252-0538-00L, Spring 2018

Shape Modeling and Geometry Processing

Mappings Representation and Distortion

Mappings Representation and Distortion

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Mappings Representation and Distortion

Mappings Representation and Distortion

[Kim et al. 11]

[Ovsjanikov et al. 12]

[Panozzo et al. 13]

[[]Jin et al. 08]

"Real" Applications

Brain/colon mapping

[Gu et al.]

"Real" Applications

Biological Morphology

[Boyer et al. 2012]

Roi Poranne

ETH zürich

"Real" Applications

Medical segmentation/registration

[Levi and Gotsman 12]

Roi Poranne

ETH zürich

Definition

Mapping / Map:

A smooth function between shapes / spaces **Examples**

ETH zürich

 $f\colon \mathbb{M}\to \mathbb{R}^2$

ETH zürich

 $f: \mathbb{M} \to \mathbb{M}'$

ETH zürich

 $f\colon \mathbb{R}^3 \to \mathbb{R}^3$

$f\colon \mathbb{R}^3 \to \mathbb{R}^3$

All cases are based on the same Concepts and use similar techniques

Roi Poranne

ETH zürich

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} u(\mathbf{x}) \\ v(\mathbf{x}) \end{pmatrix}$$

is too big to handle!

Roi Poranne

Hzürich

$f_1, f_2, f_3, \dots, f_n$

 $f_1, f_2, f_3, \dots, f_n$

 $\mathbf{f}(\mathbf{x}) = \begin{pmatrix} u(\mathbf{x}) \\ v(\mathbf{x}) \end{pmatrix}$

 $f_1, f_2, f_3, \dots, f_n$

$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} u(\mathbf{x}) \\ v(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \sum a_i f_i(\mathbf{x}) \\ \sum b_i f_i(\mathbf{x}) \end{pmatrix}$

#

$$f_1(x, y) = x$$
 $f_2(x, y) = y$

$$(x, y) \Rightarrow (2f_1, f_2)$$

3/14/2018

$$f_1(x, y) = x$$
 $f_2(x, y) = y$

$$(x, y) \Rightarrow (f_1 + f_2, f_2)$$

$$f_1(x, y) = x$$
 $f_2(x, y) = y$ $f_3(x, y)$

$$(x, y) \Rightarrow (f_1 + f_3, f_2 + f_3)$$

ETHzürich

Mappings for deformations

Mappings for deformations

Deformation as an interpolation problem

 $\sum \mathbf{c}_i f_i(\mathbf{p}_i) = \mathbf{q}_i, \forall i$

Example: Thin Plate Spline

Solve the problem

$$\min E_{\text{TPS}}(\mathbf{f}) = \iint \left[\left(\frac{\partial^2 \mathbf{f}}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 \mathbf{f}}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 \mathbf{f}}{\partial y^2} \right)^2 \right]$$

Bending energy

s.t. $\mathbf{f}(\mathbf{p}_i) = \mathbf{q}_i, \forall i$

General solution

$$\mathbf{f}(\mathbf{p}_i) = \mathbf{c}_0 + \mathbf{c}_x \mathbf{x} + \mathbf{c}_y \mathbf{y} + \sum_{i=1}^{n} \mathbf{c}_i \phi(\|\mathbf{x} - \mathbf{p}_i\|)$$

$$\phi(r) = r^2 \log r$$

ETHzürich

Globally Bijective Dijective

 $f \text{ is bijective } \quad f: U \to f(U) \text{ is bijective}$

ETH zürich

Globally Bijective Locally Bijective

f is bijective $f: U \to f(U)$ is bijective

Globally Bijective Locally Bijective

f is bijective $f: U \to f(U)$ is bijective

Globally Bijective Locally Bijective

f is bijective $f: U \to f(U)$ is bijective

Globally Bijective Locally Bijective

f is bijective $f: U \to f(U)$ is bijective

Globally Bijective Locally Bijective

f is bijective

 $f: U \to f(U)$ is bijective

Globally Bijective Locally Bijective

f is bijective $f: U \to f(U)$ is bijective

Still Bijective!

Globally Bijective Locally Bijective

 $f \text{ is bijective } \quad f: U \to f(U) \text{ is bijective}$

Globally Bijective Locally Bijective

 $f \text{ is bijective } \quad f: U \to f(U) \text{ is bijective}$

Globally Bijective Locally Bijective

f is bijective

 $f: U \to f(U)$ is bijective

Roi Poranne

Globally Bijective Locally Bijective

f is bijective $f: U \to f(U)$ is bijective

Not Bijective!

3/14/2018

Roi Poranne

Not Bijective!

Two Pre-images

Roi Poranne

Globally Bijective VS. Locally Bijective

Not Bijective!

3/14/2018

Roi Poranne

Globally Bijective VS. Locally Bijective

Only Locally Bijective!

3/14/2018

Roi Poranne

Local Bijection Sufficient condition

$$f(\mathbf{x}) = \begin{pmatrix} u(\mathbf{x}) \\ v(\mathbf{x}) \end{pmatrix}$$
The Jacobian:
$$\int f(\mathbf{x}) = \begin{pmatrix} \partial_x u(\mathbf{x}) & \partial_y u(\mathbf{x}) \\ \partial_x v(\mathbf{x}) & \partial_y v(\mathbf{x}) \end{pmatrix}$$

Local Bijection Sufficient condition

$$f(\mathbf{x}) = \begin{pmatrix} u(\mathbf{x}) \\ v(\mathbf{x}) \end{pmatrix}$$
The Jacobian:

$$\mathcal{J}f(\mathbf{x}) = \begin{pmatrix} \partial_x u(\mathbf{x}) & \partial_y u(\mathbf{x}) \\ \partial_x v(\mathbf{x}) & \partial_y v(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \nabla u(\mathbf{x}) \\ \nabla v(\mathbf{x}) \end{pmatrix}$$
The Condition:

$$det \mathcal{J}f(\mathbf{x}) > 0, \forall x$$

$$\overset{}{}_{3/14/2018} \qquad \text{For Parame} \qquad \texttt{F}$$

Globally Bijective Dijective

 $f \text{ is bijective } \quad f: U \to f(U) \text{ is bijective}$

Roi Poranne

"Global inversion theorems"

Roi Poranne

What are good maps?

Roi Poranne

Distortion - Types

Distortion - Types

Distortion - LSCM [Lévy et al. 2002]

LSCM - Least Squares Conformal Map

 $\partial_x u =$

 $\partial_{\nu} u$

We want the Jacobian

 $\begin{pmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{pmatrix}$

to be a similarity matrix

$$\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

$$\partial_y v$$
 Cauchy-Riemann
Equations
 $-\partial_x v$

Distortion - LSCM

LSCM - Least Squares Conformal Map

We want the Jacobian

 $\begin{pmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{pmatrix}$

to be a similarity matrix

$$\begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

 $\mathcal{D}_{\text{LSCM}} = (\partial_x u - \partial_y v)^2 + (\partial_y u + \partial_x v)^2$

Quick Notation Change

Roi Poranne

Mzurich

Distortion - ASAP [Liu et al. 2008]

ASAP- As Similar As Possible

How to compute closest similarity?

Roi Poranne

ASAP- As Similar As Possible

How to compute closest similarity?

3/14/2018

Roi Poranne

ASAP- As Similar As Possible How to compute closest similarity? In 2D:

 $\min_{\mathcal{S}} \|\mathbf{A} - \mathcal{S}\|_F^2$
s.t. \mathcal{S} is similarity

$$\min_{\alpha,\beta} \left\| \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix} \right\|_{F}^{2}$$

ASAP- As Similar As Possible How to compute closest similarity? In 2D:

 $\min_{\mathcal{S}} \|\mathbf{A} - \mathcal{S}\|_{F}^{2}$
s.t. \mathcal{S} is similarity

$$\mathcal{S} = \frac{1}{2} \begin{pmatrix} a+d & c-b \\ b-c & a+d \end{pmatrix}$$

ASAP- As Similar As Possible How to compute closest similarity? In 2D:

$$\mathbf{A} = \frac{1}{2} \begin{pmatrix} a + d & c - b \\ b - c & a + d \end{pmatrix} + \frac{1}{2} \begin{pmatrix} a - d & c + b \\ b + c & d - a \end{pmatrix}$$

Roi Poranne

ASAP- As Similar As Possible How to compute closest similarity? In 2D:

$$S_{A} \qquad S_{A}^{\perp}$$

$$\mathbf{A} = \frac{1}{2} \begin{pmatrix} a+d \quad c-b \\ b \quad \text{Similarity} \quad d \end{pmatrix} + \frac{1}{2} \begin{pmatrix} a-d \quad c+b \\ b \quad \text{Similarity} \end{pmatrix}$$

Roi Poranne

ASAP- As Similar As Possible

 $\| S_A^{\perp} \|_F^2$ Measure of antisimilarity
Jacobian $\| (a - d \quad c + b) \|_F^2$ Similarity $\| (a - d \quad c + b) \|_F^2$

$$(a-d)^2 + (b+c)^2$$

Roi Poranne

ETHzurich

ASAP- As Similar As Possible

$$\| \mathcal{S}_A^{\perp} \|_F^2$$

$$\begin{aligned} \text{LSCM} &= \text{ASAP} \\ \| \begin{pmatrix} a - d & c + b \\ b + c & d - a \end{pmatrix} \|_{F}^{2} \end{aligned}$$

$$(a-d)^2 + (b+c)^2$$

Roi Poranne

ARAP- As Rigid As Possible

How to compute closest rotation?

Roi Poranne

Singular Value Decomposition

Every Matrix M has a factorization of the form

 $M = U \qquad S \qquad V^{T}$ $\begin{pmatrix} \sigma_{1} & 0 \\ 0 & \sigma_{2} \end{pmatrix} \qquad \sigma_{1} > \sigma_{2}$

Singular Value Decomposition

Every Matrix M has a factorization of the form

 $M = U \qquad S \qquad V^T$

Every Matrix M has a factorization of the form

 $M = U \qquad S \qquad V^T$

Every Matrix M has a factorization of the form

 $M = U \qquad S \qquad V^T$

Every Matrix M has a factorization of the form

 $M = U \qquad S \qquad V^T$

Every Matrix M has a factorization of the form

$$M = U \qquad S \qquad V^T$$

U and V are not rotations!

Every Matrix M has a factorization of the form

 $M = U \qquad S \qquad \mathbf{R}^T$

 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Every Matrix M has a factorization of the form

Every Matrix M has a factorization of the form

Every Matrix M has a factorization of the form

Every Matrix *M* has a factorization of the form

signed Singular Value Decomposition

Every Matrix M has a factorization of the form

 $M = U \qquad S \qquad RV^T$

ETH zürich

signed Singular Value Decomposition Every Matrix M has a factorization of the form M = IISR $\begin{pmatrix} \sigma_1 & 0 \\ 0 & -\sigma_2 \end{pmatrix} \sigma_1 > \sigma_2$

Now U and V are rotations!

Singular Value Decomposition Every Matrix M has a factorization of the form M = IISR $\begin{pmatrix} \sigma_1 & 0 \\ 0 & -\sigma_2 \end{pmatrix} \sigma_1 > \sigma_2$

Now U and V are rotations! What if U and V both had reflections?

Roi Poranne

ETH zürich

Every Matrix M has a factorization of the form

 $M = U \qquad SR \qquad V^{T}$ $\begin{pmatrix} \sigma_{1} & 0 \\ 0 & -\sigma_{2} \end{pmatrix} \sigma_{1} > \sigma_{2}$

Now U and V are rotations! What if U and V both had reflections? sign det $M = sign(\sigma_2)$

3/14/2018

Roi Poranne

ETHzürich

Distortion - ARAP

ARAP- As Rigid As Possible

How to compute closest Rotation?

Distortion - ARAP

ARAP- As Rigid As Possible

Proof: Using Lagrange multipliers

Roi Poranne

Hzürich

Distortion - ASAP

ASAP- As Similar As Possible

Distortion - ARAP

ARAP- As Rigid As Possible

Proof: Using Lagrange multipliers

Roi Poranne

Hzürich

Distortion - ARAP

ARAP- As Rigid As Possible

$$\mathcal{D}_{ARAP} = \|\mathbf{A} - \mathcal{R}_{A}\|_{F}^{2} = \|\mathbf{A} - UV^{T}\|_{F}^{2}$$
$$= \|USV^{T} - UV^{T}\|_{F}^{2}$$
$$= \|U(S - I)V^{T}\|_{F}^{2}$$
$$= \|(S - I)\|_{F}^{2}$$
$$= (\sigma_{1} - 1)^{2} + (\sigma_{2} - 1)^{2}$$

Roi Poranne

ETH zürich

Distortion - ASAP

ASAP- As Similar As Possible

 $\mathcal{D}_{ASAP} = \|\mathbf{A} - \mathcal{S}_{\mathbf{A}}\|_{F}^{2}$ $= \|USV^T - \overline{\sigma}UV^T\|_F^2$ $= \|U(S - \bar{\sigma}I)V^T\|_{F}^{2}$ $= (\sigma_1 - \bar{\sigma})^2 + (\sigma_2 - \bar{\sigma})^2$ $= (\sigma_1 - \sigma_2)^2$

Roi Poranne

ETHzürich

252-0538-00L, Spring 2018

Shape Modeling and Geometry Processing

Mesh Parameterization

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3/14/2018

What Is a Parameterization?

Roi Poranne

ETH zürich

What Is a Parameterization?

What Is a Parameterization?

Roi Poranne

ETHzürich

Parameterization - Definition

- Mapping P between a 2D domain Ω and the mesh S embedded in 3D (the inverse = flattening)
- Each mesh vertex has a corresponding 2D position: $U(\mathbf{v}_i) = (u_i, v_i)$
- Inside each triangle, the mapping is affine (barycentric coordinates)

Hzürich

Why Parameterization?

- Allows us to do many things in 2D and then map those actions onto the 3D surface
- It is often easier to operate in the 2D domain
- Mesh parameterization allows to use some notions from continuous surface theory

ETHzurich

Main Application: Texture Mapping

Main Application: Texture Mapping

Texture Mapping

Texture Mapping

Image from Vallet and Levy, techreport INRIA

ETH zürich

Normal/Bump Mapping

original mesh 4M triangles simplified mesh 500 triangles simplified mesh and normal mapping 500 triangles

ETH zürich

Remeshing

"Interactive Geometry Remeshing", Alliez et al., SIGGRAPH 2002

Compression

"Geometry images", Gu et al., SIGGRAPH 2002 http://research.microsoft.com/en-us/um/people/hoppe/proj/gim/

Roi Poranne

ETHzürich

Geometry Images cut parametrize

Good Parameterization

Good Parameterization

Roi Poranne

Bijectivity

 Locally bijective (1-1 and onto): No triangles fold over.

 Globally bijective: locally bijective + no "distant" areas overlap

image from "Least Squares Conformal Maps", Lévy et al., SIGGRAPH 2002

Local Foldovers

3/14/2018

Bijectivity: Non-Disk Domains

Roi Poranne

Mesh Cutting

Roi Poranne

Mesh Cutting

A. Sheffer, J. Hart:

Seamster: Inconspicuous Low-Distortion Texture Seam Layout, IEEE Vis 2002 http://www.cs.ubc.ca/~sheffa/papers/VIS02.pdf

Segmentation

Roi Poranne

3D painting

Roi Poranne

The balance

The balance

Roi Poranne

Harmonic Mapping - Idea

• Want to flatten the mesh \rightarrow no curvature \rightarrow Laplace operator gives zero.

 $\mathbf{u} = (u, v)$ domain

 $\Delta(\mathbf{u}) = 0$

need boundary constraints to prevent trivial solution;

which Laplacian operator? (which weights?)

Roi Poranne

Hzürich

Convex Mapping (Tutte, Floater)

- Boundary vertices are fixed
- Convex weights

 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ - inner vertices $\mathbf{v}_{n+1}, \dots, \mathbf{v}_N$ - boundary vertices

Convex Mapping (Tutte, Floater)

- Boundary vertices are fixed
- Convex weights

$$\Delta(\mathbf{u}_i) = 0, \quad i = 1, \dots, n$$

$$L(\mathbf{u}_i) = \frac{1}{W_i} \sum_{j \in \mathcal{N}(i)} w_{ij}(\mathbf{u}_j - \mathbf{u}_i) = 0, \quad i = 1, \dots, n$$
$$w_{ij} > 0$$

Convex Mapping (Tutte, Floater)

Solve the linear system

$$L\mathbf{u} = 0 \qquad \mathbf{u} \in \mathbb{R}^{n \times 2}$$

 The values of the boundary vertices are known and thus substituted (transfer to right-hand side)

- Inner mesh edges as springs
- Find minimum-energy state where all vertices lie in the 2D plane

- Inner mesh edges as springs
- Find minimum-energy state where all vertices lie in the 2D plane

 \mathbf{v}_i

- Inner mesh edges as springs
- Find minimum-energy state where all vertices lie in the 2D plane

- Inner mesh edges as springs
- Find minimum-energy state where all vertices lie in the 2D plane

- Inner mesh edges as springs
- Find minimum-energy state where all vertices lie in the 2D plane

 \mathbf{v}_j

- Inner mesh edges as springs
- Find minimum-energy state where all vertices lie in the 2D plane

 \mathbf{v}_j

- Inner mesh edges as springs
- Find minimum-energy state where all vertices lie in the 2D plane

Harmonic Mapping

- Inner mesh edges as springs
- Find minimum-energy state where all vertices lie in the 2D plane
- Spring energy:

$$\frac{1}{2}k_{i,j} \|\mathbf{u}_i - \mathbf{u}_j\|^2$$
$$\mathbf{u}_i, \mathbf{u}_j \in \mathbb{R}^2$$

$$\mathbf{u}_i$$
 \mathbf{u}_j \mathbf{u}_k

Harmonic Mapping

- Inner mesh edges as springs
- Find minimum-energy state where all vertices lie in the 2D plane

$$\mathbf{u}_i$$
 \mathbf{u}_j \mathbf{u}_k

• Total spring energy of the flattened mesh:

$$E(\mathbf{u}_1, \dots, \mathbf{u}_n) = \sum_{(i,j)\in\mathcal{E}} \frac{1}{2} k_{i,j} \|\mathbf{u}_i - \mathbf{u}_j\|^2$$

Demo

• Libigl Tutorial 501

Minimizing Spring Energy

$$E(\mathbf{u}_1,\ldots,\mathbf{u}_n) = \sum_{(i,j)\in\mathcal{E}} \frac{1}{2} k_{i,j} \|\mathbf{u}_i - \mathbf{u}_j\|^2$$

 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ - inner vertices $\mathbf{v}_{n+1}, \dots, \mathbf{v}_N$ - boundary vertices

ETHzürich

Roi Poranne

Minimizing Spring Energy

• Sparse linear system of *n* equations to solve!

$$\left(\sum_{j\in\mathcal{N}(i)\cap\mathcal{B}}k_{i,j}\mathbf{u}_{i} + \sum_{j\in\mathcal{N}(i)\setminus\mathcal{B}}k_{i,j}(\mathbf{u}_{i} - \mathbf{u}_{j}) = \sum_{j\in\mathcal{N}(i)\cap\mathcal{B}}k_{i,j}\mathbf{u}_{j}\right)$$

$$\left(\sum_{j}k_{i,j} & * & \cdots & -k_{i,j} \\ & * & \sum_{j}k_{i,j} & * & \vdots \\ & \vdots & * & \ddots & * \\ & -k_{j,i} & \cdots & * & \sum_{j}k_{i,j}\right)\left(\begin{array}{c}\mathbf{u}_{1} \\ \mathbf{u}_{2} \\ \vdots \\ \mathbf{u}_{n}\end{array}\right) = \left(\begin{array}{c}\bar{\mathbf{u}}_{1} \\ \bar{\mathbf{u}}_{2} \\ \vdots \\ \bar{\mathbf{u}}_{n}\end{array}\right)$$

Choice of spring constants $k_{i,j}$

• Uniform $k_{i,j} = 1$

• Cotan $k_{i,j} = \cot \phi_{i,j} + \cot \phi_{j,i}$

Tutte's Theorem

- If the weights are nonnegative, and the boundary is fixed to a convex polygon, the parameterization is bijective
- (Tutte'63 proved for uniform weights, Floater'97 extended to arbitrary nonnegative weights)
- W.T. Tutte. "How to draw a graph". Proceedings of the London Mathematical Society, 13(3):743-768, 1963.

Comparison of Weights

Parameterization with harmonic weights [Eck et al. 1995] on a circular domain.

Eck et al. 1995, "Multiresolution analysis of arbitrary meshes", SIGGRAPH 1995

Roi Poranne

ETH zürich

Discussion

- The results of cotan-weights mapping are better than those of uniform convex mapping (local area and angles preservation).
- But: the mapping is not always legal (the cotan weights can be negative for badly-shaped triangles...)
- In any case: sparse system to solve, so robust and efficient numerical solvers exist

Discussion

- Both mappings have the problem of fixed boundary it constrains the minimization and causes distortion.
- More advanced methods do not require boundary conditions.

Roi Poranne

ETHzürich

Thank You

3/14/2018