∗
1
, · · · , 𝐴∗

𝑛} forms a temporal coherent as-

sembly sequence (i.e.,𝐴∗
𝑡 ⊂ 𝐴∗

𝑡+1), the temporal coherent constraints

in Equation 6 holds and the optimal assembly sequence is found.

Thus, one of the key issues is solving the sub-problem defined in

Equation 7.

Finding the stiffest substructure using a subset of bars is a classic

problem in topology optimization [Stolpe 2016]. We denote the pres-

ence of the bar 𝑏𝑖 in the substructure 𝐴 as a binary variable 𝜌𝑖 . The

bar 𝑏𝑖 is installed when 𝜌𝑖 = 1. The variable 𝜌𝑖 can be viewed as the

factitious thickness or pseudo-density of 𝑏𝑖 . The material stiffness

(i.e., Young’s modulus) and self-weight of 𝑏𝑖 is then a function of 𝜌𝑖 :

𝑲𝑖 (𝜌𝑖 ) = (𝜌𝑖 + 𝜀)𝑲𝑖 (8)

𝒘𝑖 (𝜌𝑖 ) = 𝜌𝑖𝒘𝑖 (9)

where 𝜀 is a very small number to prevent singularity. In this work,

we favor our linear interpolation law over the conventional SIMP

method [Bruyneel and Duysinx 2005] to guarantee the convexity

of our relaxed formulation. The global displacement vector 𝑼 (𝝆)
and the compliance 𝐶 (𝝆) are also functions of the global thickness

vector 𝝆.

𝑼 (𝝆) = 𝑲−1 (𝝆)𝑭 (𝝆) (10)

𝐶 (𝝆) = 1

2

𝑭 (𝝆)𝑇𝑲−1 (𝝆)𝑭 (𝝆) (11)

The sub-problem of finding the stiffest substructure𝐴∗
𝑡 in Equation 7

can be reformulated as a topology optimization problem with binary

constraints imposed on 𝝆:

min

𝝆
1

2

𝑭 (𝝆)𝑇𝑲−1 (𝝆)𝑭 (𝝆)

s.t.
∑︁
𝑖

𝜌𝑖 = 𝑡, 𝜌𝑖 ∈ {0, 1}
(12)

Figure 5 shows the results of finding the stiffest substructures

with 1, 2, and 3 bars in a four-bar assembly. Ideally, connecting these

substructures should form a feasible assembly sequence. However,

without the temporal coherent constraints in Equation 6, the result-

ing assembly sequence could be infeasible. For instance, there exists

a bar installed in Figure 5(b), which later disappears in Figure 5(c).

To obtain feasible assembly sequences, we propose a new temporal

coherent topology optimization that simultaneously solves a series

of topology optimizations with temporal coherent constraints:

min

{𝝆𝑡 }
1

2

∑︁
1≤𝑡 ≤𝑛

𝑭 (𝝆𝑡 )𝑇𝑲−1 (𝝆𝑡 )𝑭 (𝝆𝑡 )

s.t.
∑︁
𝑖

𝜌𝑡𝑖 = 𝑡, 𝜌𝑡𝑖 ∈ {0, 1},

𝜌𝑡𝑖 ≤ 𝜌𝑡+1𝑖

(13)

where 𝜌𝑡
𝑖
is the factitious thickness of bar 𝑏𝑖 in the sub-assembly𝐴𝑡 .

The temporal coherent constraint 𝜌𝑡
𝑖
≤ 𝜌𝑡+1

𝑖
ensures that the bars

which appear at time step 𝑡 cannot disappear at subsequent steps.

4.2 Multiple-bars-at-a-time Sequence Planning

Our temporal coherent topology optimization can be extended to

solve multiple-bars-at-a-time sequence planning problems. The pri-

mary incentive behind this is that enabling the concurrent assembly

of several bars could lower the compliance of intermediate substruc-

tures, which can be supported through the use of multiple robotic

systems or pre-assembled modules.

A straightforward way of updating the material budget con-

straints in Equation 13 for assembling multiple bars per step is:∑︁
𝑖

𝜌𝑡𝑖 = ℎ𝑡, 1 ≤ 𝑡 ≤
⌊𝑛
ℎ

⌋
(14)
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Fig. 6. An assembly sequence computed using our bnb solver for constructing a 24-bar tower model [Fox and Schmit Jr 1966]. The sequence contains 6

assembly stages with non-uniform step sizes, where at most 5 bars are installed at a time. The right plot shows the assembly cost of the incumbent solution

and the current best lower bound over the computational time. A global minimum is found when these two lines meet.

This formulation only supports assembly processes with a uni-

form step size in which the number of bars installed at each step

is constant. However, in some scenarios, assembly sequences with

non-uniform step sizes can have a lower assembly cost. To adap-

tively select the number of bars installed at each step, we update the

material budget constraints in our sequence topology optimization

framework as follows:

min

{𝝆𝑡 }
1

2

∑︁
1≤𝑡 ≤𝑀

𝑭 (𝝆𝑡 )𝑇𝑲−1 (𝝆𝑡 )𝑭 (𝝆𝑡 )

s.t. 0 ≤
∑︁
𝑖

𝜌𝑡+1𝑖 −
∑︁
𝑖

𝜌𝑡𝑖 ≤ ℎ,∑︁
𝑖

𝜌0𝑖 = 0,
∑︁
𝑖

𝜌𝑀𝑖 = 𝑛,

𝜌𝑡𝑖 ∈ {0, 1},
𝜌𝑡𝑖 ≤ 𝜌𝑡+1𝑖

(15)

where we restrict the number of bars added at each step to be smaller

and equal to the maximum step size ℎ. Here, 𝑀 is a predefined

maximum number of total assembly steps, including the final step.

Setting a large assembly step𝑀 does not exclude potential solutions,

as our framework accommodates skipping steps (i.e., 𝜌𝑡
𝑖
= 𝜌𝑡+1

𝑖
).

5 SOLVERS

Solving our mixed integer program described in Equation 15 is a

challenging combinatorial problem. Section 5.1 presents the holistic

approach we use for solving mixed integer optimization. While,

theoretically, this method should be able to fulfill our requirements,

in practice, we find that even the state-of-the-art holistic solver

still cannot efficiently handle some cases. Therefore, we propose

a hierarchical decomposition approach based on the divide-and-

conquer method to reduce computational time.

5.1 Holistic Approach

The goal of our holistic approach is to incorporate all assembly

stages concurrently within a single, large-scale optimization process.

A standard way to solve mixed integer programs is to relax the

binary constraint 𝜌𝑖 ∈ {0, 1}, replace it with a continuous constraint

𝜌𝑖 ∈ [0, 1], and use a Branch-and-Bound (BnB) method to solve

the relaxed problem [Gupta and Ravindran 1985]. Conceptually, a

BnB method uses a binary tree search to recursively split the search

space by setting one of the {𝜌𝑡
𝑖
} to be zero or one. At each tree

node, the BnB method solves a continuous optimization which is

Fig. 7. An illustration of how the assembly sequence of a 45-bar roboarch
model [2018] is computed using our hierarchical decomposition approach.

At most 4 bars can be installed at a time. Directly calculating the assembly

plan using our holistic approach takes 474.4 s. Our hierarchical decomposi-

tion approach first finds two temporal coherent landmarks with 15 and 30

bars, which takes 3.0 s. Then, each sub-problem is solved using the holistic

approach with given starting and ending intermediate substructures. Our

hierarchical decomposition approach takes 17.8 s, which is 26 times faster

than our holistic approach and only increases the assembly cost by 5.5%.

derived from the relaxed problem to estimate a lower bound on

the binary problem’s objective value. The BnB algorithm can assert

that it converges to global optimality when the gap between the

incumbent solution’s objective and the current best lower bound are

within a user-specified threshold. As proven in the supplementary

material, the relaxed problem of Equation 15 is convex and can

always be solved to a global minimum for an accurate lower-bound

estimation. Figure 6 shows the evolution of the lower-bound and

incumbent solution’s cost, the current best-found solution’s cost,

by running the BnB solver on an exemplary problem to obtain the

globally optimal sequence. In many of our experiments, the gap

generally does not converge to zero, yet the distance to the lower

bound can help users decide whether continuing the optimization is

worthwhile. In this work, we use the BnB implementation provided

in the commercial optimization solver Knitro [Byrd et al. 2006]. In

the followings, we use holistic to refer to our holistic approach

that employs the branch-and-bound solver from Knitro.

5.2 Hierarchical Decomposition Approach

The efficiency of our holistic solver depends on the number of

binary variables. For a medium size model (𝑛 = 40), having a small

step size (e.g., ℎ = 1) requires a large number of binary variables

(e.g., 𝑛2), which cannot be efficiently handled by our holistic solver.

To accelerate the computation, we propose another solver that first
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finds a given number (e.g. 𝑧) of sub-assemblies {𝐿𝑘 }1≤𝑘≤𝑧 that are

temporary coherent, and then enforce our assembly sequence to

go through these sub-assemblies. These sub-assemblies are named

landmarks, which should satisfy 𝐿𝑘 ⊂ 𝐿𝑘+1. These landmarks de-

compose the original sequence planning problem into disjointed

sub-problems, each of which only needs to find the optimal assembly

sequence starting at the landmark 𝐿𝑘 and ending at the landmark

𝐿𝑘+1. Because the number of undecided bars in each sub-problem is

significantly reduced, these sub-problems should be solved using

our holistic solver. However, if a sub-problem is still too difficult to

be solved, our method can compute new landmarks to decompose

this sub-problem further. Our method terminates if all sub-problems

are solved. Similar to other sequence planning works that use a

divide-and-conquer strategy [Deuss et al. 2014; Huang et al. 2016],

this landmark strategy cannot guarantee global optimality but can

often generate good results significantly faster.

In this work, we use our temporal coherent topology optimization

to compute the landmarks to evenly partition the frame structure

into 𝑧 landmarks using Equation 13 with the constraints of Equation

14. The number of bars in landmark 𝐿𝑘 is at most ⌈(𝑛𝑘)/(𝑧 + 1)⌉.
In practice, to further accelerate the computation, we can solve

this landmark problem in a bottom-up fashion. Starting from only

solving for 𝐿1, we iteratively computes the landmark 𝐿𝑘 by fixing

all previous landmarks {𝐿1, · · · , 𝐿𝑘−1} and neglecting the assem-

bly costs of following, uncomputed landmarks {𝐿𝑘+1, · · · , 𝐿𝑧 }. In
this way, because we only consider decision variables 𝝆𝑘 at each

iteration 𝑘 instead of {𝝆𝑡 }1≤𝑡 ≤𝑧 , the optimization problem is much

smaller and thus faster to solve. We find that in practice using this

iterative strategy can effectively find good landmarks. We name

this hierarchical decomposition strategy the 𝑧-landmark method.

A sequence computed using this strategy can be found in Figure 7.

6 ASSEMBLY WITH SUPPORTS

Increasing the number of bars ℎ installed at each step potentially

reduces the assembly cost in terms of compliance, as unstable sub-

structures can be avoided. However, ℎ is usually constrained by

the available resources, e.g. workers or robots. We propose to use

supports to fix the bars’ positions, in order to further reduce the

assembly cost without the need to increase ℎ. Supports can be clas-

sified into two types: static scaffolding (Section 6.1) and dynamic

holding (Section 6.2). The bars fixed by static scaffolding are per-

manent, i.e. not removable until the end of the construction, while

dynamic holding allows for dynamic relocation of a fixed number of

static supports. We extend our temporal coherent topology optimiza-

tion framework to handle the supporting operations and minimize

the total assembly cost by using a given number of supports 𝑆 .

6.1 Assembly with Static Scaffolding

Most real-world construction projects make use of a dense scaffold

to support intermediate substructures, which is difficult and time-

consuming to build. We propose a new sequence planning problem

that, at most, fixes 𝑆 (𝑆 << 𝑛) bars using static scaffolding to reduce
the assembly cost. Solving this new planning problem involves

simultaneously planning for the assembly sequence and the bars

Fig. 8. New supports are first installed in (b) before the new bars are in-

stalled in (c). Supports that are no longer needed are removed in (d). Newly

introduced bars or supports are highlighted in cyan.

that need to be fixed. We tackle this problem by extending our

method to include the "fix" operation.

A bar is fixed if the deformation vectors of its two ends are zero.

We denote 𝑼𝑏𝑖 as the deformation vector of the 𝑖-th bar, a sub-vector

of the global deformation vector 𝑼 . Fixing the 𝑖-th bar is equivalent

to setting 𝑼𝑏𝑖 = 0. We introduce a new set of decision variables {𝑠𝑖 }
to describe the fixation status of the bars:

𝑠𝑖 = 1 ⇒ 𝑼𝑏𝑖 = 0 (16)

However, this conditional constraint makes the problem difficult

to solve using our formulation: We cannot treat 𝑠𝑖 in the same way

as 𝜌𝑖 in Section 4.1, as a partially fixed bar is not well defined. We

instead formulate Equation 16 as an additional, conditional stiffness

matrix 𝑠𝑖𝑷𝑖 , which is added to the global stiffness matrix 𝑲 . Each
𝑷𝑖 is a constant matrix:

(𝑷𝑖 ) 𝑗,𝑘 =

{
𝜇 𝑗 = 𝑘 and 𝑘 ∈ 𝑏𝑖

0 others

(17)

We choose 𝜇 to be a relatively large number depending on the

material (about 10
3
times the material density). This enforces that

the condition in Equation 16 is satisfied. The new global stiffness

matrix can then be written as:

𝑲∗ (𝝆𝑡 , 𝒔) = 𝑲 (𝝆𝑡 ) +
∑︁
𝑖

𝑠𝑖𝑷𝑖 (18)

By updating the global stiffness matrix, our temporal coherent

topology optimization can be extended to include static scaffolding:

min

𝒔, {𝝆𝑡 }

∑︁
1≤𝑡 ≤𝑀

1

2

𝑭 (𝝆𝑡 )𝑇
(
𝑲∗)−1 𝑭 (𝝆𝑡 )

s.t. 0 ≤
∑︁
𝑖

𝜌𝑡+1𝑖 −
∑︁
𝑖

𝜌𝑡𝑖 ≤ ℎ,∑︁
𝑖

𝜌0𝑖 = 0,
∑︁
𝑖

𝜌𝑀𝑖 = 𝑛,
∑︁
𝑖

𝑠𝑖 = 𝑆,

𝜌𝑡𝑖 ≤ 𝜌𝑡+1𝑖 ,

𝑠𝑖 , 𝜌
𝑡
𝑖 ∈ {0, 1}

(19)

6.2 Assembly with Dynamic Holding

A dynamic holding formulation is useful if supports can easily be

moved during assembly (e.g., when robots are used to hold the bars).

We can extend Equation 19 to include dynamic holding by defining
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Table 1. A comparison of our methods to the baseline methods in the single-bar-at-a-time setting on our 100-model dataset. The second row specifies the

model sizes clustered as small (𝑛 < 40), medium (40 ≤ 𝑛 < 60), and large (60 ≤ 𝑛 ≤ 150). All assembly costs are normalized by taking the results from the

forward-greedy method as a reference. Every entry in the table shows three values in the following format: average (minimum and maximum). With many

variables, our holistic approach often fails to converge, leading to suboptimal performance compared to the 2-landmark approach in most test cases. More

detailed comparisons between our holistic and 2-landmark approach can be founded in our supplementary material.

ℎ Methods

Assembly Cost Time (s)

Small Medium Large Small Medium Large

1

Forward-greedy 1 1 1 0.02 (0.01∼0.04) 0.06 (0.03∼0.11) 0.32 (0.10∼1.5)
Backward-greedy 1.88 (0.79∼6.88) 2.16 (0.49∼14.75) 1.87 (0.47∼8.54) 0.05 (0.02∼0.08) 0.14 (0.07∼0.32) 0.84 (0.23∼3.5)
Backtrack-greedy 0.96 (0.84∼1.00) 0.97 (0.84∼1.00) 0.99 (0.70∼1.00) 10 10 10

2-Landmark (Ours) 0.80 (0.50∼1.04) 0.68 (0.36∼1.07) 0.72 (0.34∼1.02) 44.9 (0.73∼142) 113 (2.2∼686) 108 (6.4∼1030)
Holistic (Ours) 0.97 (0.66∼1.54) - - 1274 (2.9∼3526) - -

a set of decision variables {𝑠𝑡
𝑖
} for each assembly step:

min

{𝒔𝑡 }, {𝝆𝑡 }

∑︁
1≤𝑡 ≤𝑀

1

2

𝑭 (𝝆𝑡 )𝑇
(
𝑲∗)−1 𝑭 (𝝆𝑡 )

s.t. 0 ≤
∑︁
𝑖

𝜌𝑡+1𝑖 −
∑︁
𝑖

𝜌𝑡𝑖 ≤ ℎ,∑︁
𝑖

𝜌0𝑖 = 0,
∑︁
𝑖

𝜌𝑀𝑖 = 𝑛,
∑︁
𝑖

𝑠𝑡𝑖 = 𝑆,

𝜌𝑡𝑖 ≤ 𝜌𝑡+1𝑖 , 𝑠𝑡𝑖 ≤ 𝜌𝑡𝑖 ,

𝑠𝑡𝑖 , 𝜌
𝑡
𝑖 ∈ {0, 1}

(20)

The constraint 𝑠𝑡
𝑖
≤ 𝜌𝑡

𝑖
ensures that only installed bars can be

fixed using dynamic holding. With the same ℎ (i.e., the maximum

step size) and 𝑀 (i.e., the number of assembly steps), the number

of variables here is doubled compared to Equation 15. Because of

the large number of design variables, we prefer to solve this opti-

mization using our 𝑧-landmark solver described in Section 5.2. In

practice, supports used in dynamic holding cannot be transferred in-

stantly between assembly steps. We run a post-processing algorithm

to compute additional steps for transition, which might temporar-

ily need more supports than the given number of supports 𝑆 ; see

Figure 8.

7 RESULTS AND DISCUSSION

We implement our method in C++ and use Knitro 13.1 [Byrd et al.

2006] for solving our mixed integer optimization. We run our opti-

mization on a Linux workstation equipped with an AMD Thread-

ripper Pro 5995WX (64 Cores) and 128 GB of memory.

Dataset. A frame structure dataset is created to evaluate our

method’s effectiveness compared with existing approaches. Col-

lections of freeform frame structures are difficult to find. As a result,

we create a new frame structure dataset derived from the Thingi10k

dataset [Zhou and Jacobson 2016]. We first manually select 100

models from the Thingi10k dataset and then simplify them using

an edge-collapse algorithm to reduce their total number of edges.

We then extract the wireframes from the simplified meshes to form

new frame structures. Every frame structure is scaled to fit into

a 3m unit box. We set a uniform bar radius (𝑅 = 5mm), density

(𝐷 = 5.8 kN/𝑚3
), Young’s modulus (𝐸 = 12.9 GPa), and shear modu-

lus (𝐺 = 4.8 GPa) for all frame structures in our dataset. Note that

our method can support frame structures composed of bars with

non-uniform materials and radii. In summary, our dataset contains

100 frame structures of which 21 are small-size models (𝑛 < 40),

53 medium-size models (40 ≤ 𝑛 < 60), and 26 large-size models

(60 ≤ 𝑛 ≤ 150). Please refer to the supplementary materials for a

visual summary of these structures.

7.1 Single-bar-at-a-time Comparisons

We compare our algorithm with different baseline methods in the

single-bar-at-a-time setting. The baseline algorithms we use are

search-based methods, namely the forward-greedy, backward-

greedy and backtrack-greedy [McEvoy et al. 2014]. The forward-

greedy method keeps adding bars to an initially empty structure,

while the backward-greedymethod keeps disassembling bars from

the initially complete structure to improve the assembly cost. The

forward- and backward-greedy methods terminate after all bars

have been assembled or disassembled, respectively. The backtrack-

greedy method is derived from the forward-greedy method, but

keeps exploring new assembly sequences using backtracking until

a time limit (i.e., 10 s) is reached. Table 1 shows a comparison of our

method with the baseline algorithms regarding the assembly cost

and computational time.

Forward-greedy. Our teaser figure (Figure 1) illustrates an example

where our method produces a solution with lower assembly cost

than the forward-greedy method. Our approach can plan in the

long-term and is able to take more costly steps at the beginning in

return for a reduction in assembly cost later. Greedy-based methods

are typically short-sighted and do not have this ability.

Backward-greedy. Even though the backward-greedy method

on average doubles the assembly cost compared to the forward-

greedy method, in the best case it can sometimes find assembly

sequences with only half the cost of forward-greedy.

Backtrack-greedy. Even though this method benefits from a signif-

icant increase in search time, it only manages to reduce the assembly

costs by 2.82% over the forward-greedy method. The reason is

that problematic search choices are often made during the early

stages of the search, which is difficult to correct using backtracking.

We generally cannot directly use our holistic solver for models

with more than 40 bars in the single-bar-at-a-time setting, which

convergent slowly. We mainly compare the baseline methods with
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Table 2. Results of our benchmark in the multiple-bars-at-a-time setting on our 100-model dataset. The first column shows the maximum step size ℎ. The

table entries are marked with "-" if running the corresponding algorithm takes more than 1000s. Both Holistic and 𝑧-Landmark are our proposed methods.

Our holistic approach may not always converge, leading to suboptimal results when compared to our z-landmark approach. We observe that our Holistic

approach can obtain assembly costs that are lower or the same as the costs obtained from our 𝑧-landmark approach on a considerable percentage of test

models (i.e., 42.9%, 32.4%, and 82.4% for ℎ = 4, 6, and 10). Please refer to our supplementary material for more detailed comparisons.

ℎ Methods

Assembly Cost Time (s)

Small Medium Large Small Medium Large

4

Merge 1 1 1 0.03 (0.01∼0.05) 0.08 (0.04∼0.17) 0.51 (0.13∼2.2)
Greedy 0.75 (0.25∼0.98) 0.70 (0.34∼0.93) 0.78 (0.25∼1.00) 0.71 (0.12∼1.4) 2.3 (0.31∼12.2) 104 (1.8∼1282)

z-Landmark (Ours) 0.66 (0.16∼0.98) 0.59 (0.30∼0.87) 0.64 (0.19∼1.03) 13.0 (0.41∼42.1) 108 (2.7∼556) 244 (21.2∼708)
Holistic (Ours) 0.70 (0.17∼0.98) - - 339 (1.9∼913) - -

6

Merge 1 1 1 0.03 (0.01∼0.05) 0.08 (0.04∼0.17) 0.51 (0.13∼2.2)
Greedy 0.76 (0.24∼0.99) 0.64 (0.33∼1.00) - 25.5 (2.3∼52.7) 136 (8.0∼1164) -

z-Landmark (Ours) 0.69 (0.23∼0.99) 0.57 (0.30∼0.94) 0.62 (0.19∼0.97) 4.2 (0.87∼13.6) 32.5 (2.8∼142) 97.2 (5.3∼315)
Holistic (Ours) 0.70 (0.23∼0.99) 0.68 (0.31∼1.10) - 187 (2.8∼906) 480 (23.2∼988) -

10

Merge 1 1 1 0.03 (0.01∼0.05) 0.08 (0.04∼0.17) 0.52 (0.13∼2.2)
z-Landmark (Ours) 0.69 (0.19∼0.97) 0.61 (0.30∼0.98) 0.64 (0.29∼1.04) 18.4 (0.06∼75.9) 10.9 (0.54∼96.0) 78.4 (4.1∼181)
Holistic (Ours) 0.69 (0.19∼0.97) 0.63 (0.35∼1.22) - 42.8 (0.05∼570) 324 (0.89∼964) -

Fig. 9. Installing a 39-part bridge structure [2021] by assembling at most

1 (black) or 5 (magenta) bars per step. The plot shows the compliance of

the two sequences over the number of installed bars. The 1-Bar sequence is

computed using our 𝑧-landmark solver, and the 5-Bar sequence is computed

using our holistic solver. All bars have the same material properties 𝑅 = 10

mm, 𝐷 = 12.7 kN/𝑚3
, 𝐸 = 2.07 GPa,𝐺 = 0.89 GPa.

our 2-landmark solver, which recursively finds 2 temporal coherent

landmarks to decompose the sequence planning problem until each

sub-problem can be efficiently resolved using our holistic approach

(i.e., the number of undecided bars is less than 15). Our 2-landmark

method can reduce the assembly cost by 28% over the forward-

greedy approach.

7.2 Multiple-bars-at-a-time Comparisons

Simultaneously assembling multiple bars can reduce the structural

deformation of the intermediate substructures as opposed to the

single-bar-at-a-time assembly process; see Figure 9. Previous se-

quence planning methods [Huang et al. 2021; McEvoy et al. 2014]

only compute assembly plans that install one bar at a time. We have

to extend their methods to handle multiple-bars-at-a-time assembly

for comparison. A simple extension is to combine ℎ consecutive

assembly steps of their single-bar-at-a-time sequences into one step.

We call this the merge method. An alternative baseline approach

involves extending the Greedy method to accommodate multi-bar

assembly by examining all combinations of installing at most ℎ bars

during each search iteration; see our supplementary material.

The merge method can handle arbitrary ℎ but often generates se-

quences with high assembly costs (Figure 10). This happens because

the merged sequence can include intermediate assembly states with

high assembly costs from the unmerged sequences.

The Greedy method performs well on medium-size models when

ℎ ranges from 2 to 4. However, it struggles to efficiently address the

sequencing issue for larger step sizes (e.g., ℎ ≥ 6), as the number of

successors for the current search node increases exponentially with

ℎ. Evaluating the assembly costs of these successor nodes can take

thousands of seconds.

Our 𝑧-landmark method performs better than baseline methods

in various model sizes 𝑛 and maximum step sizes ℎ. Statistics of the

benchmark are shown in Table 2. In general, our holistic solver

can efficiently compute assembly sequences on small-size models

𝑛 < 40 with ℎ ≥ 4 and on medium-size models 𝑛 < 60 with ℎ ≥ 6.

We set a time limit of 1000𝑠 for our Holistic solver and report

the time at which it generates the current best results. In terms of

implementation, Knitro has three types of heuristics (i.e., "Basic",

"Advanced", and "Extensive") for solving mixed integer problems.

In our experiment, we favor the "Advanced" heuristic, which ex-

hibits the most consistent performance. More comparisons between

different heuristics can be found in the supplementary.

The large-size models (𝑛 ≥ 60) currently can only be efficiently

handled by our 𝑧-landmark solver. During our experiments, we set

our 𝑧-landmark solver to divide the whole assembly problem into

sub-problems that have at most 30, 40, and 40 uninstalled bars when

ℎ = 4, 6, and 10. Each sub-problem is solved using our holistic

approach. For ℎ ≥ 6, our 𝑧-landmark method is significantly faster

than the Greedy and has less assembly cost than the Merge method.

Currently, our 𝑧-landmark method still has a limitation in selecting

the landmarks, because sometimes the optimal landmarks might not
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Fig. 10. Assembly sequences for constructing a 68-part frustum structure from [Huang et al. 2021] by installing at most 6 bars per step, color-coded by

blue to yellow representing small to large deformation. The sequence generated by the Merge method is shown on top, and the sequence generated by our

2-landmark solver is shown on the bottom. Each sub-problem generated by our 2-landmark solver is solved using our holistic approach. The plot shows the

compliance of the two sequences over the number of installed bars. Our method reduces the assembly cost by 77% and takes 122.6𝑠 to compute. All bars have

the same material properties 𝑅 = 10 mm, 𝐷 = 12.7 kN/𝑚3
, 𝐸 = 2.07 GPa,𝐺 = 0.89 GPa.

Fig. 11. Layer decomposition results computed by our 𝑧-landmark solver. Both models are from [Huang et al. 2016]. (top) The 141-bar bunny model is

decomposed into 7 layers, each of which has 20 bars. Computing the sequence for this bunny model takes our method 8.4𝑠 and ends up with an assembly cost

of 8.8 × 10
−2

(while [Huang et al. 2016] have an assembly cost of 11.2 × 10
−2
). (bottom) The 199-bar C model is decomposed into 10 layers, each of which has

the same number of bars as [Huang et al. 2016]. To compute this C model, our method takes 84.4𝑠 and has an assembly cost of 4.04 × 10
−2

(compared to

[Huang et al. 2016] 4.19 × 10
−2
). All bars have the same material properties 𝑅 = 20 mm, 𝐷 = 12.7 kN/𝑚3

, 𝐸 = 2.07 GPa,𝐺 = 0.89 GPa.

be part of the optimal assembly sequence, as illustrated in Figure 14.

In practice, we prefer using our holistic solver as long as it can

solve the problem and we are under no time constraints.

Our 𝑧-landmark solver can also be applied to solve the layer

decomposition problem in [Huang et al. 2016]; see Figure 11. Our

method can not only find a layer decomposition where each layer

has a non-uniform number of bars as in [Huang et al. 2016], but with

lower compliance cost. In addition, it can also uniformly partition

the model into a given number of layers if desired by the users.

7.3 Extensions

Static scaffold. We test our method for assembling the archmodel

from [Bruun et al. 2022] using static scaffolding (Figure 12), where

three supporting poles are used, and four bars can be assembled per

step. We solve our optimization in Equation 19 using our Holistic

solver, which takes 1642s and reduces 98% of the cost compared to

the original sequence without scaffolding.

Dynamic holding. Figure 12 visualizes the assembly sequence of

building the MycoTree structure from [Lee 2018] using dynamic

holding. Because of the large model size, we solve our optimization

in Equation 20 using our 4-landmark solver, which takes 2130s.

Compared to the four-bars-at-a-time sequence without supports,

deploying three dynamic holdings can effectively reduce 96% of the

assembly cost.

MR-assisted Assembly. Based on the sequence output by ourmethod,

it is easy to generate visual assembly instructions for one or multi-

ple users. Heads-up displays (HUDs) or Augmented/Mixed Reality
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Fig. 12. The first row visualizes the assembly sequence of the arch model from [Bruun et al. 2022] by using 3 static supports and assembling 4 bars per step.

The second row visualizes the assembly sequence of the MycoTree model from [Lee 2018] using 3 dynamic holdings and assembling 4 bars per step. All bars

share the same material properties 𝑅 = 10 mm, 𝐷 = 5.8 kN/𝑚3
, 𝐸 = 12.9 GPa,𝐺 = 4.6 GPa.

(AR/MR) glasses [Jahn et al. 2020; Mitterberger et al. 2020] are well

suited to display these instructions in the three-dimensional space.

We implemented a prototype of such an assistive system on the

Microsoft Hololens 2 MR glasses. The application that runs on the

glasses was developed in the Unity game engine and uses a QR-code

tracking system to align the user’s frame of reference with the de-

sired target pose of the structure. The user can interact with virtual

buttons to run through the steps of the assembly. Thanks to the

improved structural compliance using our method, the virtual and

real structures have a better visual match compared to sub-optimal

sequences. This improves the user’s ability to orient and assemble

the bars correctly without the need for any tracking or vision-based

feedback. An example of the assembly process using the MR system

can be found in the accompanying video material and in Figure 13.

Robot-assisted Assembly.
An important aspect of

digital fabrication is the

ability for robots to au-

tomatically assemble the

structure. There are many

major technical challenges

in robotic assembly that

we do not claim to have

solved in this paper, which

includes grasp planning, trajectory optimization, and close-loop per-

ception and control. However, a bad assembly sequence can lead to

large structural deformations during the assembly that require the

robotic system to correct for those offsets. A sequence with smaller

deformation, therefore, is essential to the robotic assembly’s success.

To illustrate the potential for combining our sequence planning and

multi-robot assembly planning, an optimized sequence computed by

our algorithm is given to a trajectory optimization algorithm with

collision avoidance for the multi-robot team, inspired by the method

presented in [Zimmermann et al. 2020]. We show a sequence for the

assembly of a bridge structure with four robots in the accompanying

video material. A still image of the assembly can be seen in the inset.

8 CONCLUSION & FUTURE WORK

In this work, we propose an optimization-based framework that

computes assembly sequences for constructing frame structures to

minimize the structural deformation of their incomplete assembly

states. We formulate our sequencing problem as a topology opti-

mization with temporal coherent constraints and solve the problem

using mixed integer optimization. Our method can effectively solve

single-bar-at-a-time and multiple-bars-at-a-time sequence planning

problems. Our method can be further extended to solve the assembly

process, including static scaffolding and dynamic holdings. To illus-

trate potential application scenarios, we physically build a frame

structure with the assistance of an augmented reality headset and

demonstrate robotic assembly following our computed sequence in

a simulated environment.

Limitations and future work. First, our optimization-basedmethod

can only efficiently handle input structures with less than 220 bars.

Planning additional supports during assembly increases the compu-

tational time, limiting the maximummodel size to 80 bars. Currently,

we use Knitro to solve our optimization, which is a general-purpose

MIP solver. Developing a customized MIP solver with dedicated

branch-and-bound heuristics for our formulation to improve its

computational efficiency would be a good research topic.

Second, our landmark solver can sometimes generate sequences

with large assembly costs due tomisleading landmarks (see Figure 14

for an example). However, because of the computing speed gain

from our landmark strategy, experimenting with different layer sizes

and comparing the sequence performance work well in practice.

Third, we use compliance to define the assembly cost of a given

assembly sequence. Integrating other cost functions, such as the

maximum displacement or buckling effect, into our optimization-

based framework would be an exciting yet challenging future direc-

tion. Many of these cost functions are non-convex and thus more

challenging to be solved using off-the-shelf MIP solvers.

Fourth, our method currently ignores collision aspect of the as-

sembly agents (human or robot). The installed bars can block as-

sembly agents from assembling new bars following the assembly
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Fig. 13. The Roboarch structure is assembled by a single user who is guided by our MR system. The top row shows the assembly process. In the bottom row,

we show the user interface on the headset, in which users can check which bars have been installed (yellow) and which bar will have to be installed next

(cyan). The user needs to press a virtual button to move to the next assembly step. The final structure is almost perfectly aligned with the virtual model.

Fabrication tolerances and structural deformations not captured by our model cause minor misalignment.

Fig. 14. The compliance-step curves of sequences generated by our 1-

landmark (magenta) and Holistic solver (black) for assembling the tower

model by installing 4 bars at a time. Because of its procedural nature, 1-

landmark solver selects a 12-bar landmark that is not part of the globally

optimal sequence (the bottom right substructure). The sequence generated

by our Holistic solver has less overall assembly cost (4.0 × 10
−4

J) than the

sequence generated by our 1-landmark solver (4.7 × 10
−4

J), despite the

landmark shown here being the stiffest substructure with 12 bars.

sequence generated by our algorithm. Planning a sequence that con-

siders both collision and structural deformation could be a promis-

ing future work, which could use the landmarks generated by our

method to reduce search space.

Fifth, in our MR-assisted assembly prototype, we found that the

deformations in the real structure exceeded the deformations pre-

dicted by our FEA model, due to the fabrication tolerances in the

joints and small discrepancies between the model parameters and

the material properties of the wooden beams we used. Improving

our model through fine-tuning of the material parameters would be

interesting for future work, especially for work that includes robotic

assembly agents.

Lastly, we would like to extend our formulation to other assembly

processes, such as building masonry shells using rigid blocks [Deuss

et al. 2014] and tensegrity structures [Pietroni et al. 2017].
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