252-0538-00L, Spring 2018

Shape Modeling and Geometry Processing

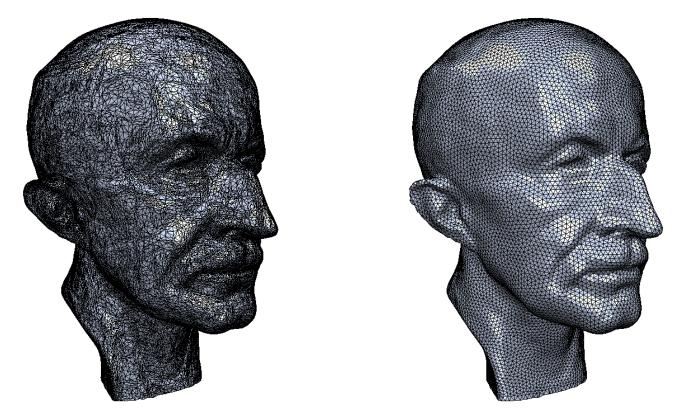
Remeshing and smoothing

Remeshing

2

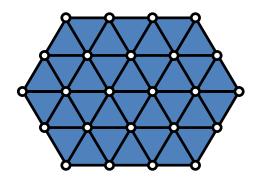
Remeshing

Given a 3D mesh, find a "better" discrete representation of the underlying surface

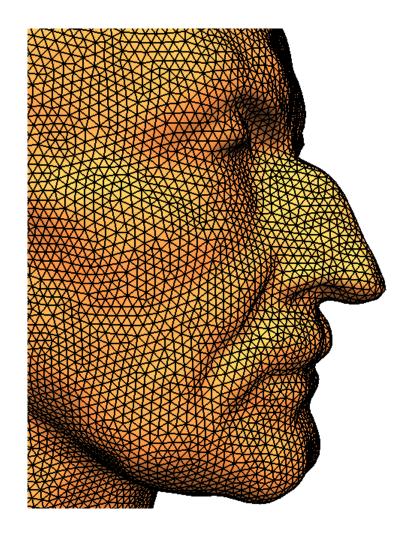


Roi Poranne

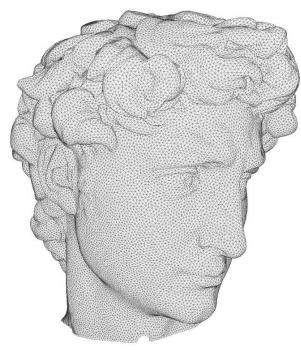
Equal edge lengths Equilateral triangles Valence close to 6

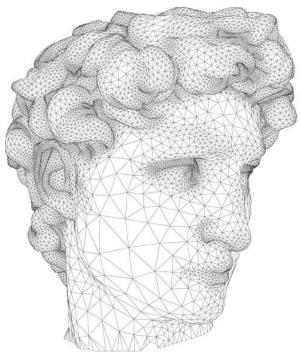


4



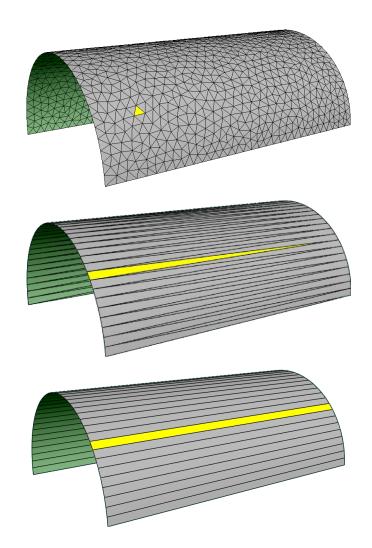
Equal edge lengths Equilateral triangles Valence close to 6 Uniform vs. adaptive sampling





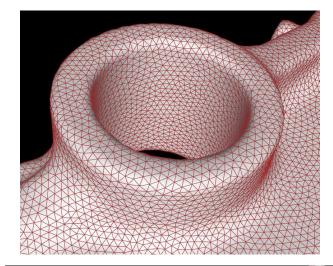
Equal edge lengths Equilateral triangles Valence close to 6 Uniform vs. adaptive sampling Feature preservation

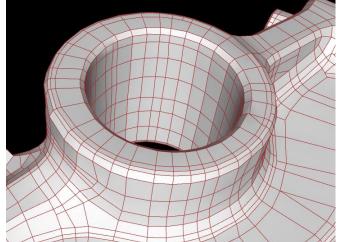
Equal edge lengths Equilateral triangles Valence close to 6 Uniform vs. adaptive sampling Feature preservation Alignment to curvature lines Isotropic vs. anisotropic



7

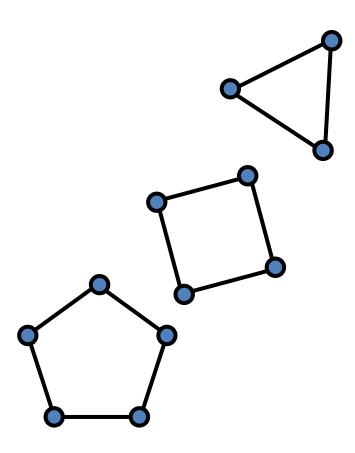
Equal edge lengths Equilateral triangles Valence close to 6 Uniform vs. adaptive sampling Feature preservation Alignment to curvature lines Isotropic vs. anisotropic Triangles vs. quads





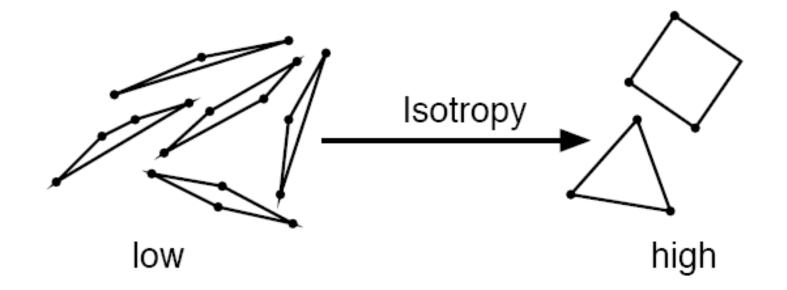
Element type

Triangle Quadrangle Polygon

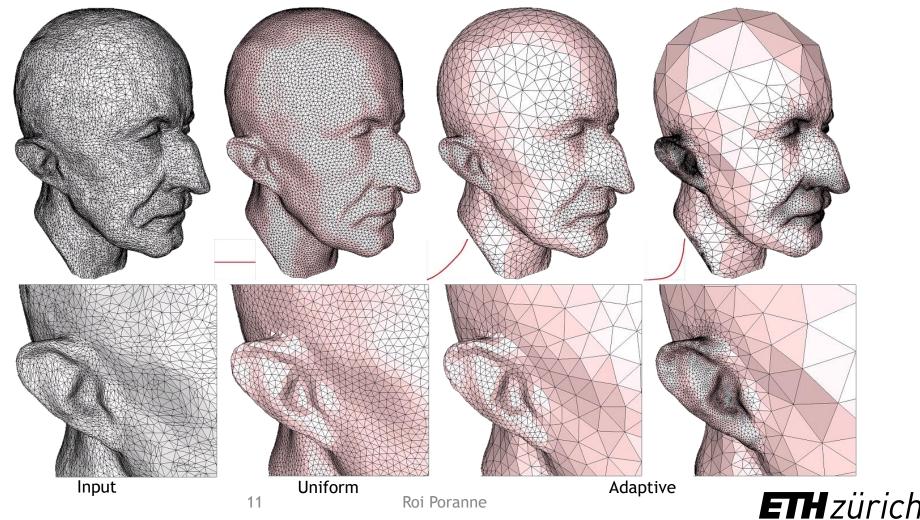


9

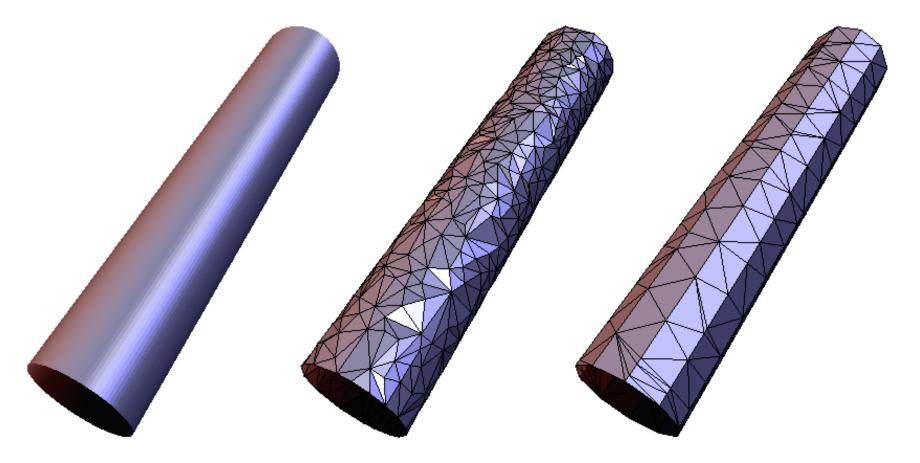
Element **shape** (isotropy vs anisotropy)



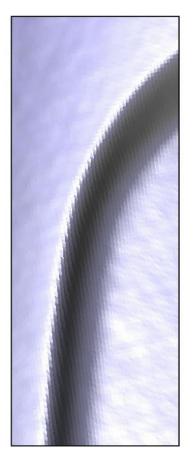
Element distribution (sizing, grading)



Element orientation



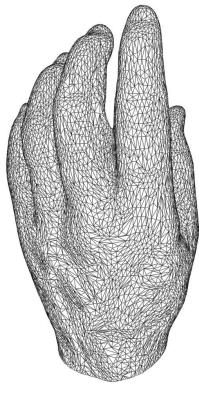
Element orientation

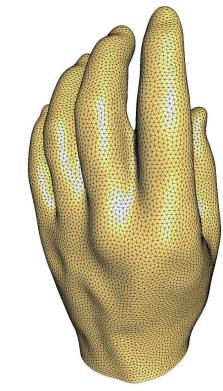


Isotropic Remeshing

Well-shaped elements

for processing & simulation (numerical stability & efficiency)





Two Fundamental Approaches

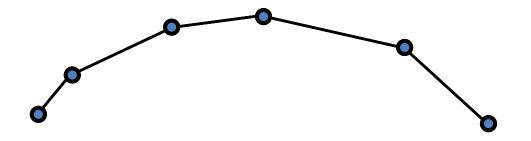
Parameterization-based

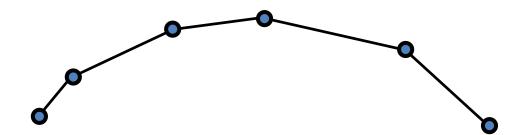
map to 2D domain / 2D problem computationally more expensive works even for coarse resolution remeshing

Surface-oriented

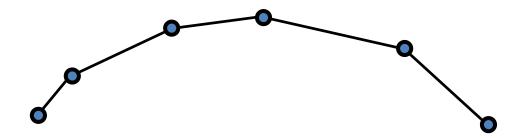
operate directly on the surface treat surface as a set of points / polygons in space

efficient for high resolution remeshing

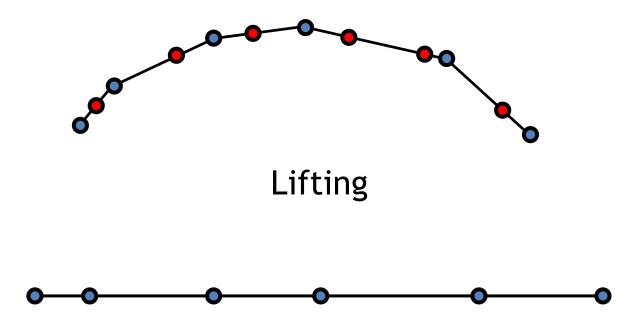


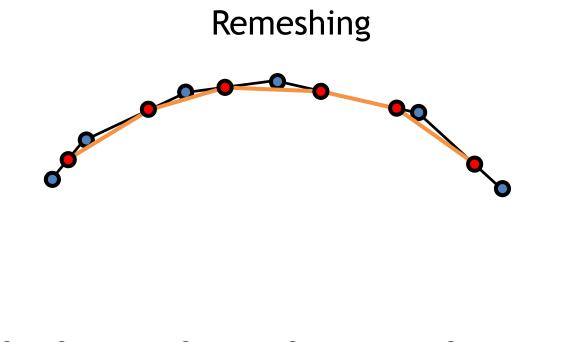


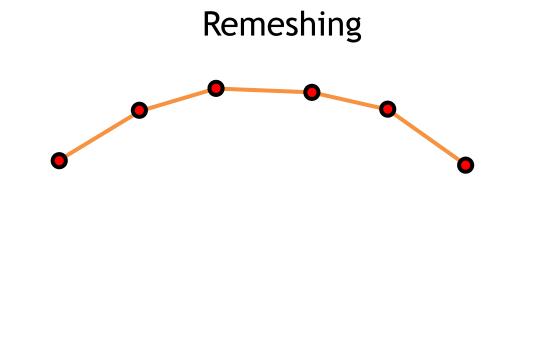
parameterization

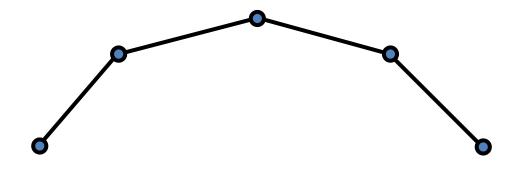


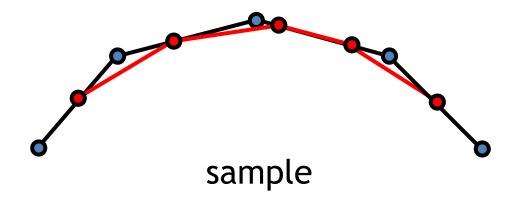
resampling

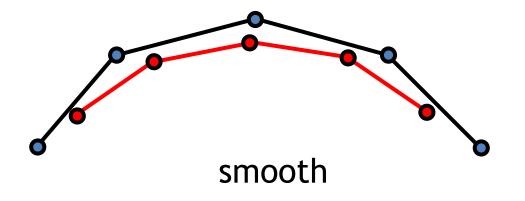


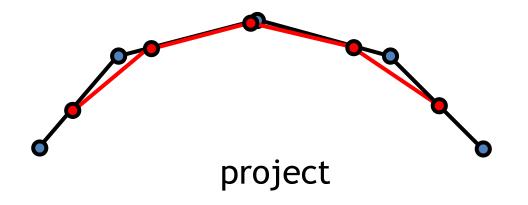












Parameterization-Based Remeshing [Alliez et al. '03]

Compute 2D parameterization Conformal: only area distortio

Sample 2D domain
Density based on area distortion

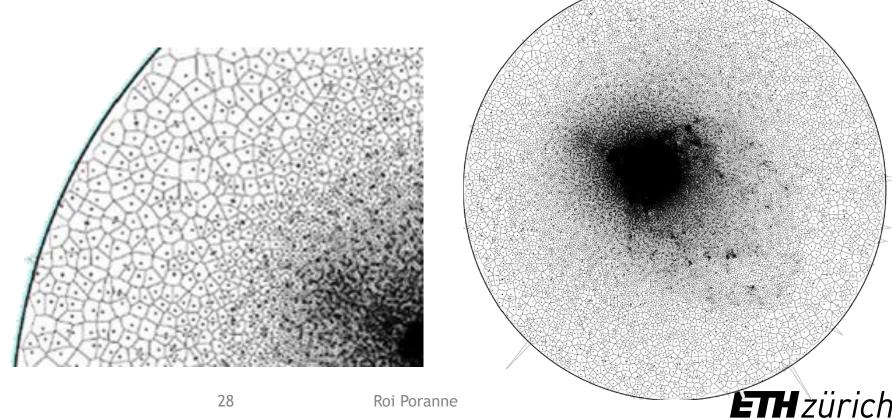
27

Triangulate Lift back to 3D

ETHzürich

Isotropic 2D Sampling

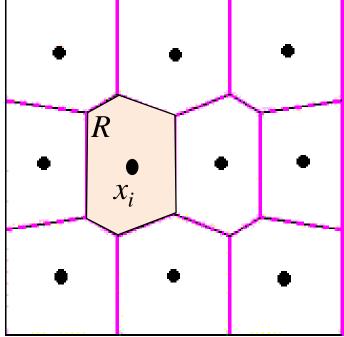
Density based random sampling Does not guarantee uniform distance between samples



Sampling Energy

Given sites x_i and regions R_{i} , minimize $E(x_{1}E, (x_1, x_k, R_{1}, R_{1}, R_{1}, R_{2}), R_{2}E = \int_{i=1}^{k} \int_{k} \int_{k$

Spreads out points



Sampling Energy

Given samples x_i and regions $R_{i,}$ minimize

$$E(x_1, \dots, x_k, R_1, \dots, R_k) = \sum_{i=1}^{k} \int ||x - x_i||^2$$

If x_i are fixed, energy is minimized by the **Voronoi Tesselation**

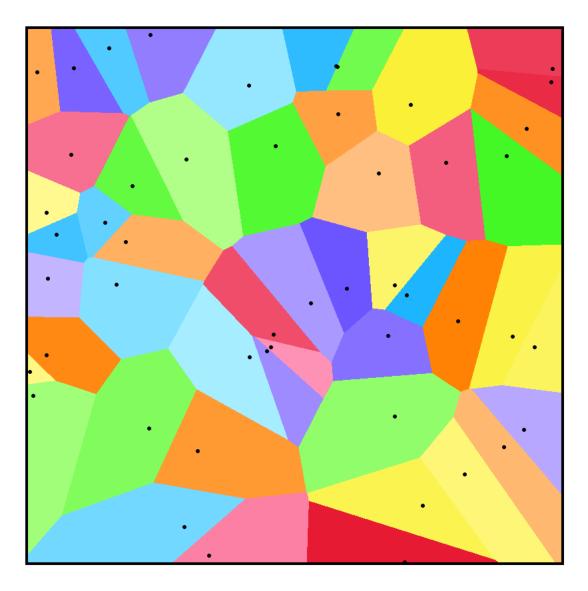
Voronoi cell *R*_i

= All points closer to x_i than to any other x_j

Roi Poranne

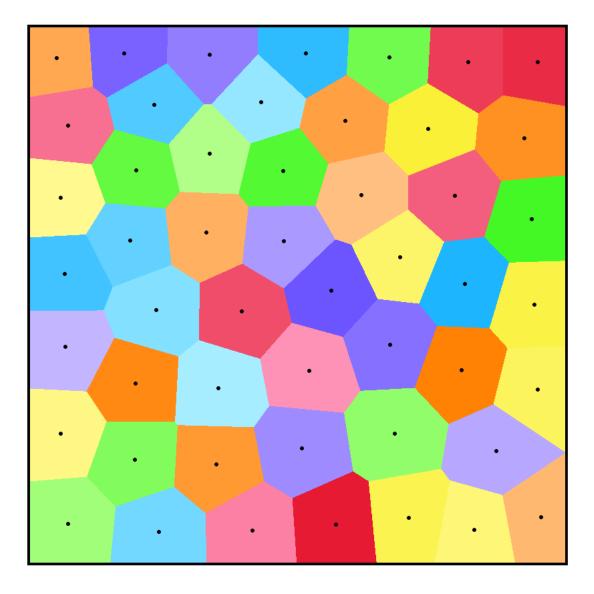
30

Voronoi Tessellation



Roi Poranne

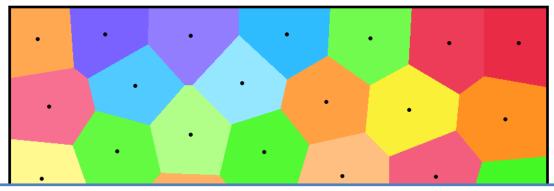
Centroidal Voronoi Tessellation



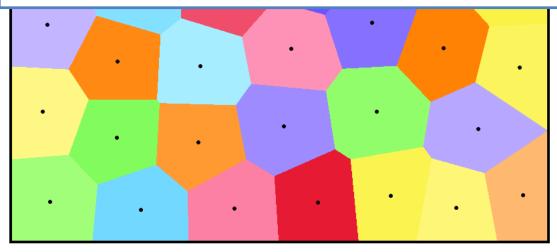
Roi Poranne

ETH zürich

Centroidal Voronoi Tessellation



Energy is minimized when sites are *centroids of cells* = *Centroidal Voronoi Tesselation*



Roi Poranne

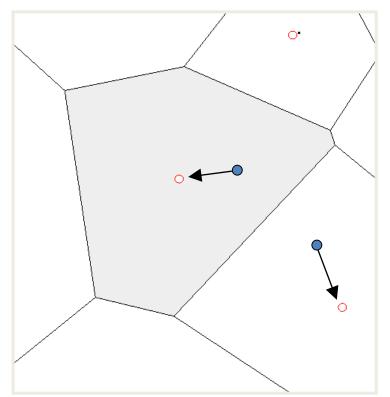
ETH zürich

Lloyd Algorithm

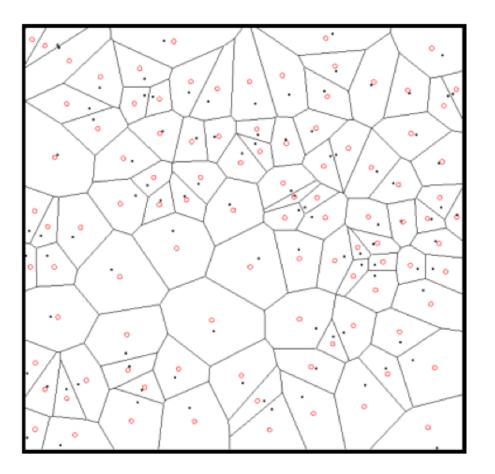
Alternate:

Voronoi partitioning

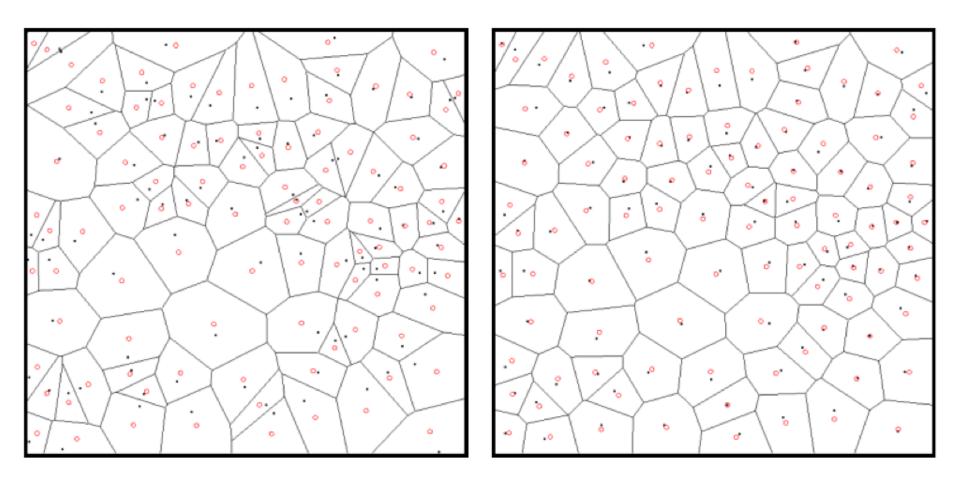
Move sites to respective centroids



Centroidal Voronoi Diagrams

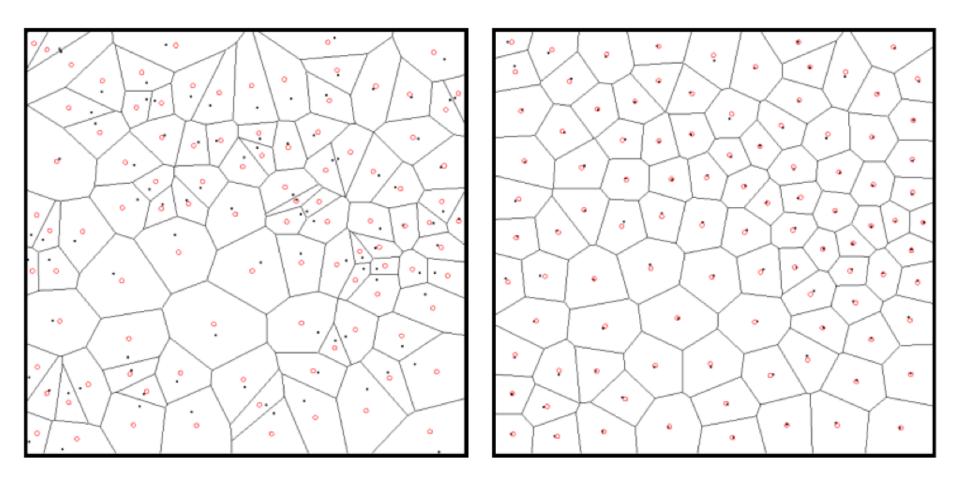


Centroidal Voronoi Diagrams



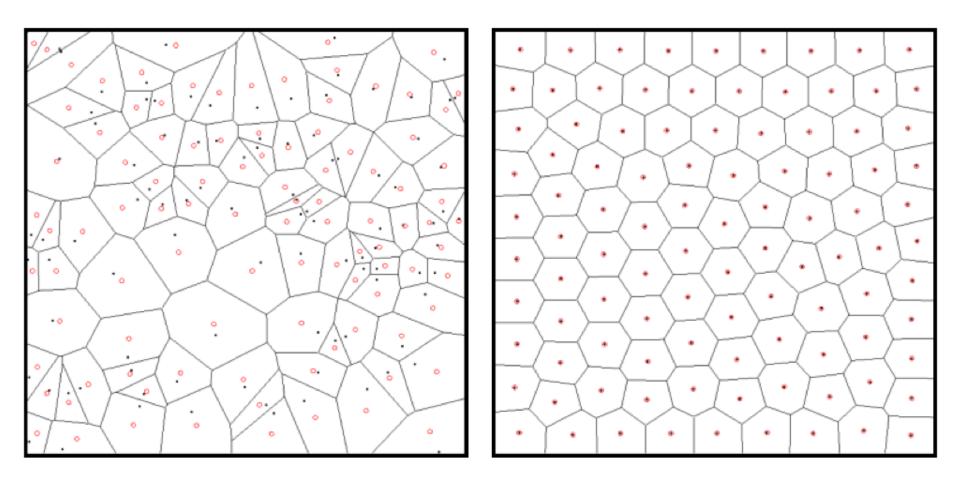
<u>demo</u>

Centroidal Voronoi Diagrams



<u>demo</u>

Centroidal Voronoi Diagrams



<u>demo</u>

Centroidal Voronoi Tesselation

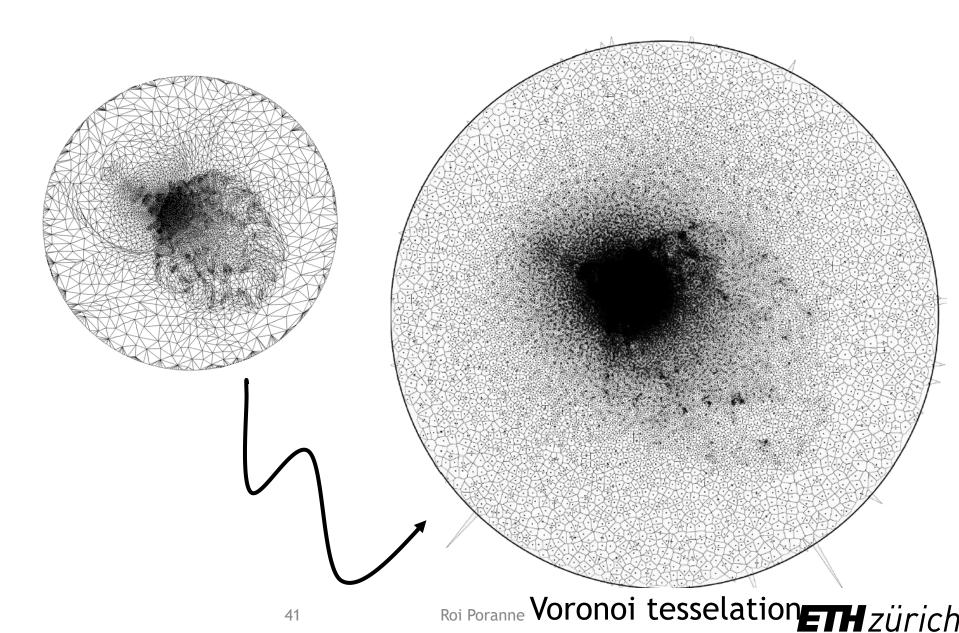
Lloyd converges slowly Stop when points "stop" moving

Faster algorithm: direct optimization of the energy using quasi-Newton

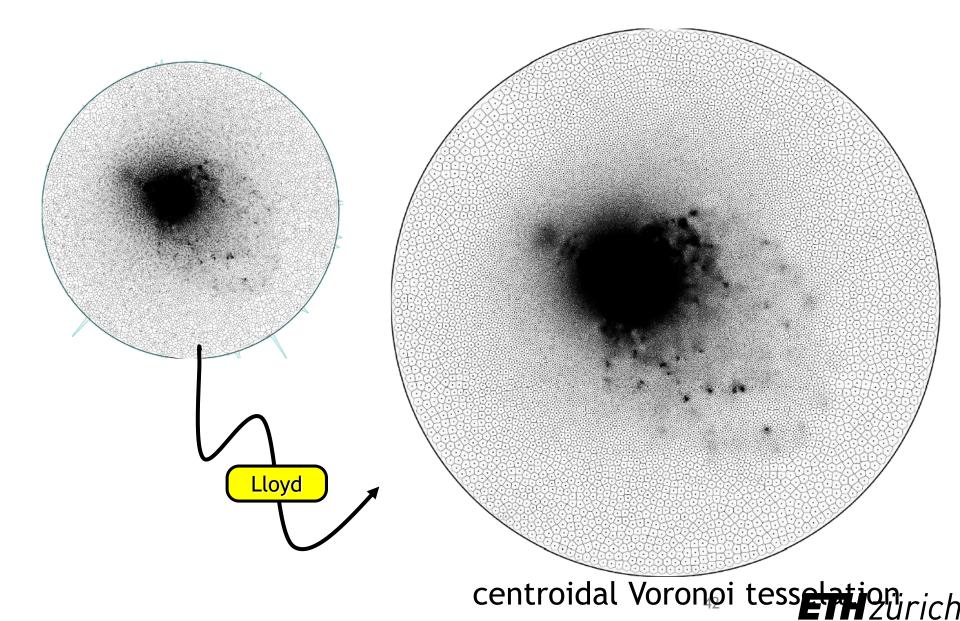
"On centroidal voronoi tessellation—energy smoothness and fast computation" [Liu et al., TOG '09]

Varying Density $E(x_1, ..., x_k, R_1, ..., R_k) = \sum_{i=1}^{n} \rho(x) \int ||x - x_i||^2$ $E(x_1, ..., x_k, R_1, ..., R_k) = \sum_{i=1}^{n} \int \int \rho(x) ||x|^2$

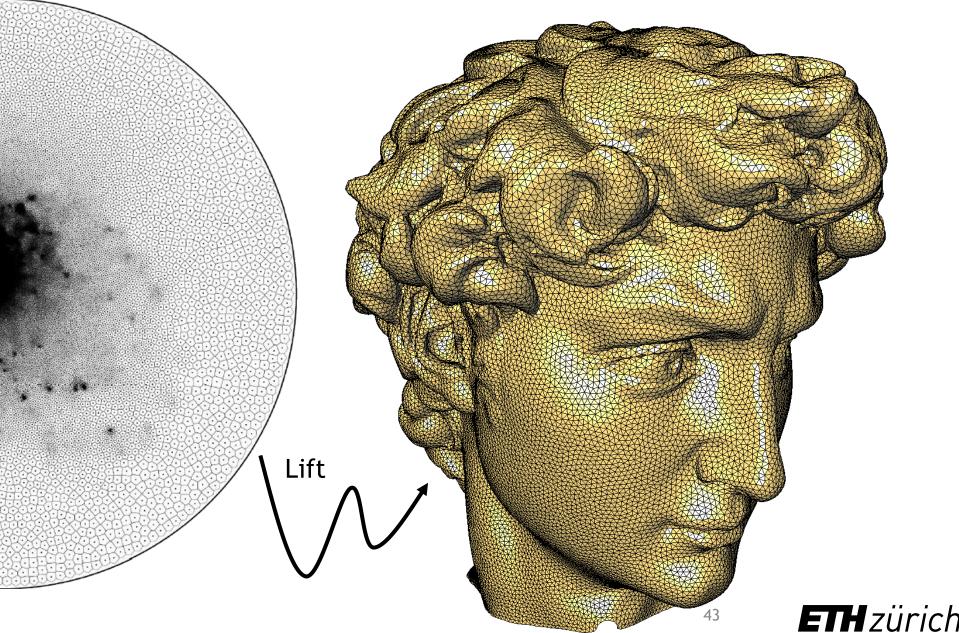
Initial Sample Scatter



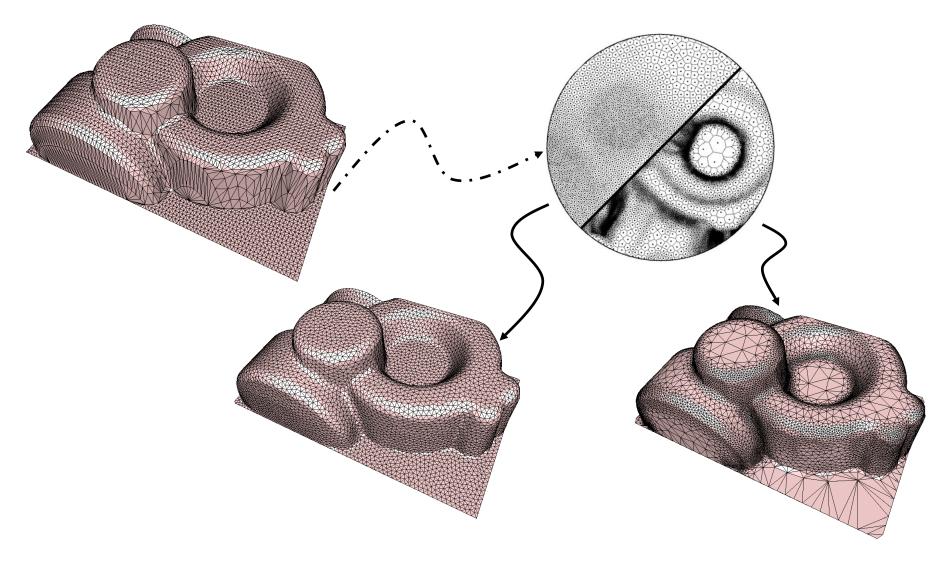
Optimized Sample Placement



Uniform Remeshing

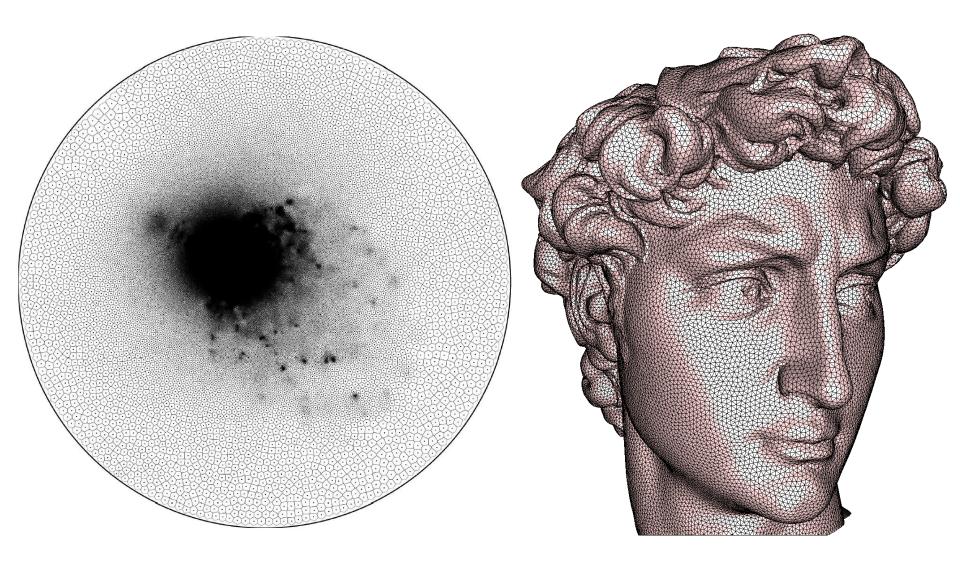


Uniform vs. Adaptive

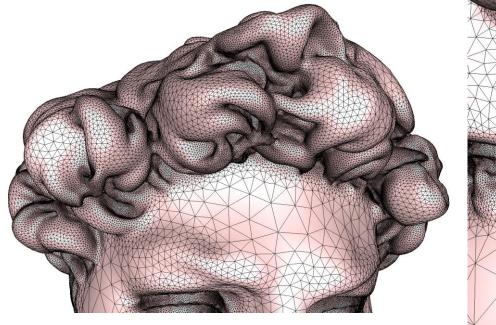


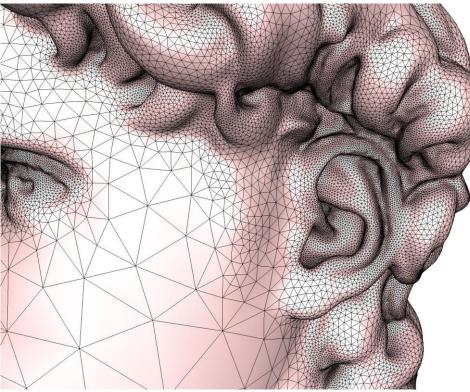
44

Uniform Sampling



Adaptive Sampling



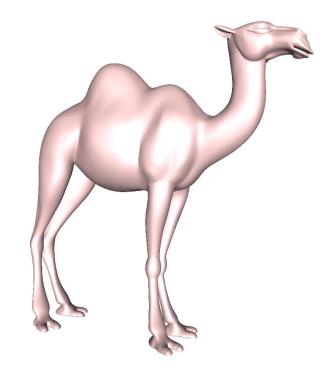


46

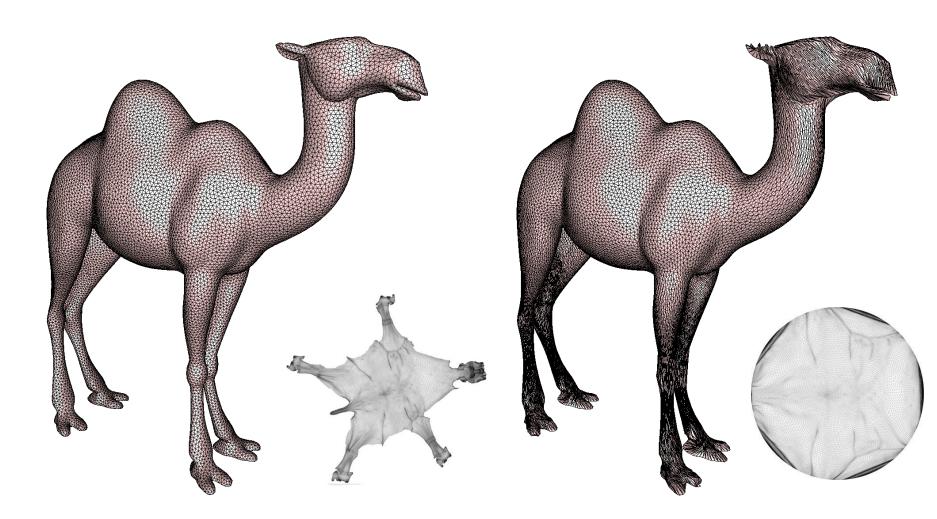
Limitations

Closed meshes Need a good cut Free boundary parameteriztion Stitch seams afterwards

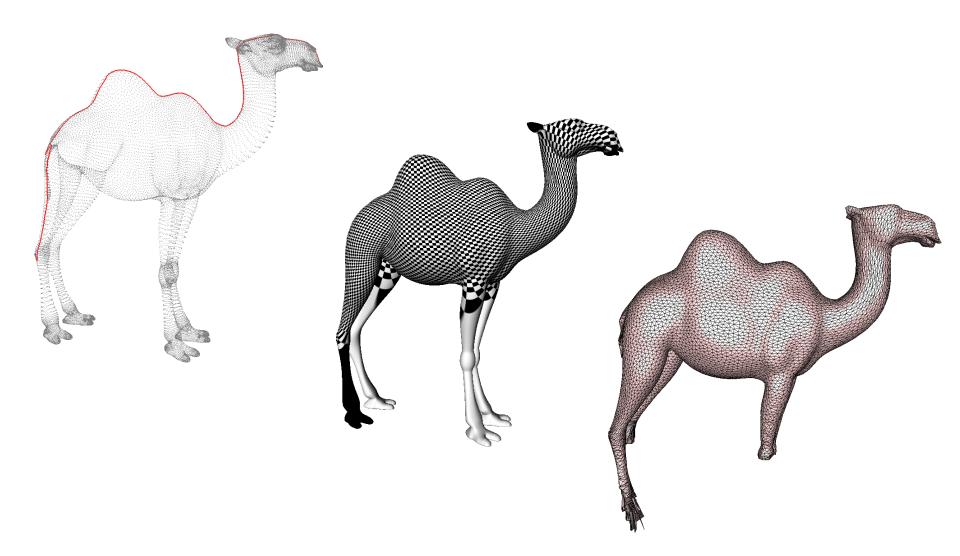
Protruding legs Sampling Numerical problems



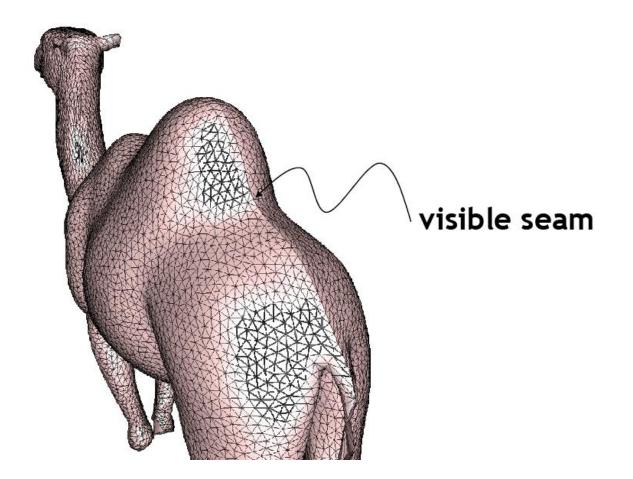
Free vs. Fixed Boundary



Naive Cut, Numerical Problems



Visible Seams

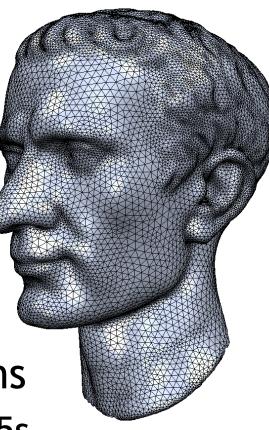


Direct Surface Remeshing [Botsch et al. '04]

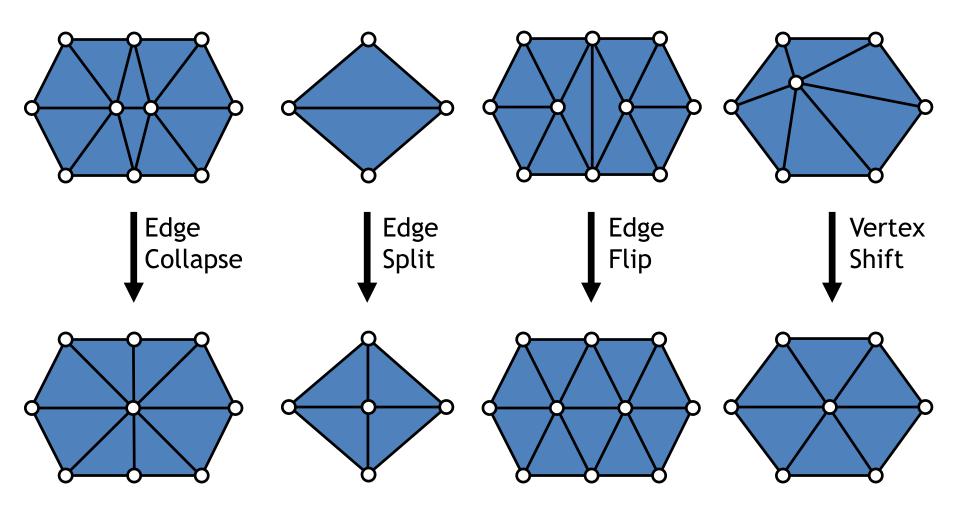
Avoid global parameterization Numerically very sensitive Topological restrictions

Avoid local parameterizations Expensive computations

Use local operators & projections Resampling of 100k triangles in < 5s



Local Remeshing Operators



52

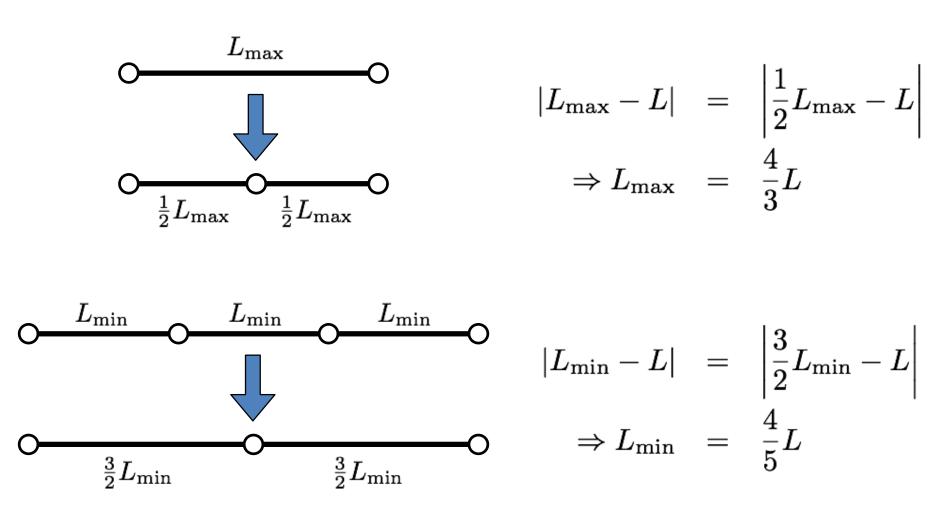
Isotropic Remeshing

Specify target edge length L Compute edge length range [L_{min}, L_{max}]

Iterate:

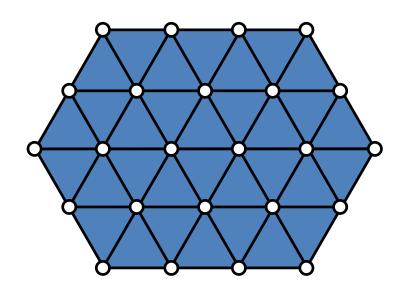
- 1. Split edges longer than L_{max}
- 2. Collapse edges shorter than L_{min}
- 3. Flip edges to get closer to valence 6
- 4. Vertex shift by tangential relaxation
- 5. Project vertices onto reference mesh

Edge Collapse / Split



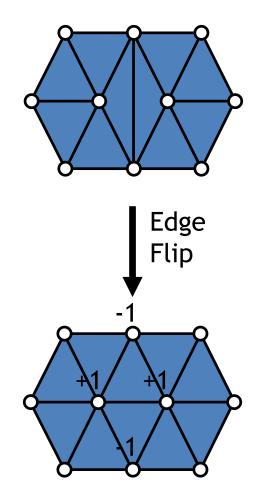
Edge Flip

Improve valences Avg. valence is 6 (Euler) Reduce variation Optimal valence is 6 for interior vertices 4 for boundary vertices



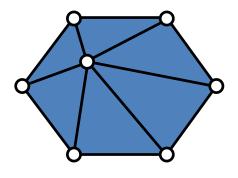
Edge Flip

Improve valences Avg. valence is 6 (Euler) **Reduce** variation Optimal valence is 6 for interior vertices 4 for boundary vertices Minimize valence excess $(\text{valence}(v_i) - \text{opt}_{-}\text{valence}(v_i))^2$ i=1

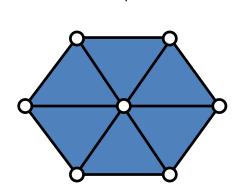


Vertex Shift

Local "spring" relaxation Uniform Laplacian smoothing Bary-center of one-ring neighbors

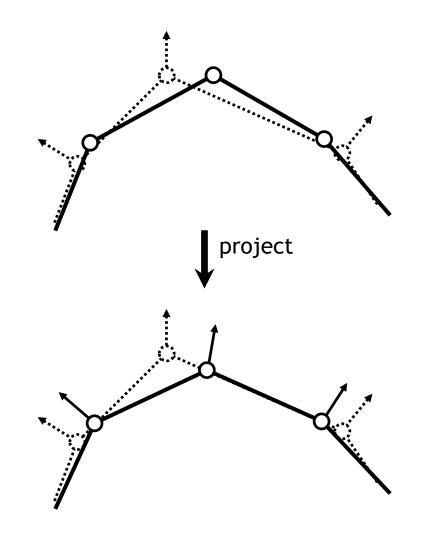


$$\mathbf{c}_i = \frac{1}{\text{valence}(v_i)} \sum_{j \in N(v_i)} \mathbf{p}_j$$

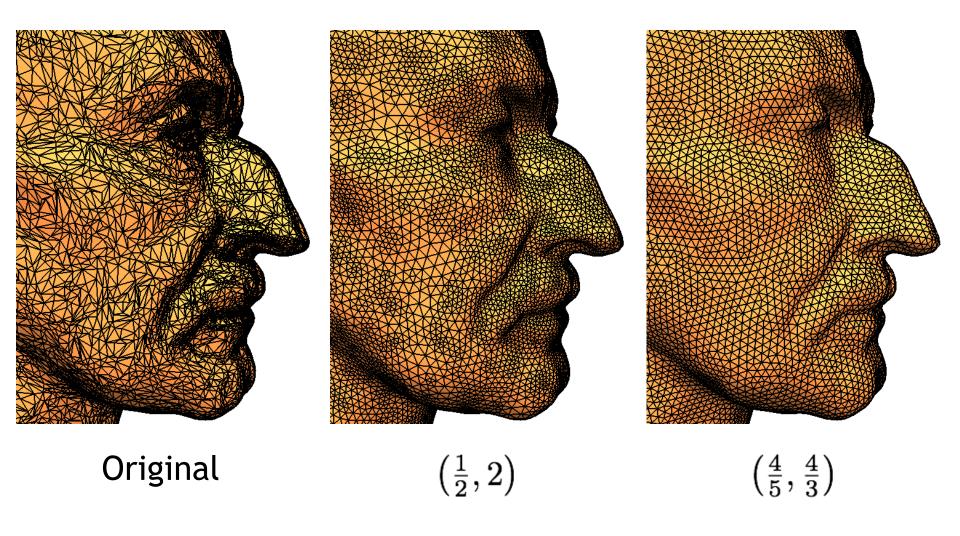


Vertex Projection

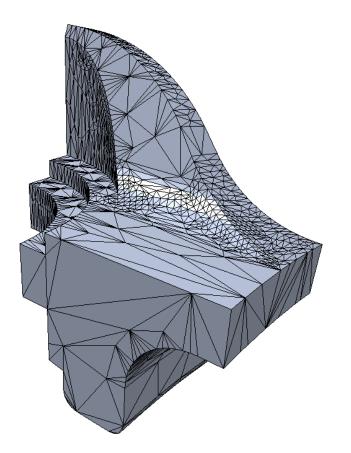
- Project vertices onto original reference mesh
- Assign position & interpolated normal



Remeshing Results



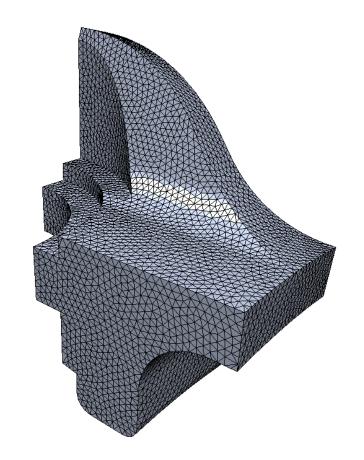
Feature Preservation?



Feature Preservation

Define features Sharp edges Material boundaries

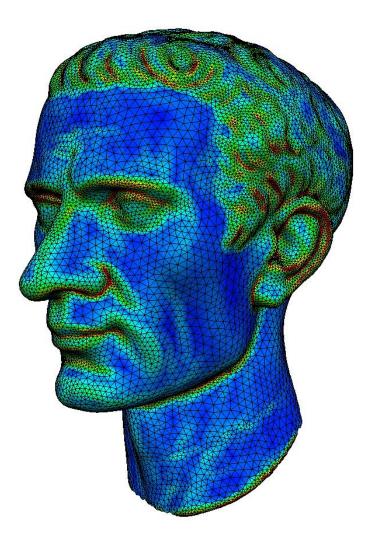
Adjust local operators Don't move corners Collapse only along features Don't flip feature edges Project to feature curves



Adaptive Remeshing

Precompute max. curvature on reference mesh

Target edge length locally determined by curvature Adjust split / collapse criteria

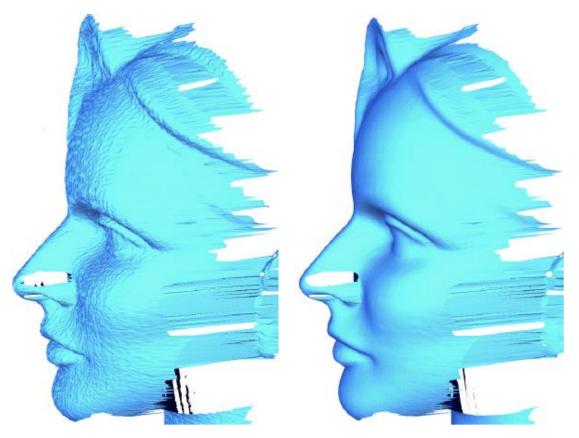


Smoothing

Roi Poranne

Surface Smoothing - Motivation

Scanned surfaces can be noisy



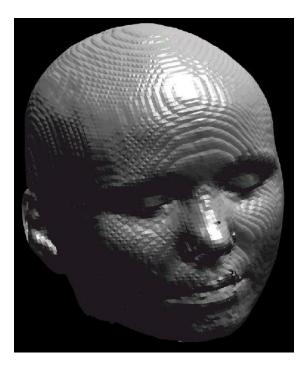
Roi Poranne

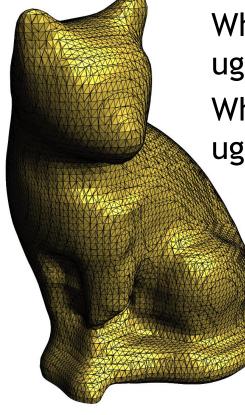
Surface Smoothing - Motivation

Scanned surfaces can be noisy

Surface Fairing - Motivation

Marching Cubes meshes are ugly!





Why is the left mesh ugly?

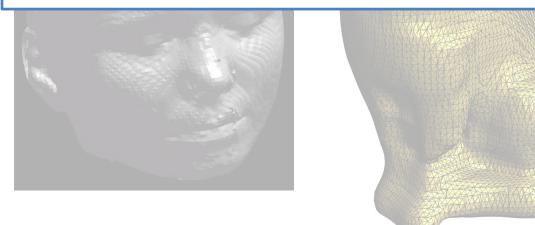
Why is the right mesh ugly?

What is the problem with such triangles?

Surface Fairing - Motivation

Marching Cubes meshes are ugly!

How to measure smoothness?



What is the problem with such triangles?

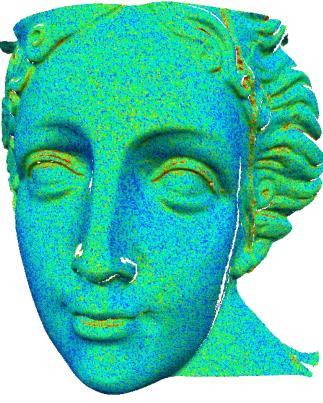
Why is the left mesh

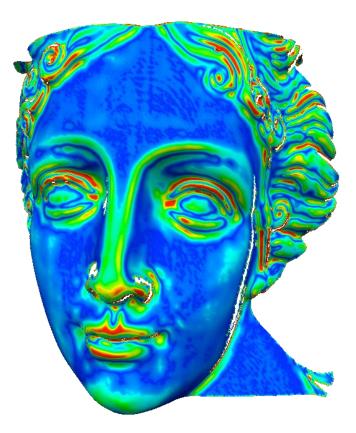
ugly?

esh

mean curvature plot

Roi Poranne

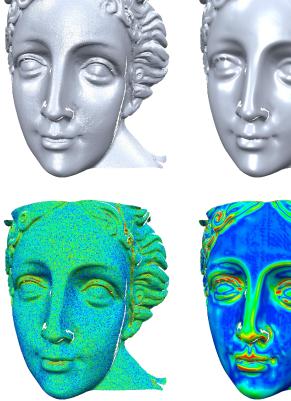




mean curvature plot

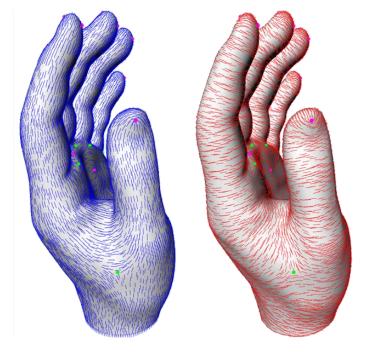
Is smoothing = reducing curvature?

Is smoothing = make curvature change less?



Which curvature?

Principal curvatures $\kappa_{\min}, \kappa_{\max}$ Nonlinear and "discontinuous" operator in the definition (min, max)



principal directions

Which curvature?

Principal curvatures $\kappa_{\min}, \kappa_{\max}$ Nonlinear and "discontinuous" operator in the definition (min,

max)

Gauss curvature K

Intrinsic-only, insensitive to embedding in \mathbb{R}^3

Which curvature?

Principal curvatures $\kappa_{\min}, \kappa_{\max}$

Nonlinear and "discontinuous" operator in the definition (min, max)

Gauss curvature K

Intrinsic-only, insensitive to embedding in $$\mathbbmm{R}^3$$

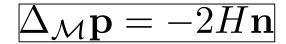
Mean curvature H

Relatively simple to extract on meshes via Laplace-Beltrami:

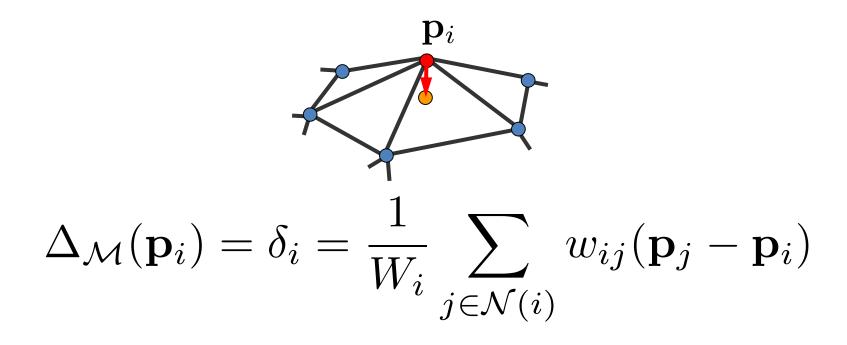
$$\Delta_{\mathcal{M}}\mathbf{p} = -2H\mathbf{n}$$

goal: H = 0 or H = const





Recap: Laplace-Beltrami



The direction of δ_i approximates the normal The size approximates the mean curvature

76

Smoothing by flowing

81

• Laplace in 1D = second derivative:

$$L(\mathbf{p}_{i}) = \frac{1}{2}(\mathbf{p}_{i-1} - \mathbf{p}_{i}) + \frac{1}{2}(\mathbf{p}_{i+1} - \mathbf{p}_{i})$$

82

• Laplace in 1D = second derivative:

$$L(\mathbf{p}_{i}) = \frac{1}{2}(\mathbf{p}_{i-1} - \mathbf{p}_{i}) + \frac{1}{2}(\mathbf{p}_{i+1} - \mathbf{p}_{i})$$

• In matrix-vector form for the whole curve $L\mathbf{p}$ $\mathbf{p} = [\mathbf{x} \ \mathbf{y}] \in \mathbb{R}^{n \times 2}$

Laplace in 1D = second derivative:

$$L(\mathbf{p}_{i}) = \frac{1}{2}(\mathbf{p}_{i-1} - \mathbf{p}_{i}) + \frac{1}{2}(\mathbf{p}_{i+1} - \mathbf{p}_{i})$$

In matrix-vector form for the whole curve

ETH zurich

• Flow to reduce curvature:

$$\tilde{\mathbf{p}}_i = \mathbf{p}_i + \lambda \frac{d^2}{ds^2}(\mathbf{p}_i)$$

- Scale factor $0 < \lambda < 1$
- Matrix-vector form:

$$\tilde{\mathbf{p}} = \mathbf{p} + \lambda L \mathbf{p}, \quad \mathbf{p} \in \mathbb{R}^{n \times 2}$$

12

• Flow to reduce curvature:

$$\tilde{\mathbf{p}}_i = \mathbf{p}_i + \lambda L(\mathbf{p}_i) = \mathbf{p}_i + \lambda \frac{a^2}{ds^2}(\mathbf{p}_i)$$

- Scale factor $0 < \lambda < 1$
- Matrix-vector form:

$$\tilde{\mathbf{p}} = \mathbf{p} + \lambda L \mathbf{p}, \quad \mathbf{p} \in \mathbb{R}^{n \times 2}$$

• Drawbacks?

19

• Flow to reduce curvature:

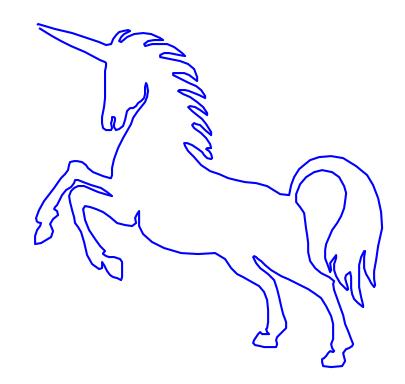
$$\tilde{\mathbf{p}}_i = \mathbf{p}_i + \lambda L(\mathbf{p}_i) = \mathbf{p}_i + \lambda \frac{a^2}{ds^2}(\mathbf{p}_i)$$

- Scale factor $0 < \lambda < 1$
- Matrix-vector form:

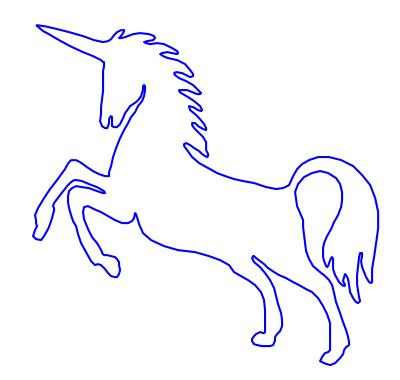
$$\tilde{\mathbf{p}} = \mathbf{p} + \lambda L \mathbf{p}, \quad \mathbf{p} \in \mathbb{R}^{n \times 2}$$

May shrink the shape; can be slow

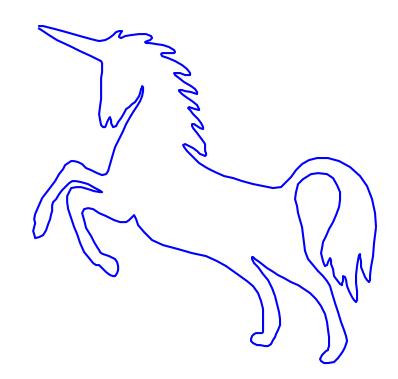
ETH zurich



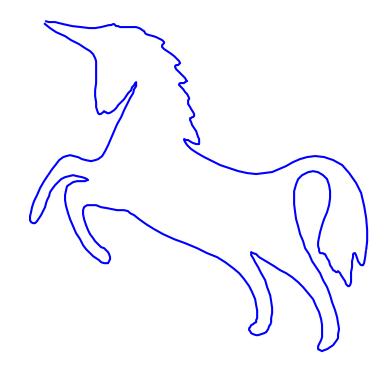
Original curve



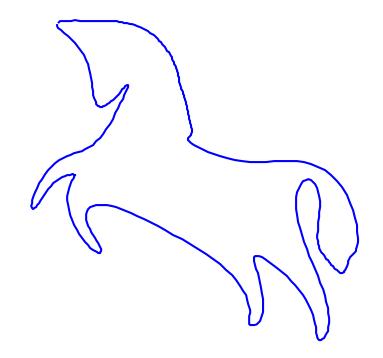
1st iteration; λ =0.5



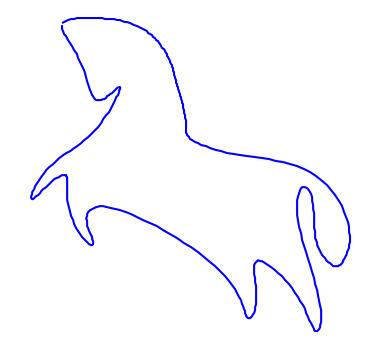
2nd iteration; λ =0.5



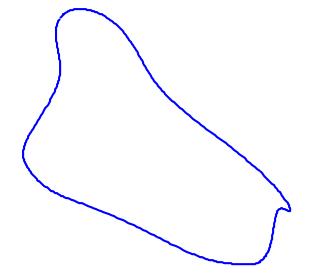
8th iteration; λ =0.5



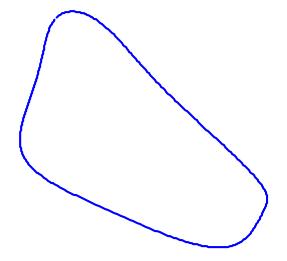
27th iteration; λ =0.5



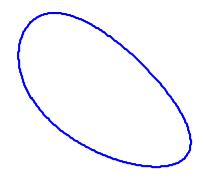
50th iteration; λ =0.5



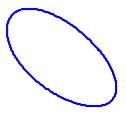
500th iteration; λ =0.5



1000th iteration; λ =0.5



5000th iteration; λ =0.5



10000th iteration; λ =0.5

٠

50000th iteration; λ =0.5

On meshes: smoothing as mean curvature flow

• Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

On meshes: smoothing as mean curvature flow

• Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

• Discretize in time, forward differences: $\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n)}$

On meshes: smoothing as mean curvature flow

• Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

• Discretize in time, forward differences: $\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n)}$ $\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)} = dt \,\lambda L \mathbf{p}^{(n)}$

On meshes: smoothing as mean curvature flow

Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

Discretize in time, forward differences:

$$\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n)}$$
$$\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)} = dt \,\lambda L \mathbf{p}^{(n)}$$
$$\mathbf{p}^{(n+1)} = (I + dt \,\lambda L) \mathbf{p}^{(n)}$$

Explicit integration! Unstable unless time step dt is small

ETH zurich

Roi Poranne

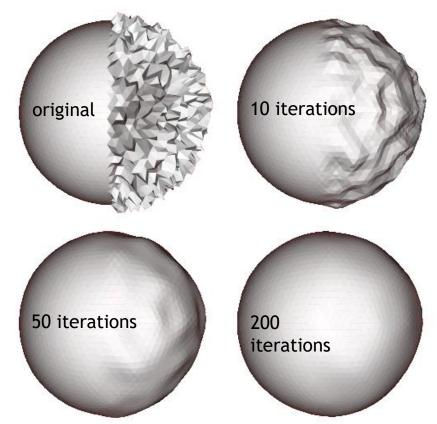
Υ

Taubin Smoothing: Explicit Steps

Iterate:

- $\tilde{\mathbf{p}} = \mathbf{p} + \lambda L \mathbf{p} = (I + \lambda L) \mathbf{p}$ $\tilde{\mathbf{p}} = \mathbf{p} + \mu L \mathbf{p} = (I + \mu L) \mathbf{p}$
- $\lambda > 0$ to smooth; $\mu < 0$ to inflate
- Originally proposed with uniform Laplacian weights

A Signal Processing Approach to Fair Surface Design Gabriel Taubin ACM SIGGRAPH 95

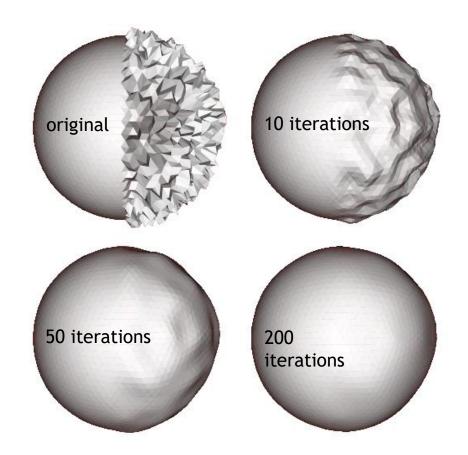


ETH zürich

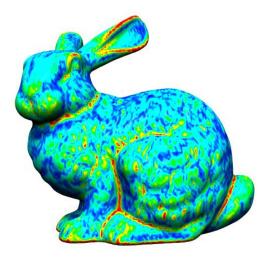
Taubin Smoothing: Explicit Steps

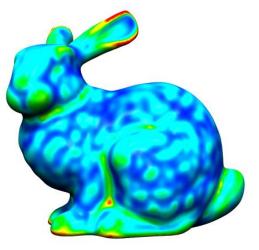
- Per-vertex iterations
 - $\tilde{\mathbf{p}}_i = \mathbf{p}_i + \lambda L(\mathbf{p}_i)$
 - $\tilde{\mathbf{p}}_i = \mathbf{p}_i + \mu L(\mathbf{p}_i)$
- Simple to implement
- Requires many iterations
- Need to tweak μ and λ

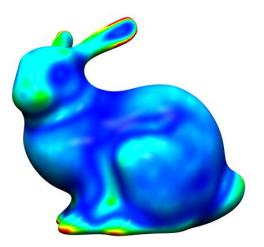
A Signal Processing Approach to Fair Surface Design Gabriel Taubin ACM SIGGRAPH 95



Example







0 iterations

10 iterations

100 iterations

Smoothing as Mean Curvature Flow

• Model smoothing as a diffusion process

$$\frac{\partial \mathbf{p}}{\partial t} = \lambda \Delta \mathbf{p} = -2\lambda H \mathbf{n}$$

• Backward Euler for unconditional stability $\frac{\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)}}{dt} = \lambda L \mathbf{p}^{(n+1)}$ $\mathbf{p}^{(n+1)} - \mathbf{p}^{(n)} = dt \,\lambda L \mathbf{p}^{(n+1)}$ $(I - dt \,\lambda L) \mathbf{p}^{(n+1)} = \mathbf{p}^{(n)}$

Implicit Fairing: Implicit Euler Steps

• In each iteration, solve for the smoothed $\tilde{\mathbf{p}}\text{:}$

$$(I - \tilde{\lambda} L)\tilde{\mathbf{p}} = \mathbf{p}$$



Implicit fairing of irregular meshes using diffusion and curvature flow M. Desbrun, M. Meyer, P. Schroeder, A. Barr ACM SIGGRAPH 99

Implicit Fairing

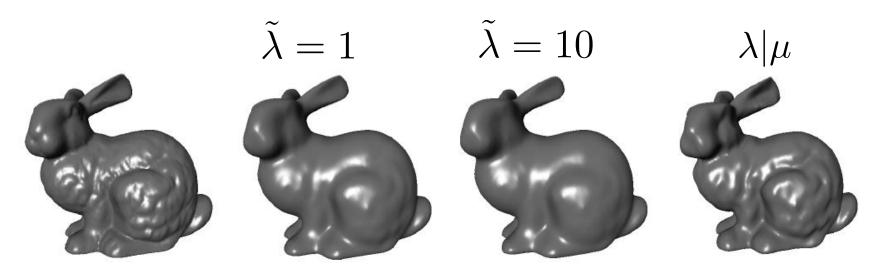


Figure 4: Stanford bunnies: (a) The original mesh, (b) 10 explicit integrations with $\lambda dt = 1$, (c) 1 implicit integration with $\lambda dt = 10$ that takes only 7 PBCG iterations (30% faster), and (d) 20 passes of the $\lambda | \mu$ algorithm, with $\lambda = 0.6307$ and $\mu = -0.6732$. The implicit integration results in better smoothing than the explicit one for the same, or often less, computing time. If volume preservation is called for, our technique then requires many fewer iterations to smooth the mesh than the $\lambda | \mu$ algorithm.

Implicit fairing of irregular meshes using diffusion and curvature flow M. Desbrun, M. Meyer, P. Schroeder, A. Barr ACM SIGGRAPH 99

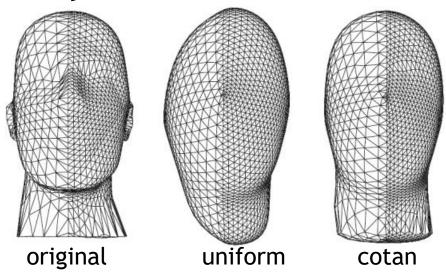
Roi Poranne

108

ETHzürich

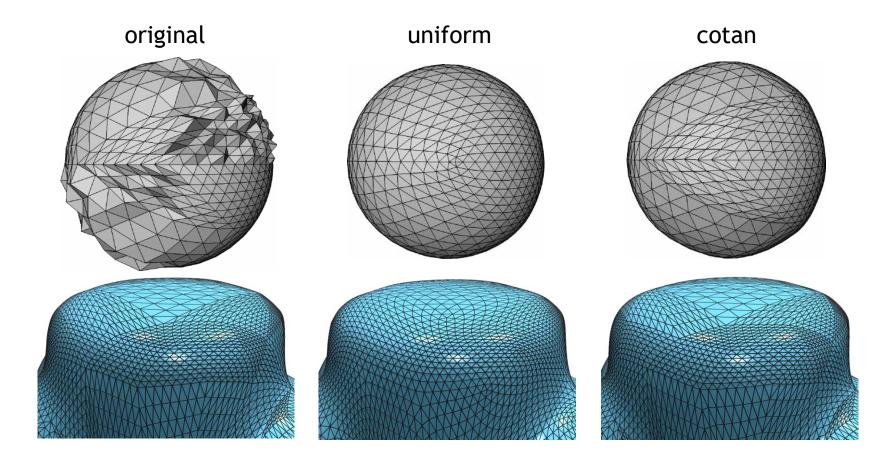
Mesh Independence

- Result of smoothing with uniform Laplacian depends on triangle density and shape
 - Why?
- Asymmetric results although underlying geometry is symmetric



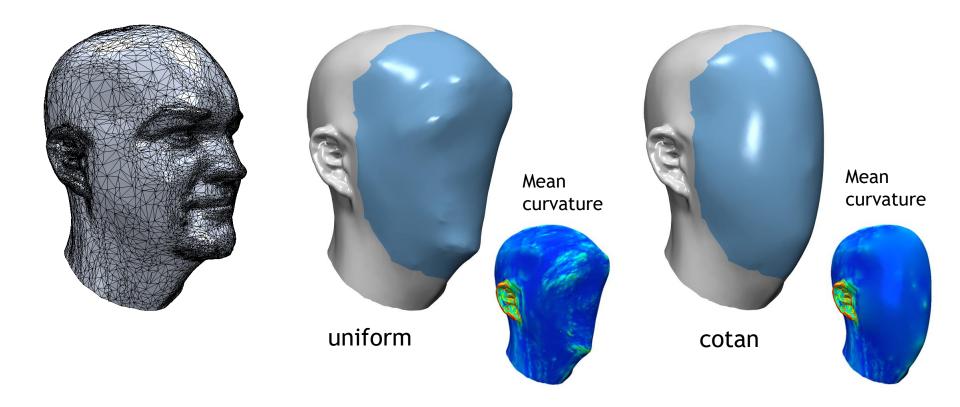
Comparison of the weights

• Explicit flow with different weights:



Implicit Fairing

• The importance of using the right weights



ETH zürich

Thank You

Acknowledgment: some slides were adapted from Prof. Mario Botsch with his kind permission

