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“Real” Applications

Brain/colon mapping

[Gu et al.]
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“Real” Applications

Biological Morphology

[Boyer et al. 2012]
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“Real” Applications

Medical segmentation/registration

[Levi and Gotsman 12]
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Definition

Mapping / Map :

𝑓:ℝ → ℝ

A smooth function between shapes / spaces

Examples

𝑓 𝑥 = 𝑥2
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𝑓:ℝ2 → ℝ2 𝑓 𝑧 = 𝑧 +
1

𝑧
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𝑓:𝕄 → ℝ2
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𝑓:𝕄 → 𝕊2
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𝑓:𝕄 → 𝕄′
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𝑓:ℝ3 → ℝ3
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𝑓:ℝ3 → ℝ3

All cases are based on the same 

Concepts and use similar techniques
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2D Maps : Representation

𝐟 𝐱 =
𝑢 𝐱

𝑣 𝐱
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2D Maps : Representation

𝐟
𝐟 𝐱 =

𝑢 𝐱

𝑣 𝐱

The set of all maps

𝑓 𝑥 :ℝ2 → ℝ2

is too big to handle!
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2D Maps : Representation

𝐟
𝐟 𝐱 =

𝑢 𝐱

𝑣 𝐱

The set of all maps

𝑓 𝑥 :ℝ2 → ℝ2

is too big to handle!

Solution: Represent maps as linear 

combination of basis functions

3/14/2018 Roi Poranne



#

𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛

2D Maps : Representation
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𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛

𝐟 𝐱 =
𝑢 𝐱
𝑣 𝐱

2D Maps : Representation
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#

=
∑𝑎𝑖𝑓𝑖 𝐱

∑𝑏𝑖𝑓𝑖 𝐱

𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛

𝐟 𝐱 =
𝑢 𝐱
𝑣 𝐱

2D Maps : Representation
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𝑓1 𝑥, 𝑦 = 𝑥 𝑓2 𝑥, 𝑦 = 𝑦

𝑥, 𝑦 ⇒ 2𝑓1, 𝑓2

2D Maps : Representation
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#

𝑓1 𝑥, 𝑦 = 𝑥 𝑓2 𝑥, 𝑦 = 𝑦

𝑥, 𝑦 ⇒ 𝑓1 + 𝑓2, 𝑓2

2D Maps : Representation
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𝑓1 𝑥, 𝑦 = 𝑥 𝑓2 𝑥, 𝑦 = 𝑦

𝑥, 𝑦 ⇒ 𝑓1 + 𝑓3, 𝑓2 + 𝑓3

2D Maps : Representation
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𝑓3 𝑥, 𝑦
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Mappings for deformations

𝐩𝑖

3/14/2018 Roi Poranne
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Mappings for deformations
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Deformation as an interpolation 

problem

𝐟 𝐩𝑖 = 𝐪𝑖 , ∀𝑖

𝐟 𝐩𝑖 =෍𝐜𝑖𝑓𝑖 𝐱

𝐜𝑖 =?

෍𝐜𝑖𝑓𝑖 𝐩𝑖 = 𝐪𝑖 , ∀𝑖

𝐩𝑖

𝒒𝑖
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Example: Thin Plate Spline

Solve the problem

min𝐸TPS(𝐟) = ඵ
𝜕2𝐟

𝜕𝑥2

2

+ 2
𝜕2𝐟

𝜕𝑥𝜕𝑦

2

+
𝜕2𝐟

𝜕𝑦2

2

s.t. 𝐟 𝐩𝑖 = 𝐪𝑖 , ∀𝑖

𝐟 𝐩𝑖 = 𝐜0 + 𝐜𝑥𝒙 + 𝐜𝑦𝒚 +෍𝐜𝑖ϕ ‖𝐱 − 𝐩𝑖‖

ϕ 𝑟 = 𝑟2 log 𝑟

General solution

Bending energy
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Globally VS. Locally Bijective

3/14/2018 Roi Poranne

Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective
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Globally VS. Locally Bijective

Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective
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Globally VS. Locally Bijective

3/14/2018 Roi Poranne

Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective
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Globally VS. Locally Bijective
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Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective



#

Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective

Globally VS. Locally Bijective
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Globally VS. Locally Bijective
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Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective
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Globally VS. Locally Bijective
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Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective

Still Bijective!
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Globally VS. Locally Bijective
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Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective
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Globally VS. Locally Bijective
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Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective



#

Globally VS. Locally Bijective
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Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective



#

Globally VS. Locally Bijective
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Not

Bijective!

Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective
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Globally VS. Locally Bijective
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Not

Bijective!

Two

Pre-images
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Globally Bijective VS. Locally 

Bijective

Not

Bijective!
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Globally Bijective VS. Locally 

Bijective

Only Locally

Bijective!

𝐔

𝐟(𝐔)
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Locally Bijection – Non-example
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Locally Bijection – Non-example
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Locally Bijection – Non-example
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Locally Bijection – Non-example
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Locally Bijection – Non-example
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Locally Bijection – Non-example
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Locally Bijection – Non-example
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Locally Bijection – Non-example
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Locally Bijection – Non-example

3/14/2018 Roi Poranne



#

Local Bijection Sufficient condition

3/14/2018 Roi Poranne

𝐟
𝐟 𝐱 =

𝑢 𝐱

𝑣 𝐱

𝒥𝐟 𝐱 =
𝜕𝑥𝑢 𝐱

𝜕𝑥𝑣 𝐱

𝜕𝑦𝑢 𝐱

𝜕𝑦𝑣 𝐱

The Jacobian:



#

Local Bijection Sufficient condition

𝐟
𝐟 𝐱 =

𝑢 𝐱

𝑣 𝐱

𝒥𝐟 𝐱 =
𝜕𝑥𝑢 𝐱

𝜕𝑥𝑣 𝐱

𝜕𝑦𝑢 𝐱

𝜕𝑦𝑣 𝐱
=

𝛻𝑢 𝐱

𝛻𝑣 𝐱

The Jacobian:

det 𝒥𝐟 𝐱 > 0, ∀𝑥

The Condition:
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Globally VS. Locally Bijective

Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective
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Globally VS. Locally Bijective

Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective
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#

Globally VS. Locally Bijective

Globally

Bijective

Locally

Bijective

𝐟 is bijective 𝐟: 𝐔 → 𝐟(𝐔) is bijective

“Global inversion theorems”
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Bijectivity Low 

distortion

What are good maps?

Not

Bijective Bijective
Lower

distortion
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Distortion - Types

Isometric 

distortion

Conformal 

distortion
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#

Distortion - Types

Isometric 

distortion

Conformal 

distortion

The distortion is a function

of the Jacobian at a point
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Distortion - LSCM

LSCM – Least Squares Conformal Map

𝜕𝑥𝑢

𝜕𝑥𝑣

𝜕𝑦𝑢

𝜕𝑦𝑣

𝛼

𝛽

−𝛽

𝛼

We want the 
Jacobian 

to be a 
similarity matrix 

𝜕𝑥𝑢 = 𝜕𝑦𝑣

𝜕𝑦𝑢 −𝜕𝑥𝑣=

Cauchy-Riemann

Equations

[Lévy et al. 2002]
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Distortion - LSCM

LSCM – Least Squares Conformal Map

𝜕𝑥𝑢

𝜕𝑥𝑣

𝜕𝑦𝑢

𝜕𝑦𝑣

𝛼

𝛽

−𝛽

𝛼

We want the 
Jacobian 

𝜕𝑥𝑢 − 𝜕𝑦𝑣 𝜕𝑦𝑢 𝜕𝑥𝑣+2+ 2𝒟LSCM =

3/14/2018 Roi Poranne

to be a 
similarity matrix 
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22

Quick Notation Change

𝜕𝑥𝑢

𝜕𝑥𝑣

𝜕𝑦𝑢

𝜕𝑦𝑣

𝑎

𝑐

𝑏

𝑑

𝒥𝐟 𝐀

𝜕𝑥𝑢 − 𝜕𝑦𝑣 𝜕𝑦𝑢 𝜕𝑥𝑣+2+ 2𝒟LSCM =

𝑎 − 𝑑 𝑏 𝑐++

3/14/2018 Roi Poranne
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Distortion – ASAP

ASAP– As Similar As Possible

𝐀 − 𝒮𝐀 𝐹
2

Jacobian Closest

Similarity

How to compute closest similarity?

𝒟ASAP =

[Liu et al. 2008]

3/14/2018 Roi Poranne
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Distortion – ASAP

ASAP– As Similar As Possible

How to compute closest similarity?
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Distortion – ASAP

ASAP– As Similar As Possible

In 2D:

min
𝒮

𝐀 − 𝒮 𝐹
2

s.t. 𝒮 is similarity

min
𝛼,𝛽

𝑎

𝑐

𝑏

𝑑
−

𝛼

𝛽

−𝛽

𝛼
𝐹

2

How to compute closest similarity?
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Distortion – ASAP

ASAP– As Similar As Possible

How to compute closest similarity?

In 2D:

min
𝒮

𝐀 − 𝒮 𝐹
2

s.t. 𝒮 is similarity

1

2
𝑎 + 𝑑 𝑐 − 𝑏
𝑏 − 𝑐 𝑎 + 𝑑

𝒮 =
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Distortion – ASAP

ASAP– As Similar As Possible

How to compute closest similarity?

In 2D:

𝐀 =
1

2
𝑎 + 𝑑 𝑐 − 𝑏
𝑏 − 𝑐 𝑎 + 𝑑

+
1

2
𝑎 − 𝑑 𝑐 + 𝑏
𝑏 + 𝑐 𝑑 − 𝑎
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Distortion – ASAP

ASAP– As Similar As Possible

How to compute closest similarity?

In 2D:

𝐀 =
1

2
𝑎 + 𝑑 𝑐 − 𝑏
𝑏 − 𝑐 𝑎 + 𝑑

+
1

2
𝑎 − 𝑑 𝑐 + 𝑏
𝑏 + 𝑐 𝑑 − 𝑎Similarity Anti-Similarity

𝒮𝐴 𝒮𝐴
⊥

3/14/2018 Roi Poranne



#

Distortion – ASAP

ASAP– As Similar As Possible

𝐀 − 𝒮𝐀 𝐹
2

Jacobian Closest

Similarity

𝒮𝐴
⊥

Measure of antisimilarity

𝑎 − 𝑑 𝑐 + 𝑏
𝑏 + 𝑐 𝑑 − 𝑎 𝐹

2

𝑎 − 𝑑 2 + 𝑏 + 𝑐 2
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𝑎 − 𝑑 2 + 𝑏 + 𝑐 2

Distortion – ASAP

ASAP– As Similar As Possible

𝐀 − 𝒮𝐀 𝐹
2𝒮𝐴

⊥

Measure of antisimilarity

𝑎 − 𝑑 𝑐 + 𝑏
𝑏 + 𝑐 𝑑 − 𝑎 𝐹

2

LSCM = ASAP

3/14/2018 Roi Poranne
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Distortion - ARAP

ARAP– As Rigid As Possible

𝐀 − ℛ𝐀 𝐹
2

Jacobian Closest

Rotation

How to compute closest rotation?

𝒟ARAP =

3/14/2018 Roi Poranne
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Singular Value Decomposition

Every Matrix 𝑀 has a factorization of the form

𝑀 = 𝑈 𝑆 𝑉𝑇

𝜎1 0
0 𝜎2

𝜎1 > 𝜎2
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Singular Value Decomposition

Every Matrix 𝑀 has a factorization of the form
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Singular Value Decomposition

Every Matrix 𝑀 has a factorization of the form
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Singular Value Decomposition

Every Matrix 𝑀 has a factorization of the form

𝑀 = 𝑈 𝑆 𝑉𝑇

𝑈 and 𝑉 are not rotations!
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Singular Value Decomposition

Every Matrix 𝑀 has a factorization of the form

𝑀 = 𝑈 𝑆 𝑉𝑇𝑅

1 0
0 −1
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Singular Value Decomposition

Every Matrix 𝑀 has a factorization of the form

𝑀 = 𝑈 𝑆 𝑉𝑇𝑅

3/14/2018 Roi Poranne



#

Singular Value Decomposition

Every Matrix 𝑀 has a factorization of the form
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Singular Value Decomposition

Every Matrix 𝑀 has a factorization of the form

𝑀 = 𝑈 𝑆 𝑉𝑇𝑅
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Singular Value Decomposition
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Every Matrix 𝑀 has a factorization of the form

𝑀 = 𝑈 𝑆 𝑉𝑇𝑅
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Every Matrix 𝑀 has a factorization of the form

𝑀 = 𝑈 𝑆 𝑉𝑇𝑅

𝜎1 0
0 −𝜎2

𝜎1 > 𝜎2

Now 𝑈 and 𝑉 are rotations!
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Every Matrix 𝑀 has a factorization of the form

𝑀 = 𝑈 𝑆 𝑉𝑇𝑅

𝜎1 0
0 −𝜎2

𝜎1 > 𝜎2

What if 𝑈 and 𝑉 both had reflections?

Now 𝑈 and 𝑉 are rotations!
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Every Matrix 𝑀 has a factorization of the form

𝑀 = 𝑈 𝑆 𝑉𝑇𝑅

𝜎1 0
0 −𝜎2

𝜎1 > 𝜎2

What if 𝑈 and 𝑉 both had reflections?

Now 𝑈 and 𝑉 are rotations!

sign det𝑀 = sign 𝜎2
3/14/2018 Roi Poranne
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Distortion - ARAP

ARAP– As Rigid As Possible

𝐀 − ℛ𝐀 𝐹
2

Jacobian Closest

Rotation

How to compute closest Rotation?

𝒟ARAP =
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Distortion - ARAP

ARAP– As Rigid As Possible

𝐀 − ℛ𝐀 𝐹
2

Jacobian Closest

Rotation

𝒟ARAP =

𝐀 = 𝑈𝑆𝑉𝑇 ℛ𝐀 = 𝑈𝑉𝑇

Proof: Using Lagrange multipliers
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Distortion – ASAP

ASAP– As Similar As Possible

𝐀 − 𝒮𝐀 𝐹
2

Jacobian Closest

Similarity

𝒟ASAP =

𝐀 = 𝑈𝑆𝑉𝑇 𝒮𝐀 = ത𝜎𝑈𝑉𝑇

ത𝜎 =
𝜎1 + 𝜎2

2
3/14/2018 Roi Poranne
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Distortion - ARAP

ARAP– As Rigid As Possible

𝐀 − ℛ𝐀 𝐹
2

Jacobian Closest

Rotation

𝒟ARAP =

𝐀 = 𝑈𝑆𝑉𝑇 ℛ𝐀 = 𝑈𝑉𝑇

Proof: Using Lagrange multipliers
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Distortion - ARAP

ARAP– As Rigid As Possible

𝐀 − ℛ𝐀 𝐹
2𝒟ARAP = = 𝐀 − 𝑈𝑉𝑇 𝐹

2

= 𝑈𝑆𝑉𝑇 − 𝑈𝑉𝑇 𝐹
2

= 𝑈(𝑆 − 𝐼)𝑉𝑇 𝐹
2

= (𝑆 − 𝐼) 𝐹
2

= 𝜎1 − 1 2 + 𝜎2 − 1 2
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Distortion - ASAP

ASAP– As Similar As Possible

𝐀 − 𝒮𝐀 𝐹
2𝒟ASAP =

= 𝑈𝑆𝑉𝑇 − ത𝜎𝑈𝑉𝑇 𝐹
2

= 𝑈(𝑆 − ത𝜎𝐼)𝑉𝑇 𝐹
2

= 𝜎1 − ത𝜎 2 + 𝜎2 − ത𝜎 2

= 𝜎1 − 𝜎2
2

3/14/2018 Roi Poranne
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What Is a Parameterization?

Roi Poranne

3D space (x,y,z) 2D parameter domain (u,v)

U

boundary
boundary
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Parameterization – Definition

● Mapping P between a 2D domain Ω and 

the mesh S embedded in 3D (the inverse = flattening)

● Each mesh vertex has a corresponding 2D position:

● Inside each triangle, the mapping is affine (barycentric

coordinates)

Roi Poranne

P

U
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Why Parameterization?

● Allows us to do many things in 2D and then map 

those actions onto the 3D surface

● It is often easier to operate in the 2D domain

● Mesh parameterization allows to use some 

notions from continuous surface theory
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Texture Mapping
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Texture Mapping
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Image from Vallet and Levy, techreport INRIA
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Normal/Bump Mapping
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original mesh

4M triangles

simplified mesh

500 triangles

simplified mesh

and normal mapping

500 triangles
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Remeshing

Roi Poranne

“Interactive Geometry Remeshing”, Alliez et al., SIGGRAPH 2002
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Compression
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=

“Geometry images”, Gu et al., SIGGRAPH 2002
http://research.microsoft.com/en-us/um/people/hoppe/proj/gim/
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Bijectivity

● Locally bijective (1-1 and onto): No triangles 

fold over.

● Globally bijective: 

locally bijective +

no “distant” areas 

overlap

Roi Poranne

image from “Least Squares Conformal Maps”, Lévy et al., SIGGRAPH 2002 
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Local Foldovers
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Bijectivity: Non-Disk Domains
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Mesh Cutting
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Mesh Cutting

Roi Poranne

A. Sheffer, J. Hart:

Seamster: Inconspicuous Low-Distortion Texture Seam Layout, IEEE Vis 2002

http://www.cs.ubc.ca/~sheffa/papers/VIS02.pdf
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Segmentation
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3D painting
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Texture artifacts
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Texture artifacts
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Texture artifacts
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Texture artifacts

Cracks!
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Harmonic Mapping – Idea

● Want to flatten the mesh  no curvature 

 Laplace operator gives zero.

Roi Poranne

u = (u,v) domain

need boundary constraints

to prevent trivial solution;

which Laplacian operator? 

(which weights?)
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Convex Mapping (Tutte, Floater)

● Boundary vertices are fixed

● Convex weights

Roi Poranne

– inner vertices

– boundary vertices
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Convex Mapping (Tutte, Floater)

● Boundary vertices are fixed

● Convex weights
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wi,j
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Convex Mapping (Tutte, Floater)

● Solve the linear system

● The values of the boundary vertices are 

known and thus substituted (transfer to 

right-hand side)
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Harmonic Mapping

● Inner mesh edges as 

springs

● Find minimum-energy 

state where all vertices 

lie in the 2D plane

Roi Poranne3/14/2018



#

Harmonic Mapping

● Inner mesh edges as 

springs

● Find minimum-energy 

state where all vertices 

lie in the 2D plane

Roi Poranne3/14/2018



#

Harmonic Mapping

● Inner mesh edges as 

springs

● Find minimum-energy 

state where all vertices 

lie in the 2D plane

Roi Poranne3/14/2018



#

Harmonic Mapping

● Inner mesh edges as 

springs

● Find minimum-energy 

state where all vertices 

lie in the 2D plane

Roi Poranne3/14/2018



#

Harmonic Mapping

● Inner mesh edges as 

springs

● Find minimum-energy 

state where all vertices 

lie in the 2D plane

Roi Poranne3/14/2018



#

Harmonic Mapping

● Inner mesh edges as 

springs

● Find minimum-energy 

state where all vertices 

lie in the 2D plane

Roi Poranne3/14/2018



#

Harmonic Mapping

● Inner mesh edges as 

springs

● Find minimum-energy 

state where all vertices 

lie in the 2D plane

Roi Poranne3/14/2018



#

Harmonic Mapping
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Harmonic Mapping

● Inner mesh edges as 

springs

● Find minimum-energy 

state where all vertices 

lie in the 2D plane

● Total spring energy of the flattened mesh:
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Demo

● Libigl Tutorial 501
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Minimizing Spring Energy

Roi Poranne

– inner vertices

– boundary vertices

unknown 

flat vertex 

positions

known fixed 

boundary 

positions
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Minimizing Spring Energy

● Sparse linear system of n equations to solve!
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Choice of spring constants k_i

● Uniform

● Cotan
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Tutte’s Theorem

● If the weights are nonnegative, and the 
boundary is fixed to a convex polygon, 
the parameterization is bijective

● (Tutte’63 proved for uniform weights, 
Floater’97 extended to arbitrary 
nonnegative weights)

● W.T. Tutte. “How to draw a graph”. Proceedings of the London Mathematical 
Society, 13(3):743-768, 1963.
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Comparison of Weights

Roi Poranne

uniform

weights

cotan

weights

Eck et al. 1995, “Multiresolution analysis of arbitrary meshes”, SIGGRAPH 1995
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Discussion

● The results of cotan-weights mapping are better than 

those of uniform convex mapping (local area and angles 

preservation).

● But: the mapping is not always legal (the cotan weights 

can be negative for badly-shaped triangles…)

● In any case: sparse system to solve, so robust and 

efficient numerical solvers exist
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Discussion

● Both mappings have the problem of fixed boundary –

it constrains the minimization and causes distortion.

● More advanced methods do not require boundary 

conditions.
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ABF++ method,

Sheffer et al. 2005
http://www.cs.ubc.ca/~sheffa/ABF++/abf.htm
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