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Fig. 1. Plastic forming with solid shell elements. Left : a metal beam is pressed into a rigid mold, experiencing bending stresses that lead to plastic deformations,
and released. Right : quadratic-through-the-thickness (Q3T) elements closely track the reference solution, whereas linear prisms predict excessive spring-back.

We introduce an approach for simulating elastoplastic surfaces using qua-
dratic through-the-thickness (Q3T) solid shell elements. Modeling the me-
chanics of deformable surfaces has been a cornerstone of graphics research
for decades. Although thin shell models are suitable for many materials
and applications, simulation-based planning of plastic forming processes
requires attention to deformation in the thickness direction. Building on
recent advances in the graphics community, we explore solid shell elements
for modeling elastoplastic surfaces. Linear prism elements perform well for
compressible materials such as thick cloth and foam mats. However, due
to their inability to capture non-constant strain in the thickness direction,
they suffer from severe locking artifacts when applied to incompressible and
plastic materials. Q3T elements address this limitation with a minimal yet
effective modification to linear prisms, resulting in significantly improved
performance with only a moderate increase in computational cost. Through
various examples, we demonstrate that Q3T elements closely match the qual-
itative behavior of reference simulations and provide accurate quantitative
results compared to real-world deep drawing experiments.
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1 Introduction
Modeling the mechanical behavior of deformable surfaces made
from fabric, rubber, or metal has been a core focus of graphics
research since many decades. A two-dimensional treatment in terms
of thin shell mechanics is a suitable and effective choice for many
materials and applications. In this work, however, we focus on
elastoplastic surfaces that require attention to deformation in the
thickness direction.

Deep drawing is a prime example for elastoplastic surfaces where
thin sheets of metal are shaped into desired forms. During this pro-
cess, the elastoplastic sheets undergo extreme and irreversible defor-
mations in both in-plane and thickness directions. Simulation-based
planning of such plastic forming processes is highly challenging.
Accurately capturing the transfer between elastic and plastic de-
formations is crucial to predict post-forming equilibrium shapes.
Moreover, predicting deformations in the thickness direction is es-
sential for preventing excessive thinning and rupture. Since thin
shell elements are inherently unable to model these effects, volumet-
ric finite element simulations with high-resolution meshes remain
the gold standard in this context. However, the computational costs
of this approach are often substantial.

An efficient alternative to generic finite element simulations is to
use solid shell elements. These elements are constructed by extrud-
ing triangles or quadrilaterals along their normal direction, thus
defining thin volumetric elements. Bending is captured as through-
the-thickness variation of in-plane strains that induce both tensile
and compressive stresses. Unlike thin shell models, solid shell ele-
ments capture deformation through-the-thickness, and they inte-
grate seamlessly with well-established 3D elastoplastic constitutive
laws. Recent work from the graphics community has shown that
linear prism elements are an efficient choice for design and anima-
tion of thick sheet materials [Chen et al. 2023; Montes et al. 2023].
Unfortunately, when applied to incompressible materials and plastic
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deformations, linear prisms exhibit severe locking artefacts, making
them virtually unusable in this context.

In this work, we propose a minimal modification of linear prisms
that resolves locking artifacts. As shown in previous work [Haupt-
mann and Schweizerhof 1998; Sansour 1995], the poor performance
of linear prisms is due to their inability to capture non-constant
strain in the thickness direction. This observation motivates replac-
ing the linear displacement interpolation in the thickness direction
with a quadratic one while keeping the in-plane approximation un-
changed [Harnau and Schweizerhof 2002]. We follow this strategy
and add displacement degrees of freedom to the mid-surface of a
linear prism element to obtain a quadratic through-the-thickness
(Q3T) element. As we show through a range of examples, Q3T el-
ements enjoy vastly improved performance with only moderate
increase in computation cost. Unlike linear prisms, Q3T elements
faithfully track the qualitative behavior of reference solutions for
large deformations of incompressible and plastic sheet materials. We
furthermore demonstrate that these elements offer good quantitative
accuracy in comparison to real-world deep drawing experiments.

2 Related Work
Thin Shells in Graphics. Modeling elastic surfaces has been a core

focus of graphics for almost four decades [Terzopoulos et al. 1987].
Arguably the most widely used class of bending models are based on
discretizations of the shape operator [Bridson et al. 2003; Gingold
et al. 2004; Grinspun et al. 2003, 2006]. Cubic shells [Garg et al. 2007]
simplify nonlinear bending models to a low-degree polynomial that
can be evaluated efficiently, albeit at reduced accuracy. Quadratic
approximations [Bergou et al. 2006; Volino andMagnenat-Thalmann
2006] simplify evenmore but offer constant Hessianwith guaranteed
positive-definiteness, helping both stability and speed.

Instead of using piece-wise linear discretizations, another line of
work has investigated the use of higher-order finite-elements for
thin shell mechanics [Cirak and Ortiz 2001; Cirak et al. 2000; Guo
et al. 2018; Le et al. 2023; Thomaszewski et al. 2006].
Beyond purely elastic bending, extensions of shell models to-

wards various effects have been explored including viscosity [Batty
and Bridson 2008], plasticity [Chen et al. 2018], sound [Chadwick
and James 2011], magnetic effects [Chen et al. 2022], interaction
with sharp objects [Weidner et al. 2018], and coupling with rods
[Pérez et al. 2017]. Another line of research has investigated refine-
ment methods such as to mitigate the impact of discretization on
simulations with smooth folds [Narain et al. 2012], sharp creases
[Narain et al. 2013a], wrinkling [Chen et al. 2021; Rémillard and Kry
2013], fracture patterns [Pfaff et al. 2014] and multi-layer thin plates
[Busaryev et al. 2013]. Extensive research has also been devoted to
the accurate modeling of thin shell material properties [Miguel et al.
2012; Wang et al. 2011; Wen and Barbič 2023].

While these existing models for deformable surfaces cover a large
range of effects and phenomena, none of them account for through-
the-thickness deformations, which is the focus of our work.

Plasticity. Modeling elastoplastic materials has a comparatively
long history in graphics [O’Brien 2002; Terzopoulos and Fleischer
1988]. As a conceptual connection to incompressibility, the plastic

deformations observed in real-world materials are often purely de-
viatoric, i.e., volume-preserving. Plasticity often goes along with
large distortions that mandate mesh adaptation strategies to main-
tain well-shaped elements [Bargteil et al. 2007; Ferguson et al. 2023;
Wicke et al. 2010; Wojtan et al. 2009]. Avoiding re-meshing alto-
gether, point-based methods [Gerszewski et al. 2009; Jones et al.
2014; Müller et al. 2004], including variants based on SPH [Gissler
et al. 2020] and MPM [Fang et al. 2019; Klár et al. 2016], are an at-
tractive alternative for simulating large elastoplastic deformations.
While the above methods target volumetric materials, few works
explicitly consider elastoplastic surfaces. A notable exception is the
work by Narain et al. [2013b] and Chen et al. [2018]. However, their
surface-based formulations cannot account for deformation in the
thickness direction, which is the focus of our work.

Solid Shells. Solid shells have been introduced in the mechan-
ics community as an alternative to surface-based thin shell ele-
ments [Parisch 1995]. Instead of a mid-surface patch, solid shell
elements represent a volumetric region that can extend through
the entire thickness of the shell. While this requires more nodes
in general, solid shell elements avoid non-kinematic variables (ro-
tations, tangents) and reduce requirements on continuity across
elements [Hauptmann and Schweizerhof 1998]. There are many
options for constructing solid shell elements, including the widely
used triangular and quadrilateral prisms with linear and quadratic
interpolation functions [Hauptmann et al. 2000]. Solid shells can
serve as a replacement for thin shell elements, but they are most
attractive for applications that involve through-the-thickness de-
formations and stresses [Hauptmann et al. 2001]. Recent work by
Montes et al. [2023] and Chen et al. [2023] from the graphics com-
munity has shown the potential of low-order solid shell elements for
compressible materials such as cloth and foam. For incompressible
materials and plastic deformations, however, linear prism elements
show severe locking artefacts that render them virtually unusable
for applications [Doll et al. 2000].

Locking. Locking is a phenomenon that manifests as finite ele-
ment solutions converging very slowly under refinement. For shells,
locking can be categorized into shear locking and Poisson locking
[Babuška and Suri 1992; Zienkiewicz et al. 2013]. Shear locking
refers to the inability of low-order elements to model pure states
of bending, which introduces parasitic shear strain. Poisson lock-
ing occurs for elements with low-order through-the-thickness in-
terpolation and is especially severe for thin, quasi-incompressible
materials. A plethora of strategies aiming to alleviate locking have
been presented, including reduced integration [Arnold and Brezzi
1997], enhanced assumed strain (EAS) [Simo and Rifai 1990], and
assumed natural strain (ANS) [Hughes and Tezduyar 1981]. Locking
has likewise been investigated in graphics. For example, Irving et al.
[2007] use nodal averaging when evaluating pressure constraints
to avoid Poisson locking for incompressible solids. With a similar
goal in mind, Francu et al. [2021] obtain locking-free tetrahedra by
augmenting nodes with an additional degree of freedom. English
and Bridson [2008] resorted to Crouzeix-Raviart elements such as
to avoid shear locking in cloth simulation.
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We experimentally assess the practical impact of locking in solid
shell elementswhen applied to incompressiblematerials and volume-
preserving plastic deformations. Previous work has shown that the
main source of locking observed in low-order solid shell elements is
their linear interpolation in the thickness direction [Hauptmann and
Schweizerhof 1998]. Solutions to this problem have been proposed
based on EAS and ANS methods or by increasing the interpolation
order in the thickness direction with additional variables [Harnau
and Schweizerhof 2002; Sansour 1995]. We follow the second strat-
egy and demonstrate its effectiveness for triangular prism solid shell
elements. By replacing the linear interpolation in the thickness di-
rection with a quadratic one, Q3T elements prevent locking artefacts
while avoiding the steep increase in cost and complexity associated
with fully quadratic or higher-order elements.

3 Method
We start by describing our approach for generating and simulating
elastoplastic solid shells. We then review linear prism elements and
analyze their limitations for incompressible and plastic materials.
We show that linear prismatic elements suffer from the same limi-
tations as linear quadrilateral solid shells [Hauptmann et al. 2001].
These observations motivate our quadratic through-the-thickness
prismatic element (Q3T), which we introduce subsequently.

3.1 Elastoplastic Solid Shells
We generate solid shells with prismatic elements given a triangle
mesh as input. This input triangle mesh determines the mid-surface
of the solid shell and we denote its vertices as x𝑚 . We create two
offset surfaces by extruding mid-surface nodes along their corre-
sponding vertex normal. The vertices of the resulting top and bottom
surfaces are denoted as x𝑡 and x𝑏 , respectively. From these triangle
meshes, we define a prismatic solid shell element for each face of the
input mesh. For each such element, we interpolate nodal positions
to obtain a continuous geometry field as

x(𝑢, 𝑣,𝑤) =
∑︁
𝑖

𝑁𝑖 (𝑢, 𝑣,𝑤)x𝑖 , (1)

where 𝑁𝑖 : (𝑢, 𝑣,𝑤) → R are piece-wise polynomial basis functions.
The parametric coordinates 𝑢, 𝑣 and𝑤 correspond to in-plane and
thickness directions, respectively. With this generic interpolation
scheme, the deformation gradient follows in the usual way as

F(𝑢, 𝑣,𝑤) = 𝜕x
𝜕X

=
∑︁
𝑖

∇𝑁𝑖x𝑇𝑖 . (2)

The stored elastic energy of a deformed solid shell is obtained by
integrating the elastic energy density Ψ(F) across its domain Ω,

𝑊el =

∫
Ω
Ψ(F(𝑢, 𝑣,𝑤)) 𝑑𝑉 =

∑︁
𝑒

∫
Ω𝑒

Ψ(F(𝑢, 𝑣,𝑤)) 𝑑𝑉 , (3)

where Ω𝑒 denote per-element parameteric domains. Evaluating the
corresponding per-element integrals requires numerical quadrature,
which amounts to a weighted sum of energy densities evaluated
at a set of quadrature points p𝑖 = (𝑢𝑖 , 𝑣𝑖 ,𝑤𝑖 ) with corresponding
weights 𝛼𝑖 .

Simulation. Static and dynamic equilibrium configurations of
elastoplastic solid shells are computed by minimizing a general-
ized potential including elasticity, plasticity, and inertia terms. For
dynamic problems, we use the optimization-based formulation of
implicit Euler [Martin et al. 2011].

For plastic materials, the deformation gradient is decomposed into
elastic and plastic components as F = FelFpl. Plastic deformation
gradients are stored at quadrature points and updated according to
plastic flow rules. We follow Li et al. [2022] to likewise incorporate
plasticity in variational form. Please see the supplemental material
for details.

3.2 Linear Prism Elements
Linear prism elements are constructed from two corresponding
triangle elements from the top and bottom surface of the solid shell,
see Fig. 2, left. The shape functions take the form

𝑁1 (𝑢, 𝑣) = 𝑢, 𝑁2 (𝑢, 𝑣) = 𝑣, 𝑁3 (𝑢, 𝑣) = 1 − 𝑢 − 𝑣 , (4)

and the corresponding interpolation is

x(𝑢, 𝑣) =
∑︁
𝑖

𝑁𝑖 (𝑢, 𝑣)x𝑖 , (5)

where 0 ≤ 𝑢 ≤ 1 and 0 ≤ 𝑣 ≤ 1 − 𝑢. We then interpolate linearly
through the thickness to obtain a linear geometry field as

x(𝑢, 𝑣,𝑤) = 1
2
(𝑤 − 1)x𝑏 (𝑢, 𝑣) +

1
2
(𝑤 + 1)x𝑡 (𝑢, 𝑣) , (6)

with −1 ≤ 𝑤 ≤ 1. Linear prisms have a total of 6 nodes with 18
DoFs.

Analysis. As demonstrated by Montes et al. [2023] and Chen et
al. [2023], linear prism elements can produce acceptable accuracy
for compressible sheet materials such as thick cloth and foam mats.
With increasing Poisson ratio, however, linear prisms show an ex-
tremely stiff bending response, rendering them virtually useless
even for qualitative purposes. As we show in Sec. 4, this spurious
stiffening effect manifests across numerous situations: linear prisms
fail to predict wrinkling for in-plane tension (Fig. 4), they produce
far too little deflection under self weight (Fig. 5), and they lead to
excessive spring-back in plastic forming (Figs. 1, 6, 13). We note that
this effect occurs independently of the quadrature rule. In particu-
lar, the selective reduced integration rule advocated by Chen et al.
[2023] does not resolve these problems.

Fig. 2. Illustration of linear, quadratic through-the-thickness (Q3T ), and
fully quadratic prism elements (from left to right). Linear prisms have only
6 nodes and two integration points, Q3T elements have 9 nodes and 3
integration points, whereas fully quadratic prisms have 18 nodes and 21
integration points.
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All of the above failure cases can be attributed to the inability of
linear prisms to model variations in strain in the thickness direction
[Hauptmann et al. 2001]. To see this, consider a simple example in
which a square metal sheet is bent into a state of constant uniaxial
curvature (Fig. 3). At the top surface, the in-plane deformation 𝜀𝑥𝑥
induced through bending is tensile (positive) whereas it is compres-
sive (negative) at the bottom surface. Depending on the material’s
Poisson ratio, these axial strains will generate compensating in-
plane strains 𝜀𝑦𝑦 and thickness strains 𝜀𝑧𝑧 . Both strains must have
opposite sign to the imposed axial strain, i.e., compressive at the top
and tensile at the bottom surface. While linear prisms can model
in-plane strain 𝜀𝑦𝑦 that varies through the thickness, they cannot
produce varying thickness strain 𝜀𝑧𝑧 since the geometry interpo-
lation is linear in the thickness direction. Consequently, all strain
compensation must come from the in-plane component 𝜀𝑦𝑦 , leading
to a much stiffer response.
These observations explain why elements with constant strain

through-the-thickness perform poorly for nearly incompressible
elasticity and plasticity—and they motivate a modified version as
explained next.

3.3 Q3T Prism Elements
Previous analysis has shown that the inability of linear prisms to
produce non-constant strain in the thickness direction is the main
source of inaccuracy [Harnau and Schweizerhof 2002; Hauptmann
et al. 2001; Sansour 1995]. A natural option for improving accuracy
is thus to increase the degree of interpolation through the thickness
[Hauptmann et al. 2001]. As can be seen from the construction of lin-
ear prism elements, solid shell elements allow for separate in-plane
and through-the-thickness interpolation schemes. We leverage this
freedom to define a triangular prismatic element that uses linear
in-plane but quadratic through-the-thickness interpolation. To this
end, we augment the linear prism with three additional nodes x𝑚
at the mid-surface (i.e., at𝑤 = 0). The corresponding through-the-
thickness interpolation follows as

x(𝑢, 𝑣,𝑤) = 1
2
𝑤 (𝑤−1)x𝑏 (𝑢, 𝑣)+(1−𝑤)2x𝑚 (𝑢, 𝑣)+1

2
𝑤 (𝑤+1)x𝑡 (𝑢, 𝑣) .

The resulting quadratic through-the-thickness element, or Q3T for
short, is defined by 9 nodes with a total of 27 degrees of freedom.
As we show in the following section, the linearly varying thickness

Fig. 3. Distribution of strain through the thickness as a result of cylindrical
bending for materials with high Poisson’s ratios.

strain of Q3T elements leads to vastly improved accuracy with only
a moderate increase in computational cost.

4 Results
We perform an extensive analysis of our Q3T solid shell element
and compare its performance to linear prisms. In the first part, we
analyze both qualitative and quantitative performance on a set of
simple experiments. In the second part, we present more complex
examples that are representative of real-world use cases.

Reference Solutions. Even simple experiments involving plastic
deformations generally have no closed-form solution. We therefore
compare to reference solutions obtained using high-resolution sim-
ulations with fully quadratic prism elements (see Fig. 2, right). We
selected quadratic prisms since they converged to the same solution
as (even) higher-order elements in our experiments. See also Fig. 8.

4.1 Basic Analysis
In-plane Stretching. In our first experiment, we evaluate the per-

formance of linear prisms and Q3T elements for pure stretching de-
formation. To this end, we clamp a square plate (70cm×70cm×0.7cm)
at one edge and subject it to a uniform in-plane load perpendicu-
lar to the clamped edge. To assess potential locking artefacts, we
perform the test with different Poisson ratios. As can be seen in Fig.
4, all elements perform well for 𝜈 = 0, which leads to simple uni-
axial stretching without any normal displacement. For 𝜈 = 0.3, all
elements properly capture the lateral displacements of the plate as
a result of the Poisson’s ratio. However, as the material approaches
the incompressible limit, only Q3T prisms are able to capture the
low-frequency buckling deformations seen in the reference solution,
whereas linear prisms lead to a planar state with much larger in-
plane stresses. We note that the solution obtained with linear prisms
is at a stable equilibrium point as the Hessian is positive definite. We
conjecture that, due their inability to capture pure states of bending,
out-of-plane buckling would lead to even higher stresses for the
linear prisms.

Cantilever Beam. In our second benchmark, we test the perfor-
mance of linear prisms and Q3T elements under pure bending loads.
To this end, we consider a rectangular cantilever beam (70cm ×
7cm × 0.7cm) clamped at one end and subjected to a uniform load
in the normal direction. We compare results for different mesh res-
olutions to the reference solution. As can be seen in Fig. 5, both
elements perform qualitatively well for low Poisson’s ratios. For
high Poisson’s ratios, however, linear prisms become extremely stiff,
rendering them unusable even for qualitative purposes. By contrast,
Q3T elements are much more accurate and produce deflections close
to the reference solution. The remarkable accuracy of Q3T elements
in this test is explained by their ability to represent linear strain
variations in the thickness direction (Fig. 3), which are vital for pure
bending deformations.

Plastic Bending. Plastic deformations are driven by the deviatoric
strain tensor, which can be expressed as Hdev = H − 1

3 tr(H), where
H is the Hencky strain tensor (see supplemental material). Similar to
the cantilever beam example, linear prisms tend to overestimate the
trace of the strain tensor for high Poisson’s ratio since they can only
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model constant strain in the thickness direction. This, in turn, leads
to an underestimation of the deviatoric strain and, consequently,
plastic deformation.

We test this hypothesis by cylindrically bending an elastoplastic
beam with a steel-like material beyond its elastic regime. We use
a Young’s modulus of 𝐸 = 200 GPa, a Poisson’s ratio of 𝜈 = 0.33,

Linear Q3T Reference

Strain Norm

0 0.7

Fig. 4. Comparison of solid shell elements on a square plate (70cm× 70cm×
0.7cm) that is stretched using uniform in-plane loading. Both element types
properly capture stretching for moderate Poisson ratios (top and middle
row). For almost incompressible materials (bottom row), only Q3T elements
correctly capture the out-of-plane buckling observed in the reference solu-
tion.

Linear Q3T Reference

Deflection (cm)

0 -17.5

Fig. 5. Deflections of a uniformly-loaded cantilever plate for linear prisms
and Q3T elements using different Poisson ratios. Linear prisms struggle
increasingly as Poisson’s ratio approaches the incompressible limit.

Linear Q3T Reference

Residual von Mises Stress (GPa)

0 0.16

    Elastic
Deformation

Release

Fig. 6. Plastic deformation of a bent beam after release. Linear prisms
underestimate plastic deformations compared to the reference solution. The
residual stress obtained with our Q3T elements is close to the reference
solution.

and a yield stress of 𝝈𝑦 = 16 MPa. After the deforming force is
removed, we study the residual deformation. As can be seen from
Fig. 6, linear prisms do not retain as much plastic deformation as
the reference solution. By contrast, Q3T elements predict residual
stresses similar to the reference solution, with only minor deviations
due to parasitic shear stress.

Performance. To assess the computational performance of Q3T
elements, we compare timings for factorizing the Hessian of the
elastic energy for the cantilever beam example show in Fig. 5. As can
be seen from the plot shown in Fig. 7 (left), linear prisms are roughly
twice as fast for the same number of elements. Nevertheless, Q3T
elements are several times faster than fully quadratic prisms. When
comparing computation times for the same number of degrees of
freedom (Fig. 7, right), Q3T elements are roughly 40% slower than
linear prisms, but 30% faster than quadratic prisms. To put these
timings in perspective, it should be emphasized that Q3T elements
tend to produce the same qualitative behavior as fully quadratic
prisms (for equal numbers of nodes), whereas linear prisms exhibit

Fig. 7. Cholesky decomposition of the Hessian of linear and Q3T elements
compared to the reference solution for the cantilever beam example using
the same number of elements (left) and same number of nodes (right).
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severe locking artefacts. See also Table 1 for timings and statistics
for all examples presented in this section.

Convergence under Refinement. Linear elements are known to
lock for materials with high Poisson’s ratios and pure bending de-
formations. To assess this behavior in Q3T elements, we study their
convergence under refinement against linear and fully quadratic
elements on a clamped cantilever subjected to uniform loading. We
use a single layer of elements and a Poisson’s ratio of 𝜈 = 0.499. As
can be seen in Fig. 8, fully linear elements fail to converge to the
reference solution due to Poisson locking. In contrast, Q3T elements
reach an acceptable solution for a sufficiently dense discretization,
although convergence is slower compared to higher-order elements.

4.2 Applications
In the following paragraphs, we present a series of examples that
highlight different use cases of elastoplastic surfaces modeled with
solid shell elements.

Plastic Forming. To demonstrate the importance of accurate plas-
tic deformations on a practical use case, we simulate a sheet metal
forming process. As shown in Fig. 1, linear elements are unable
to accurately capture plastic deformations, leading to significant
spring-back after release. By contrast, Q3T elements closely match
the post-release state predicted by the reference solution1.
As a second use case, we study the performance of solid shell

elements in simulating the manufacturing process for a custom
cookie cutter. The cookie cutter is made from a circular aluminum
strip that is punched into a die with the desired shape. As can be seen
in Fig. 13, linear prisms shear excessively towards the boundaries
of the strip such as to release volumetric stress. Q3T elements, in
contrast, properly capture the plastic deformations and thus avoid
excessive shearing and spring-back.

Deep Drawing. We furthermore test the ability of Q3T elements
to capture very large plastic deformations by simulating the deep
drawing process of a plastic cup. To validate our simulations, we
replicate the setup from Coër et al. [2018], consisting of a punch, a
1Using again a high-resolution simulation with fully quadratic elements.

Fig. 8. Convergence under refinement for a cantilever beam simulated with
one layer of elements. The linear-log plot shows comparisons between linear
prisms, Q3T elements, quadratic prisms (reference), and quartic prisms.

blank holder, and a die as shown in Fig. 9. For details on the setup
please refer to the original paper. To simulate contact, we model
the punch, blank holder, and die using smooth signed distance func-
tions2. For every vertex of the blank mesh, we evaluate the distance
functions and penalize negative values. During the deep-drawing
process, radial cross-sections of the blank must slide through the
radius of the die as it deforms. To accurately capture this behavior,
we follow a strategy similar to Coër et al. [2018] and discretize the
blank such that the distance between neigboring vertices is less
than 0.5mm. The punch performs a vertical translation through
the die, deforming a 1mm thick metal blank, which is furthermore
constrained by the walls of the die. The blank holder presses the
boundary of the blank against the die. Without the blank holder,
the cup would wrinkle at the boundary, see Fig. 12.
The deep-drawing process can be structured into three stages

(see Fig. 10). First, the blank is shaped to conform to the rim of the
die. During this stage, the blank experiences a slight thinning at
the rim due to bending. After the top surface of the cup has been
formed, the bowl of the cup is shaped. In this second stage, the blank
is subjected to compressive stresses that lead to thickening as it is
pushed through the die. In the final thinning stage, the thickened
blank must pass through the gap between the punch and the die,
which reduces its thickness to the gap size.

During the entire process, the volume of the blank must be pre-
served. Due to the inability of linear prisms to model non-constant
strain in the thickness direction, simulation with this element leads
to failure (Fig. 11). Q3T elements are not only able to properly cap-
ture the deformation of the cup, but also produce forces with similar
accuracy as the reference solution in comparison to experimental
data (Fig. 14).

2See also https://iquilezles.org/articles/distfunctions/

Fig. 9. Deep drawing of a plastic cup. The setup consists of a metal blank, a
punch (yellow), a die (red-top) and a blank holder (red-bottom).

Fig. 10. Thickness variations of the plastic cup during the forming process.
From left to right: undeformed blank, thinning on the rim of the cup, thick-
nening due to compression, and final cup after thinning.
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Table 1. Summary of statistics for all our experiments.

Example # Nodes # Elements Avg. time/iter [s] Figure

Cup (Linear) 27100 26718 0.812 Fig. 12-left
Cup (Q3T ) 40650 26718 1.887 Fig. 12-center
Cup (Reference) 41800 6870 2.525 Fig. 12-right
Beam (Linear) 4814 4504 0.184 Fig. 1-left
Beam (Q3T ) 7221 4504 0.298 Fig. 1-center
Beam (Reference) 7221 1126 0.372 Fig. 1-right
Cookie Cutter (Linear) 5762 5311 0.186 Fig. 13-b-left
Cookie Cutter (Q3T ) 8643 5311 0.306 Fig. 13-b-right

Fig. 11. Left : Simulating the plastic cup with linear elements results in
failure. Due to their inability to model linear strains through the thickness,
they shear instead. Right : Q3T elements properly capture the deformation
of the cup.

Fig. 12. Simulation of the plastic cup without the support of the blank
holder. Under these conditions, the cup wrinkles due to the compressive
forces exerted by the die. Q3T (center) elements produce similar wrinkling
patterns as the reference solution (right), whereas linear prisms (left) produce
qualitatively different results with excessive shearing (inset).

Fig. 13. Plastic forming of a star-shaped cookie cutter. a) A circular alu-
minum strip is pressed into a star-shaped die by 5 punches. b) The resulting
strip after deformation using linear (left) and Q3T (right) elements. linear
elements produce excessive shearing towards the boundaries of the strip,
while Q3T elements properly capture plastic bending deformation.

5 Conclusions
We explored a solid shells with triangular prisms elements for ef-
ficient modeling of elastoplastic surfaces. We see the primary ap-
peal of Q3T elements for applications where a triangle mesh of
sufficiently high resolution is provided as input and coarsening is
undesirable. While fully quadratic and quartic solid shell elements
would obviously provide more accurate solutions, our Q3T elements
will be substantially faster while avoiding the unacceptable artefacts
of linear prisms.

5.1 Limitations and Future Work
For the same number of nodes, Q3T elements significantly reduce
locking compared to linear prisms. They also lead to much less over-
head than fully quadratic elements and are therefore an attractive
option for both animation and simulation-based planning. However,
convergence under refinement is slower than for fully quadratic
elements. If ultimate accuracy is the top priority, fully quadratic
elements are likely preferable.
Our simple examples already indicate that deep drawing is a

highly complex process where small variations in parameters can
lead to large changes in the resulting product. While we have only
considered forward simulation in this work, using Q3T elements
for inverse design of elastoplastic forming is an exciting direction
for future work.

Fig. 14. Forces measured at the punch for the simulation of the plastic cup.
Q3T elements produce a similar force output to the reference solution and
real-world experiments [Coër et al. 2018].
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Solid shell elements directly support 3D constitutive models,
which simplifies the simulation of phenomena such as plasticity
and growth, but also fracture and crack propagation. These capabil-
ities seem an ideal basis for modeling (and optimizing) the complex
fabrication process of ceramic shells [Hergel et al. 2019], including
extrusion-based manufacturing, moisture transport and drying, as
well as firing.
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