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Mappings
Representation and Distortion

[Ju et al. 05]

[Jacobson 07] [Weber et al. 09] [Lipman et al. 07]
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Mappings
Representation and Distortion

\\\»uwww

[Fu et al. 15]

[Weber et al. 12]

[Mullen et al. 08]
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Mappings
Representation and Distortion

[Kraevoy and Sheffer 04] \[Schriher et al. 04] [Jin et al. 08]
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“Real” Applications

Brain/colon mapping

[Gu et al.]

3/14/2018 Roi Poranne #



“Real” Applications

Biological Morphology
\ .

[Boyer et al. 2012]
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“Real” Applications

Medical segmentation/registration

[Levi and Gotsman 12]
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Definition

Mapping / Map :
A smooth function between shapes / spaces

Examples
[fR->R

0EF
"._‘ I;'
‘\\ 06 /
) = x 2
— ‘,\ o4 r,"
Y s
*, e
, A
[ 33
\.\ .

crnzirich



f:[R2—>IR2

3/14/2018

Roi Poranne

RS
| [0S

guey

Wy,
AL
ST -':5“‘

Lid

&
i b




f:lMI—)]R2

3/14/2018

Roi Poranne

ETH - urich



Roi Poranne
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f:

R3 > R3
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f:R3—>IR3

All cases are based on the same
Concepts and use similar techniques
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2D Maps : Representation

f(x) = (383)
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2D Maps : Representation

f
() _

The set of all maps
{f (x): R? > R?)
is too big to handle!



2D Maps : Representation

.

p
Solution: Represent maps as linear

combination of basis functions

~

_J
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2D Maps : Representation

fl)fZJfB! "')fn
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2D Maps : Representation

fl)fZJfB! "')fn

f(x) = (”(X))
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2D Maps : Representation

fl’fZ)fg, ...,fn

f(x) = (“(’0) _ (Zaifi(ﬂ)

/////////
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2D Maps : Representation

fl(x'y) =X

3/14/2018

fZ(x'y) =Yy

(x,y) = (2f1, f2)
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2D Maps : Representation

fl(x'y)zx fz(X,y)=y

(x,y) = (fi + f2. f2)
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2D Maps : Representation

fl(x'y) =X

3/14/2018

fo(x,y) =y fz3(x,y)

(x,y)=> (f1+ f3, /2t f3)

—>

Roi Poranne

ETH - urich



Mappings for deformations
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Mappings for deformations
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Deformation as an interpolation
problem

Q\.

A

SEh
N

TN,

P

f(p) = ) €ifi(®)

C; =7

f(p;) = q;, Vi

2 c,fi(pi) =q;, Vi
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Example: Thin Plate Spline

Solve the problem

92f\ " 02f \°  [92f\°
minETps(f)=fj (ﬁ) +2(axay> +(a—yz>

Bending energy

s.t. f(py) = q;, Vi

General solution

f(p) = ¢ + € + ¢,y + ) cib(lIx— pil)
$(r) =rclogr
ETH - urich




Globally VS. Locally Bijective

Globally — Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective
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Globally VS. Locally Bijective

Globally Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective
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Globally VS. Locally Bijective

Globally Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective
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Globally VS. Locally Bijective

Globally Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective

3/14/2018 Roi Poranne # E'HZUFiCh



Globally VS. Locally Bijective

Globally Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective
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Globally VS. Locally Bijective

Globally Locally
Bijective Bijective

f is bijective f: U - f(U) is bijective
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Globally VS. Locally Bijective

Globally Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective

Still Bijective!
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Globally VS. Locally Bijective

Globally Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective
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Globally VS

Globally
Bijective

f is bijective

3/14/2018

. Locally Bijective

Locally
Bijective

f: U — f(U) is bijective

Roi Poranne




Globally VS. Locally Bijective

Globally Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective
ey
k' B
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Globally VS

Globally
Bijective

f is bijective

Not
Bijective!

. Locally Bijective

Locally
Bijective

f: U — f(U) is bijective

ETH - urich



Globally VS. Locally Bijective

Two
J— Pre-images
Not L &' ¥ O q
Bijective! u v ol
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Globally Bijective VS. Locally
Bijective

Not
Bijective!
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Globally Bijective VS. Locally

Bijective
U &
|
Only Locally 4
Bijective! | |
i



Locally Bijection - Non-example




Locally Bijection - Non-example
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Locally Bijection - Non-example
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Non-example

Locally Bijection
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Locally Bijection - Non-example




Locally Bijection - Non-example
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Locally Bijection - Non-example
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Locally Bijection - Non-example
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Locally Bijection - Non-example
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Local Bijection Sufficient condition

f(x) = (L‘Eﬁ)

The Jacobian:

du(x) dyu(x)

IR0 = (axv(x) d, v(x)

)

N—
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Local Bijection Sufficient condition

u(x) f
f(x) = (U(X)> \\
The Jacobian: \
Oyu(x) dyu(x)\ (Vu(x)) [
Jtx) = (axv(x) 0iv(x)> B (Vv(x))

The Condition:
det Jf(x) > 0, Vx



Globally VS. Locally Bijective

Globally — Locally
Bijective Bijective
f is bijective f: U - f(U) is bijective
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Globally VS. Locally Bijective

Globally _ Locally

s

Bijective Bijective

f is bijective o f:U - f(U) is bijective
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Globally VS. Locally Bijective

Globally _ Locally

s

Bijective Bijective

f is bijective o f:U - f(U) is bijective

“Global inversion theorems”
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What are good maps?

o&\
N2 Bi jectivity

- . Lower
Bijective Bijective distortion
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Distortion - Types

Conformal Isometric
distortion distortion

B
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Distortion - Types

|

Conformal Isometric
distortion distortion
r—%

The distortion is a function
of the Jacobian at a point

\_

J
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Distortion - LSCM [Lévy et al. 2002]

LSCM - Least Squares Conformal Map

We want the tobe a
Jacobian similarity matrix
dyu dyu a —f
0,V 0,V f «

Ot = 0yV Cauchy-Riemann

Equations

dyu —0d, v

ETH - urich



Distortion - LSCM

LSCM - Least Squares Conformal Map

We want the tobe a
Jacobian similarity matrix

dyu dyu a —f
0,V 0,V f «
DiscMm = (0,u — 5yv)2+(ayu + 0,v)?

ETH - urich



Quick Notation Change

Jlf  — A

dyu dyu a b
)
0,V 0yv c d
DiscMm = (0,u — 5yv)2——(5yu + 0,v)?
(a — d)+(b + c)?
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Distortion - ASAP [Liu et al. 2008]

ASAP- As Similar As Possible

Dasap = |IA —Sall7

Jacobian S \f\ Closest

Similarity
How to compute closest similarity?

ETH - urich



Distortion - ASAP

ASAP- As Similar As Possible

How to compute closest similarity?
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Distortion - ASAP

ASAP- As Similar As Possible

How to compute closest similarity?

In 2D:

min

(

a b
c d

) -

min||A - S||7

s.t. S is similarity

a —f

p

a

|
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Distortion - ASAP

ASAP- As Similar As Possible
How to compute closest similarity?
In 2D:
min||A - S||7

s.t. S is similarity

1(a+d c—b)

= 2\b—¢c a+d

ETH - urich



Distortion - ASAP

ASAP- As Similar As Possible
How to compute closest similarity?
In 2D:

1(a+d c—b) 1(a—d c+b)

A=5\h—c a+dT2\b+c d—a

ETH - urich



Distortion - ASAP

ASAP- As Similar As Possible
How to compute closest similarity?
In 2D:

Sa Sa
A=1(a+d c—b)_l_l(a—d c+b)
2 \b Similadty d/ = 2 \nticSimilarity

ETH - urich



Distortion - ASAP

ASAP- As Similar As Possible
| sE |12

MeaSLE of an larit
Jacobian nPloses%l

- bs)lﬁylarlty

IGe g

(a—d)*+ (b +c)?
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Distortion - ASAP

ASAP- As Similar As Possible

| SE |12

LSCM = ASAP ¥

C+b)H

[

(a—d)2 + (b + ¢)?
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Distortion - ARAP

ARAP- As Rigid As Possible

DARAP = l|A — Rall%

Jacobian S \f\ Closest

Rotation

How to compute closest rotation?

ETH - urich



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S -

o 0
(01 0_2) 01 > O-

ETH - urich



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S -
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Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S -

)
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Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S -

)
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Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S -

|-

ETH - urich



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S -

U and V are not rotations!

ETH - urich



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S R

(6 1

ETH - urich



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RV!
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Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RV!
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Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RV!

3/14/2018 Roi Poranne # ETH - urich



Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RV!

> g
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g\%‘@é Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U S RV?

ETH - urich



g\%‘@é Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U SR -

o 0
(01 _0_2) 01 > O-

Now U and V are rotations!
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g\%‘@é Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U SR -

o 0
(01 _0_2) 01 > O-

Now U and V are rotations!
What if U and V both had reflections?
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g\%‘@é Singular Value Decomposition

Every Matrix M has a factorization of the form

M = U SR -

o 0
(01 _0_2) 01 > O-

Now U and V are rotations!
What if U and V both had reflections?

sign det M = sign(o)
ETH - urich



Distortion - ARAP

ARAP- As Rigid As Possible

DARAP = l|A — Rall%

Jacobian S \f\ Closest

Rotation

How to compute closest Rotation?

ETH - urich



Distortion - ARAP

ARAP- As Rigid As Possible

DARAP = I|A — RallZ

Jacobian S \f\ Closest

Rotation

A=USVT Ra=UVT

Proof: Using Lagrange multipliers
ETH - urich



Distortion - ASAP

ASAP- As Similar As Possible

Dasap = |IA —Sall7

Jacobian S \f\ Closest

Similarity
A=Usv’ Sp=aUv’
_ 01T 0

7T T2

ETH - urich



Distortion - ARAP

ARAP- As Rigid As Possible

DARAP = I|A — RallZ

Jacobian S \f\ Closest

Rotation

A=USVT Ra=UVT

Proof: Using Lagrange multipliers
ETH - urich



Distortion - ARAP

ARAP- As Rigid As Possible
DARAP = lIA — Rallz = A= UV"|IZ
= [lusv" —uv'||z
= lU(s =DVl

=I(S=D Iz
= (01 — 1)? + (0, — 1)?
ETH - urich



Distortion - ASAP

ASAP- As Similar As Possible

DASAP = IIA = S4ll7
= ||USVT — aUVT||4
= U —aDV"||7
= (01 — 8)* + (0, — 0)*

= (01 — 02)2

ETH - urich
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MIPS [Hormann & Greiner 2000]
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What Is a Parameterization?




What Is a Parameterization?

2D parameter domain (u,v)
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Parameterization - Definition

Mapping P between a 2D domain QQ and
the mesh S embedded in 3D (the inverse = flattening

Each mesh vertex has a corresponding 2D position:

— (Uq, U;

Inside each triangle, the mapping is affine (barycentric

coordinates

3/14/2018
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Why Parameterization?

Allows us to do many things in 2D and then map
those actions onto the 3D surface

It is often easier to operate in the 2D domain

Mesh parameterization allows to use some
notions from continuous surface theory

ETH - urich



Main Application: Texture Mapping

Roi Poranne
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Texture Mapp

h

uric

ETH -

Roi Poranne

Main Application
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Texture Mapping
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Texture Mapping

S

Image from Vallet and Levy, techreport INRIA
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Normal/Bump Mapping

simplified mesh
and normal mapping
500 triangles

original mesh simplified mesh
4M triangles 500 triangles
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Remeshing

Roi Poranne
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l., SIGGRAPH 2002
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Compression

“Geometry images”, Gu et al., SIGGRAPH 2002

http://research.microsoft.com/en-us/um/people/hoppe/proj/gim/
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http://research.microsoft.com/en-us/um/people/hoppe/proj/gim/
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Good Parameterization

No flips
X »
Minimal
tretch
AN
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Good Parameterization

No flips =
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Good Parameterization

No flips ,
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Good Parameterization

Roi Poranne

3/14/2018



Bijectivity

Locally bijective (1-1 and onto): No triangles

fold over.

Globally bijective:
locally bijective +
no “distant” areas
overlap

3/14/2018
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image from “Least Squares Conformal Maps”, Lévy et al., SIGGRAPH 2002
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Local Foldovers
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Bijectivity: Non-Disk Domains
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Mesh Cutting
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Mesh Cutting

g
-

e e ——— ——

A. Sheffer, J. Hart:
Seamster: Inconspicuous Low-Distortion Texture Seam Layout, IEEE Vis 2002
http://www.cs.ubc.ca/~sheffa/papers/VIS02.pdf
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http://www.cs.ubc.ca/~sheffa/papers/VIS02.pdf

Segmentation
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Lambda

Delta

OS2

s Q5

VPN T
> /7
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3D painting

Roi Poranne
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Texture artifacts
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Texture artifacts
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Texture artifacts

.~ ~—— Cracks!
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The balance
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The balance
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Distortion on Triangle Meshes

ETH - urich



Distortion on Triangle Meshes

O(p) =Jp+t

X i

D(J)
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Distortion on Triangle Meshes

v <I>(p)—Jp—|—tw
> D(Iy) v
/
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Distortion on Triangle Meshes

O(p) = Jp +t
minZD(Jf) v
f
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100K Faces: 3s

3/14/2018
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Conformal




Harmonic Mapping - ldea

Want to flatten the mesh — no curvature
— Laplace operator gives zero.

A(u) =0

need boundary constraints
to prevent trivial solution;

u = (u,v) domain which Laplacian operator?
(which weights?)

ETH - urich



Convex Mapping (Tutte, Floater)

Boundary vertices are fixed
Convex weights

e
/@%b

Wl AT
A
L for ]

o\

Vi,Vo,...,V, -inner vertices
Vn+1,.-.5, VN - boundary vertices
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Convex Mapping (Tutte, Floater)

Boundary vertices are fixed
Convex weights
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Convex Mapping (Tutte, Floater)

Solve the linear system

Lu=0 u € R**?

The values of the boundary vertices are
known and thus substituted (transfer to
right-hand side)

ETH - urich



Harmonic Mapping

Inner mesh edges as
springs

Find minimum-energy
state where all vertices
lie in the 2D plane

ETH - urich



Harmonic Mapping

Inner mesh edges as
springs

Find minimum-energy
state where all vertices
lie in the 2D plane

ETH - urich



Harmonic Mapping

Inner mesh edges as
springs

Find minimum-energy
state where all vertices
lie in the 2D plane

u; Uz
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Harmonic Mapping

Inner mesh edges as
springs

Find minimum-energy
state where all vertices u;
lie in the 2D plane

ETH - urich



Harmonic Mapping

Inner mesh edges as
springs

Find minimum-energy
“NVVVN—AVN-

state where all vertices u,
lie in the 2D plane

ETH - urich



Harmonic Mapping

Inner mesh edges as
springs

Find minimum-energy
WWANNNN—
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Harmonic Mapping

Inner mesh edges as
springs

Find minimum-energy
NV ANN—

state where all vertices u; u;
lie in the 2D plane

Total spring energy of the flattened mesh:

1
E(ul,...,un): Z §k2,]Huz_ujH2
(i,5)€€
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Demo

Libigl Tutorial 501
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Minimizing Spring Energy

1
E(uy,...,u,) = Z 57%3”‘1@ — ujH2
(i,5)€E

OE(uy,. .., u,
(ug’u- o) _ > Kig(ui—uy) =0
’ FEN ()

Z k:z-,juz- -+ Z ki,j(ui — uj) =

JeEN(i)NB JEN ()\B JEN (1)NB

| |
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Minimizing Spring Energy

Sparse linear system of n equations to solve!

[ Z ki,jui -+ Z kz’,j (ui - uj) — Z kiajuj}

JEN(i)NB JEN (i)\B JEN(i)NB
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Choice of spring constants ki i
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Tutte’s Theorem

If the weights are nonnegative, and the
boundary is fixed to a convex polygon,
the parameterization is bijective

(Tutte’63 proved for uniform weights,
Floater’97 extended to arbitrary
nonnegative weights)

W.T. Tutte. “How to draw a graph”. Proceedings of the London Mathematical
Society, 13(3):743-768, 1963.

ETH - urich



Comparison of Weights

uniform
weights

cotan
weights

Parameterization with harmonic weights [Eck et al. 1995] on a circular domain.

Eck et al. 1995, “Multiresolution analysis of arbitrary meshes”, SIGGRAPH 1995
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Discussion

The results of cotan-weights mapping are better than

those of uniform convex mapping (local area and angles
preservation).

But: the mapping is not always legal (the cotan weights
can be negative for badly-shaped triangles...)

In any case: sparse system to solve, so robust and
efficient numerical solvers exist
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Discussion

Both mappings have the problem of fixed boundary -
it constrains the minimization and causes distortion.

More advanced methods do not require boundary
conditions. *

BB

ABF++ method,

Sheffer et al. 2005
http://www.cs.ubc.ca/~sheffa/ABF++/abf.htm
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http://www.cs.ubc.ca/~sheffa/ABF++/abf.htm
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