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Abstract— A variety of control tasks such as inverse kine-
matics (IK), trajectory optimization (TO), and model predictive
control (MPC) are commonly formulated as energy minimiza-
tion problems. Numerical solutions to such problems are well-
established. However, these are often too slow to be used directly
in real-time applications. The alternative is to learn solution
manifolds for control problems in an offline stage. Although this
distillation process can be trivially formulated as a behavioral
cloning (BC) problem, our experiments highlight a number
of significant shortcomings arising due to incompatible local
minima, interpolation artifacts, and insufficient coverage of
the state space. In this paper, we propose an alternative to
BC that is efficient and numerically robust. We formulate
the learning of solution manifolds as a minimization of the
energy terms of a control objective integrated over the space
of problems of interest. We minimize this energy integral with
a novel method that combines Monte Carlo-inspired adaptive
sampling strategies with the derivatives used to solve individual
instances of the control task. We evaluate the performance of
our formulation on a series of robotic control problems of
increasing complexity, and we highlight its benefits through
comparisons against traditional methods such as behavioral
cloning and Dataset aggregation (Dagger).

I. INTRODUCTION

Optimization-based control is one of the key components
in the motion pipeline of some of the most advanced robots
of today [1], [2], [3].

It can treat many highly nonlinear problems ranging from
simple inverse kinematics to full-blown trajectory optimiza-
tion. However, optimization algorithms are still generally
too demanding for real-time applications. These applications
require fast reaction times to input changes, and even simply
changing an IK target for example, would require a slow re-
optimization.

Our goal is to make optimization-based control instanta-
neous using machine learning. One possible approach is to
first generate a dataset of solutions for different inputs using
any optimization algorithm, and then train a neural network
via supervised learning. In other words, optimal solutions
can be distilled into high capacity functions approximators
that can be queried in real time. This is in fact a common
approach known as behavioral cloning (BC). However, BC
is known to produce policies that generalize poorly in
the presence of conflicting samples in the dataset, which
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manifests as an erratic approximation landscape. This is
shown for a simple 2-link IK problem in Fig. 1. Conflicting
samples in turn are prone to happen when there are multiple
solutions for the same task, i.e. multimodality, and indeed,
almost every IK target admits two solutions (Fig 1). As an
alternative, we propose to formulate the distillation process
as the minimization of the problem objective over the set
of all inputs, simultaneously. Put differently, we minimize
the integral of the objective function over the entire input
domain. This approach does not rely on sampling solutions,
and thus is more robust and results in more consistent
solutions manifolds, as shown in Fig. 1.

In this paper, we focus on trajectory-based policies [4],
that is, policies that produce the entire sequence of actions
at once. This is in contrast to one-step policies that are
evaluated iteratively, and generate only one action at a time.
We begin by recalling first-order and second-order update
rules (Newton’s method) necessary to minimize the objective
for a single problem instance. We then show how a sample
of the inputs can be optimized in a reformulation of the
problem as a BC problem, but one that can leverage the
same first and second order information. We examine the
performance of our approach compared to standard BC,
and investigate different sampling and dataset aggregation
strategies. We then tackle multimodal objectives that might
generate conflicting data, by introducing detect-and-reject
mechanism, which exhibits smoother solution manifolds and
a better performance overall. Throughout the paper we use a
2-Link planar robot as a guiding example, and demonstrate
the generality of our method in the results section.

II. RELATED WORK

Leveraging optimization-based control to train neural net-
work policies has been of great interest for both the robotics
and the learning communities [5], [6]. Behavioral cloning, an
instance of imitation learning [4], is one of the simplest ways
to train policies, using expert demonstrations generated by
well-established optimization algorithms [7], [8]. However,
its performance can be hindered by data conflicts that often
occur due to multimodality (see e.g. [9], [10] and Fig. 1 ).

Our main focus is training trajectory policies for prob-
lems that can be formulated as one-shot decision mak-
ing problems, such as simple IK or more involved kine-
matic trajectory optimization. We ground our formulation
on gradient-based optimization of an energy function using
second order information. Other gradient-based formulations
to train policies are presented in [11], [12] in a differentiable
simulation framework, and in [13], [6] under the umbrella
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Fig. 1: Comparison of objective landscapes (Eq. 2) of a policy trained using Behavioral Cloning (BC) and our approaches.
The dataset for BC was obtained by numerically solving 500 individual instances of the IK problem for a 2-Link mechanism
with a maximum reach of 0.3m. The landscape was generated by evaluating the trained policy on 60k samples in a squared
region of 0.3m ⇥ 0.3m. The black circle denotes the sampling region for training with a radius of 0.25m. The blow-up
highlights regions with high energy values that are caused by conflicting samples, such as those denoted by A and C, where
B is their interpolated mid-point. The bottom row shows the respective state. As can be seen, the state B indeed does not
reach the target. In contrast, our sampling scheme exhibits no conflicts and generates low objectives. See the accompanying
video for a visualization of the evolution of the energy landscapes for different methods as training progresses. Note that
the elbow-shaped conflicting regions depend on the random initialization of the policy.

of guided policy search methods. However, their focus is on
training reactive one-step policies. Other approaches that are
concerned with trajectory policies include [14], [15], [16]
in the context of Motion Primitives, [17] where the policy
defines directly a trajectory distribution, [18] learns policies
that modulate trajectory generators for robot locomotion, and
[19] trains a neural network to output weighting matrices to
mix different basis functions that represent full trajectories.

As mentioned, one of the challenges arise due to multi-
modality. Generative Adversarial imitation learning (GAIL)
[20] enables learning multimodal solutions, but [21] argues
that GAIL and similar approaches still struggle with the
problem of interpolating modes. The paper also suggests that
learning one type of solutions should suffice for robotics ap-
plications, and we adopt this viewpoint in this paper as well.
Other approaches include [22] which deals with conflicts
by introducing an advantage weighted behavior model to
regularize the policy, [10] by using an adaptive auxiliary cost
weighting, and [21] by minimizing an f-divergence metric.
Our approach is to detect and remove conflicting samples
from the training set, as discussed in the following sections.

Further recent approaches that display good performance
in the presence of multimodal data are Soft-Q Imitation
Learning (SQIL) [23], which reformulates BC as an rein-
forcement learning problem by assigning rewards when the
policy matches a demonstrated action in a demonstrated
state, and Implicit Behavioral Cloning (IBC) [24], which
we discuss in the results section. Our approach can also
be interpreted as an algorithm for imitation learning using
a converging supervisor [25]. However, our focus is on
trajectory-polices in contrast to the reactive policies used in
[25]. Finally, we share the goal of accelerating optimization-
based control with [26]. But, their focus is on kinematic

planning, while we apply our method to both kinematic and
dynamic problems.

III. METHOD

In the following section we first recall the standard second-
order gradient-based approach, e.g. Newton’s method, used
to solve individual problem instances. We then formulate
the problem of learning the space of optimal solutions as
the minimization of an integrated objective over an input
domain, which can be approximated by a finite sum. While
this problem can be optimized directly, we show that it can
be solved via BC steps that use targets derived from first and
second-order information (Converging supervisor). We show
how these targets can enjoy standard optimization techniques
such as line-search or the Gauss-Newton approximation. We
conclude this section by presenting different sampling a
strategies to discretize the integration domain, and introduce
a method to detect and reject conflicting samples in a dataset.

A. Solving individual problem instances
Consider an optimal control problem of the form

ā⇤= arg min
ā

E(s̄(ā,p), ā,p), (1)

where E is an energy function, s̄ := [s1, . . . , st] and ā :=
[a0, . . . ,at�1] are the state and control trajectories, and p is
a set of input parameters. The notation s̄(ā,p) indicates that
the state trajectory depends on the actions and the inputs.
For the simple IK problem we discuss in this section, E is
defined by

E = kF(ā)� pk2 + w0kā� ārefk2 (2)

where ā represents the joint angles, p is the desired end-
effector position, F is the forward-kinematics map, and āref



serves as a regularization term with a small weight w0. Note
that p can include information about a particular initial state,
a target position, or a physical property of the system. The
action trajectory ā can be optimized with update rules, based
on gradient descent and Newton’s method:

• First order update rule

ā  � ā� ↵ā


dE(s̄(ā), ā)

dā

�
(3)

• Second order update rule

ā  � ā� ↵ā


d2E(s̄(ā), ā)

dā2

��1
dE(s̄(ā), ā)

dā

�
(4)

where we neglect p for conciseness. The terms dE(s̄(ā),ā)
dā

and d2E(s̄(ā),ā)
dā2 are the gradient and Hessian, and ↵ā is

a learning rate, which can be determined using a line
search procedure to ensure monotonic improvements. We
note that in practice, it is preferable to use the Gauss-Newton
approximation of the Hessian since it is positive definite,
which guarantees a descent direction [27], [28].

B. Learning the optimal solution space

We formulate the learning process as a minimization of
the integral of an energy function over a space of input
parameters P as follows:

✓⇤= arg min
✓

Z

P
E(s̄(⇡̄✓,p), ⇡̄✓,p) dp, (5)

where ⇡̄✓ := [a0, . . . ,at�1] is a neural network policy that
produces a one-shot sequence of actions given a set of input
parameters p and a set of weights ✓. The integral can be
approximated via Monte-Carlo integration, using a finite sum
of random samples:

✓⇤⇡ arg min
✓

1

M

MX

m=1

E(s̄(⇡̄✓,p
m), ⇡̄✓,p

m). (6)

We immediately obtain a first order update rule for the sum,

✓  � ✓ � ↵✓
1

M

MX

m=1

dE(s̄(⇡̄✓,pm), ⇡̄✓,pm)

d✓
. (7)

The summands can be evaluated using the chain-rule:

dE(s̄(⇡̄✓), ⇡̄✓,pm)

d✓
=

dE(s̄(⇡̄✓), ⇡̄✓,pm)

d⇡̄✓

d⇡̄✓

d✓
. (8)

We can interpret this optimization in the parameter space
✓ as BC by considering the supervised learning loss

L =
1

M

MX

m=1

1

2
||⇡̄m

✓ � Tm||
2

,

where ⇡̄m
✓ := ⇡̄✓(pm) and Tm is a target policy. An update

rule for ✓ that minimizes L is

✓  � ✓ � ↵L

MX

m=1

(⇡̄m
✓ � Tm)T

d⇡̄m
✓

d✓
. (9)

If we replace Tm by

Tm = ⇡̄m
✓ � ↵ā

dE(s̄(⇡̄m
✓ ), ⇡̄m

✓ )

d⇡̄m
✓

(10)

and substitute into the supervised update rule (9) we obtain

✓  � ✓ � ↵L↵a
1

M

MX

m=1

dE(s(⇡̄m
✓ ), ⇡̄m

✓ )

d⇡̄m
✓

d⇡̄m
✓

d✓
,

which matches the first-order update rule for energy mini-
mization (7) when setting ↵L appropriately. Note that while it
is counterproductive to apply a line-search procedure to (7),
we can use line-search on ↵ā to guarantee E(s̄(TM ),Tm) <
E(s̄(⇡̄m

✓ ), ⇡̄m
✓ ), which stabilizes the training process.

Taking this idea further, we define a second-order target

Tm = ⇡̄m
✓ � ↵aH

�1 dE(s̄(⇡̄m
✓ ), ⇡̄m

✓ )

d⇡̄m
✓

(11)

where H = d2E(s̄(⇡̄m
✓ ),⇡̄m

✓ )
d(⇡̄m

✓ )2 is the Hessian. Substituting the
second-order targets in (9) yields the update rule

✓  � ✓ � ↵L↵a

MX

m=1

dE(s(⇡̄m
✓ ), ⇡̄m

✓ )

d⇡̄m
✓

H
�1 d⇡̄

m
✓

d✓
. (12)

This can also be viewed as an update rule that minimizes
the weighted squared error loss.

L =
1

M

MX

m=1

1

2
(⇡̄m

✓ � Tm)TWm(⇡̄m
✓ � Tm), (13)

with Wm = H
�1. In practice, it is better to use the Gauss-

Newton approximation. Algorithm 1 presents our suggested
approach together with a sampling strategy described below.

Algorithm 1 Energy Minimization
for k = 1 to K do

Sample Mk input parameters pm

// Define converging targets
for m = 1 to Mk do

Tm = ⇡̄m
✓ � ↵aH

�1 dE(s̄(⇡̄m
✓ ),⇡̄m

✓ )
d⇡̄m

✓

T

end for
// Find non-conflicting samples
Dataset = ((p0,T0), . . . , (pNC ,TNC))
// Improvement in PS
for n = 1 to N do

✓  � ✓ � ↵L
PNC

d=1


(⇡̄d

✓ � Td)T d⇡̄d
✓

d✓

�T

end for
end for

C. Strategic Sampling for policy learning
Using (12) with a static set of samples from P , already

exhibits better behaved energy landscapes compared to BC
(Fig. 1). We attribute this to the targets being dynamic and
monotonically improving. Additionally, BC cannot resolve
conflicting data, which might be present during the entire
training process. While conflicts may still exist in dynamic



Fig. 2: Left to right; Uniform, and Poisson-Disk sampling

targets, they tend to vanish during optimization. Neverthe-
less, a fixed set of samples is still limited, and some conflicts
might remain due to multimodality of the solution space.
Indeed, the choice of samples in (6) has a significant impact
in both performance and generalization. In the following we
propose strategies to mitigate that.
Static Sampling. The samples pm are selected once and
are kept fixed. Instead of the common uniform or Gaussian
sampling, we propose to employ Poisson-disk sampling
(PDS) [29]. PDS spreads samples more evenly (Fig. 2),
which results in a better coverage and easy detection of
conflicting data as explained below.
Dynamic Sampling. There is in fact no reason to keep the
parameter sample pm fixed at every iteration. To the contrary,
resampling allows for better coverage of the input domain,
for the same computational budget. This can be viewed as
SGP with batches taken from a continuous distribution.
Incremental sampling. We can also gradually increase the
size of the input sample set. Specifically, we begin with a
seed sample that is chosen by sampling a batch of inputs
and selecting the sample that produces the lowest energy
with the default weights of the policy. We then sample again
increasing the number of samples, but keep only the ones
that are close to the seed sample. Once a maximal number
of samples is reached, we stop expending the domain.

We found that this sampling method can induce uniform
solution manifolds. We attribute such behavior to a boot-
straping effect that the overall training process presents. To
illustrate this, consider the case of a single sample. After one
iteration, the output of the policy will match the first target
that leads to a lower energy region. Using a second sample
that is close to the seed sample to query the policy is likely
to result in a target that is non-conflicting with the target of
the seed sample. In contrast to Dagger methods, we are not
aggregating samples labeled with fully optimal solutions, but
we grow a dataset of samples labeled with converging 2nd
order targets that change dynamically at every iteration.
Rejection sampling As mentioned, interpolating two con-
flicting data points and their corresponding labels leads
to high energy regions. We can encourage non-conflicting
datasets by searching and removing samples that when
averaged with their nearest neighbours result in high energy
(Fig 1). Algorithm 2 describes the process, which relies on a
rejection measure D. The measure can be the energy itself,
but for interpretability, it can also be any other function that
describes discrepancy between two averaged samples. For
the IK examples we used the position error as a metric,

which allowed us to set the threshold ✏ in an intuitive way.
Furthermore, using PDS we can compute the Poisson disk
radius, which denotes half the distance between the closest
pair of samples, to set the search radius r in Algorithm 2
equals to twice the Poisson disk radius.

Algorithm 2 Detect and reject conflicts

Input: Dataset = ((p0,T0), . . . , (pM ,TM ))
for m = 0 to M do

Find neighbours of pm within a radius of r
Interpolate all neighbours to get pmavg

Interpolate associated targets Tmavg

Evaluate and Store metric Dm(pmavg ,Tmavg )
end for
Compute average Dmavg

for m = 0 to M do
if Dm > Dmavg + ✏ then

Reject sample m and all its neighbouring samples.
end if

end for

Note that for the Dataset in Algorithm 2, Tm is a con-
verging target and not a final solution obtained by performing
K steps of energy minimization. In practice, we apply this
rejection mechanism at every iteration once the targets Tm

have been updated, as noted in Algorithm 1, which result in
a uniform energy landscape (Fig. 1).

To illustrate the effectiveness of the conflict detection
mechanism, we applied Algorithm 2 on testing sets with
different sizes, for a policy trained using our method with
static sampling for the 2-Link IK problem. Figure 3 shows
how even for narrow regions in the space of input parameters,
we can detect conflicting data using a relatively sparse
number of samples, which we consider an important feature
as sampling a higher dimensional space has a sparser nature.
Furthermore, notice that samples around the origin are also
highlighted as conflicting samples, which is reasonable as
there exist infinite solutions to the IK problem for the origin.

IV. EXPERIMENTAL SETUPS

In this section we describe in more detail the series of
kinematic problems that we used to evaluate our approach.
Details concerning the network architectures that we used
are presented in Appendix VI-B.
Planar IK for serial n-link mechanisms:
The goal for this family of problems is to learn the IK
solutions of planar serial mechanisms with different number
of links (Fig. 4, top row). The inputs p to the network are
2D end effector targets, and the output is a set of n joint
angles ⇡̄✓(p). This experiment shows the performance on
increasingly complex systems. Note that as the number of
link n increases, so does the dimensionality of possible IK
solutions, which in turn increases the chances for conflicts.

Considering the iterative nature of the optimization ap-
proach, we denote the current output of the policy as ⇡̄✓i(p).



Fig. 3: Top row: Detecting conflicts using different testing set sizes (512, 256, 128, 64, 32) for the energy landscapes
of policies trained using our method with static samples. Purple and cyan markers denote conflicting and non-conflicting
samples respectively. Bottom row: Position error of the samples averaged with the neighbours within twice the PSD radius.
Horizontal axis enumerates samples in the testing set. The red line is the average test error of the interpolated samples.

Fig. 4: Left to right: Planar IK for n-link serial robots n = 2 to 5. IK for UR5, Kinematic TO for UR5

The energy function is then:

E(s, ⇡̄✓i(p),p) = w0||s0 � sPos(⇡̄✓i(p))||2 +

w1||⇡̄✓i(p)� aref ||2 + w2||⇡̄✓i(p)� ⇡̄✓i�1(p)||2

where sPos(⇡̄✓i(p)) represents the Forward Kinematics
mapping from joint angles ⇡̄✓i(p) to Cartesian coordinates
sPos, and aref is a reference set of joint angles.
IK for UR5 serial robot with self collision:
Here we consider a UR5 robot, with a fixed gripper orien-
tation pointing downwards, and a collision avoidance term
following [30] (see Appendix VI-A). The inputs are 3D
Cartesian target and the outputs are sets of 6 joint angles.
The energy function is then:

E(s, ⇡̄✓i(p),p) = Ejoint limits(ai) + Ecollision(ai) +

w0||⇡̄✓i(p)� aref ||2 + w1||⇡̄✓i(p)� ⇡̄✓i�1(p)||2 +

w2||s0�sPos(⇡̄✓i(p))||2 + w3||sRot0�sRot(⇡̄✓i(p))||2

Kinematic trajectory optimization:
Here we learn feasible trajectories that travel from one
point to another. As above, the gripper orientation remains
fixed, and we include additional objectives to ensure the
smoothness and feasibility of the trajectory. In this case, the
one-shot policy ⇡̄✓i(p) is defined as a sequence of joint
angles aj , that is ⇡̄✓i(p) = [aT

0 . . .aT
t�1]

T . Moreover, the

input parameters p = [aT
ref sTPost

]T contain a set of initial
joint angles aT

ref that describe the initial robot configuration
and serve also as a regularizer state, and sPost a target
Cartesian position. The energy function is then:

E(s, ⇡̄✓i(p),p) = Efeasibility(s, ⇡̄✓i(p),p) +

Esmoothness(s, ⇡̄✓i(p),p) + Ecollision(s, ⇡̄✓i(p),p) +

w0||sPost � sPos(a0)||2 + w1||sRott � sRot(a0)||2 +

w2

t�1X

j=0

||aj � aref ||2 + w3||⇡̄✓i(p)� ⇡̄✓i�1(p)||2

The objectives Efeasibility , Esmoothness, Ecollision, pre-
sented in more detail in Appendix VI-A, encourage the
feasibility in terms of joint limits at the position, velocity,
acceleration, and jerk levels, the smoothness of the control
trajectory in terms of small velocities, accelerations and
jerks, and the feasibility in terms of collisions.

V. RESULTS

We evaluate the performance of our method with different
sampling strategies against BC and Dagger. For the sake
of interpretability and despite the fact that we minimize
energy functions that weight different objectives, we report
the average position error for the different training methods
that we compare (Figure 5). We used training and testing sets
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Fig. 5: Comparison of position error on a testing set for different training methods. Testing sets for the planar n-Link
problems and the UR5 problems contained 500 and 2000 samples respectively. (For clarity we only plot the upper side of
the shaded region that represents the standard deviation).

(a) (b) (c) (d) (e) (f)

Fig. 6: Position Error Landscape for a 5-Link planar robot. (a) SL. (b) Dagger. (c) Ours + static sampling. (d) Ours +
Dynamic sampling. (e) Ours + Incremental sampling. (g) Ours + Incremental + Rejection Sampling

of 500 and 2000 samples for the planar n-Link problems, and
the problems involving the UR5, respectively.

To illustrate the fairness of our comparisons, consider
that in the planar IK problems, we used 500 input samples
for BC (the computational cost of input samples is almost
negligible), and then we applied the Gauss-Newton update
rule (Eq. 4) K times, for each input sample, to generate
a fully labeled dataset, with an associated computational
budget of 500K. For our method with static or dynamic
sampling, it’s straightforward to see that doing K iterations
of Algorithm 1 and given the same number of input samples,
the computation budget is roughly the same as the one
associated to BC. For the case of incremental sampling
or incremental + rejection sampling, we keep track of the
number of times that Eq. 11 is called to make sure it does
not exceed the computational budget of 500K. Furthermore,
while Dagger is traditionally used in the context of reactive
policies, we applied it to our trajectory-based policy setting.
At every Dagger iteration we get 1 new input sample using
PDS, we obtain a trajectory from ⇡̄✓ and we relabel such
trajectory by applying K times the Gauss-Newton update
rule (Eq. 4). We aggregate the relabeled trajectories and we
train ⇡̄✓ on the the aggregated dataset. We iterate until the
computational budget that was allocated for BC is reached.

The axis of Figure 5 represents only the gradient steps
effectively performed on ✓, as we consider it is most stan-
dard. Our method with rejection sampling shows a slower
initial convergence than BC, which can be explained by the
fact that BC has already access from the beginning to both
a set of samples that discretize the entire domain of interest
and full labels obtained via optimization based control. In
contrast, the rejection sampling method includes only a small
region of the space of input parameters during the early
stages, while the test set spans the entire domain of inte-
gration. Furthermore, we show the corresponding position

error landscape of the learned policies for the 5-Link example
(Figure 6) to highlight how our method results in lower and
more uniform landscapes. Note that, while for some tasks,
our method with incremental MC sampling achieves uniform
landscapes, using rejection sampling achieves even lower
error with lower variance, in general.

A. Warm-starting optimization

Using the learned policies in a similar fashion to [26], and
warm-starting the KTO problem for the UR5 robot (Section
III-A), on a test set of 1000 input samples, yields a reduction
of optimization time from 47ms to 3ms, on average, with
a position and orientation error of 0.05 mm and 0.05�,
while the trained policy alone evaluated on the same test
set, achieves an average error of 2.04 mm and 0.06�.

B. Broader class of systems

The optimization scheme presented in the Method section
is very general. When applied to kinematic trajectory op-
timization problems, it can be seen as direct transcription
method. Furthermore, when the map s̄(ā,p) represents a
dynamical system, such formulation can be seen as a direct
shooting method. To exemplify such generality we applied
our method to the problems shown in Fig 7. The goal of
the first two examples is to drag a point mass or rigid
body towards the origin over a surface with a differentiable
friction model as implemented by [31]. For the point mass
example the controls represent the position of the handle
that is attached to the point mass via a spring. For the rigid
body box, in the second example, the controls are the forces
applied to the center of mass and a torque applied along the
vertical axis to achieve a target orientation. The goal of the
third experiment is to reorient a box that is connected to a
rigid body via a flexible attachment, and the controls are the
position and orientation of the smaller rigid body.



Fig. 7: Top Row: Dragging a point mass (purple) towards the
origin. Middle Row: Repositioning and reorienting a rigid
body box sliding over a frictional surface. Bottom Row:
Reorienting a rigid body box with a flexible attachment.

C. Multimodal behaviour
We trained Implicit Behavioral Cloning (IBC) [24] to solve

the planar n-Link IK problems. IBC used a dataset of 500
samples (500 input samples each fully labeled with a possible
IK solution). We trained IBC using an InfoNCE loss with
batches of 256 positive samples and 256 random uniform
negative samples per positive sample. At inference time
we used a derivative free optimization method with 16384
samples to optimize the energy landscape the IBC model
represents. While IBC preserves multimodality, our method
performs better in terms of position error and compute time
as shown in table I. Additional experiments show that the
performance of IBC improves with access to larger datasets.

TABLE I: Performance on a test set of 512 samples

OURS IBC

IK ERROR
[MM]

TIME
[MIN:SEC]

ERROR
[MM]

TIME
[MIN:SEC]

2-LINK 0.63 3:09 2.2 82
3-LINK 0.65 3:03 7.1 104
4-LINK 0.56 2:33 26.5 108
5-LINK 0.64 3:01 76.6 103

VI. CONCLUSION AND FUTURE WORK

We presented a gradient-based framework to learn
trajectory-policies via the minimization of an energy integral
over a domain of interest. We showed how to reformulate
such minimization into a sequence of small BC problems
by using first and second order targets. Furthermore, we
investigated different sampling strategies to discretize the
domain of integration and we introduced a simple mechanism
to detect and reject conflicting samples. Such strategies

allowed us to learn consistent solution manifolds despite the
multimodality of the solution space. However, the sample
strategies that worked best rely on KNN which might prevent
the scalability of the approach to larger datasets. Extending
our method to enable learning multiple solutions manifolds
is also another exciting research direction. Further ways to
leverage our mechanism to detect conflicts should be ex-
plored. An interesting direction would be to use the detection
mechanism to cluster different solutions. This can enable
extending our work into a multimodal setting. Furthermore,
detecting conflicting areas in the domain can also be used to
indicate regions that required sampling more densely.

Further sampling strategies should be explored. Extending
our work to use weighted Poisson disk sampling will enable
coarse and fine sampling, in different regions of the domain,
depending on the nature of problem. We believe better rejec-
tions mechanisms should be explored. In this work, we reject
all the samples associated to a conflict. Such rejection rule,
however, might be too conservative. Finally, we believe this
work, with all its exciting future venues of research, sets a
good starting point to enable robust and instantaneous queries
from well-stablished optimization-based control algorithms.

APPENDIX

A. Additional objectives

Fig. 8: Collision
primitives

Collision
Following the approach presented
in [30], we define a set of colli-
sion primitives using spheres and
capsules, as shown in figure 8.
The energy is then defined us-
ing unilateral barrier function [32]
to ensure that the minimum dis-
tance between collision primitives
is larger than a safety threshold.
Feasibility
Efeasibility(⇡̄✓i(p),p) = Ejoint pos limits(⇡̄✓i(p)) +

Ejoint vel limits(⇡̄✓i(p)) + Ejoint acc limits(⇡̄✓i(p)) +

Ejoint jerk limits(⇡̄✓i(p))

The energy associated to joint limits is implemented using
bilateral barrier functions as presented in [32].
Smoothness
Esmoothness(⇡̄✓i(p),p) = Esmall vel(⇡̄✓i(p),p) +

Esmall acc(⇡̄✓i(p),p) + Esmall jerk(⇡̄✓i(p),p)

where each individual term is simply the squared norm of
the corresponding quantity computed using a second order
backward finite difference [33] and assuming the robot stands
still in its initial configuration aref e.g.

Esmall vel(⇡̄✓i(p),p) = ||3
2
a0 � 2aref +

1

2
aref ||2 +

||3
2
a1�2a0 +

1

2
aref ||2+

t�1X

j=2

||3
2
aj�2aj�1+

1

2
aj�2||2



B. Network Architecture
For the experiments described in this paper, we used two

hidden layers with relu activation functions and 512 nodes,
and an output layer with tanh activations.

As we deal with periodic variables for the joint angles
of a robot, we encoded the output of the network such that
each each angle ✓i is represented by tuple (sin ✓i, cos ✓i). As
done by [34]. A theoretical justification can be found in [35]
(Pages 105-110). We found such encoding to alleviate some
of the problems related to conflicting data, and to improve
performance as well. Table II summarizes the dimensionality
of the problems described in section IV. Note that because
of the encoding we used, the output dimension doubles.

TABLE II: Dimensionality of problems.

PROBLEM INPUT DIM OUTPUT DIM

IK N-LINK MECHANISM 2 2*N
IK UR5 3 2*6
KTO UR5 9 2*6*30 = 180
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