
Physics-based models of 
deformation 

Stelian Coros
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Over the past few weeks…

• What characteristics are we looking for in a deformation model?
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Elasticity – Definition

Elasticity: The ability of a material to resist a deforming force and
to return to its original size and shape when that force is removed.
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Elasticity – Mechanisms

Wikipedia Wikipedia

Silicon [Si] Silicone [Si(CH3)2O]n

Crystal Structure Polymer Structure
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Modeling a simple elastic object
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Hookean Springs in 1D

𝐿

𝑓𝑒𝑥𝑡
𝑙

Length of undeformed spring 𝐿
Length of deformed spring 𝑙

Elasticity: Ability of the spring to return 
to its initial length when the deforming 
force is removed.

Spring Force:

• Ceiiinosssttuv. (Hooke, 1676)

• Ut tensio, sic vis. (Hooke, 1678)

 Force is linear w.r.t. extension!

Spring stiffness 𝑘

Hooke’s Law𝑓𝑒𝑥𝑡 = 𝑘(𝑙 − 𝐿)

6



Hookean Springs in 1D

𝐿

𝑓𝑒𝑥𝑡
𝑙

Length of undeformed spring 𝐿
Length of deformed spring 𝑙

For elastic springs, forces are conservative,
i.e., no energy is lost during deformation.

Spring stiffness 𝑘

Work done by forces to deform the spring:

𝑊 = 𝐿
𝑙
𝑓𝑒𝑥𝑡 𝑥 𝑑𝑥 = 𝐿

𝑙
𝑘 𝑥 − 𝐿 𝑑𝑥

Stored energy of the spring is 

𝐸 = 𝑊 =
1

2
𝑘 𝑙 − 𝐿 2

Force 𝑓𝑖𝑛𝑡 exerted by spring follows as negative 
gradient of 𝐸 (how come?): 

𝑓𝑖𝑛𝑡 = −
𝑑𝐸

𝑑𝑥
= −𝑘(𝑙 − 𝐿)

𝒙
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Hookean Springs – Generalization

• Inconvenience: springs with same material but different lengths will have 
different stiffness characteristics

A spring with rest length 𝐿1 = 𝐿 deforms by 𝛿𝑙 = 𝐿/2

A spring with rest length 𝐿2 = 100𝐿 deforms by the same 𝛿𝑙

Same stiffness k, same internal force according to Hook’s law. Which one feels stiffer?

Note relative deformation is VERY different!

• Fix: use relative deformation 𝜀 =
𝑙−𝐿

𝐿
and material stiffness ෨𝑘. Then energy 

density is Ψ =
1

2
෨𝑘𝜀2, and total stored energy is an integrated quantity:

𝐸 =
1

2
෨𝑘𝜀2𝐿 8



Hookean Springs in 𝐑𝑛

𝐿

𝑓𝑒𝑥𝑡
𝑙

Length of undeformed spring 𝐿
Length of deformed spring 𝑙

The configuration of a spring is determined by the
position of its two endpoints. We will distinguish
between
• Deformed positions 𝒙1, 𝒙2 ∈ 𝑅𝑛

• Undeformed positions ഥ𝒙1, ഥ𝒙2 ∈ 𝑅𝑛

Lengths are functions of positions, i.e.,
𝑙 = 𝒙2 − 𝒙1 2 and 𝐿 = ഥ𝒙2 − ഥ𝒙1 2

Everything else stays the sameSpring stiffness 𝑘

𝒙1 𝒙2

ഥ𝒙1 ഥ𝒙2
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Hookean Springs in nD

• 1 mass point, 1 spring

Deformation Measure Elastic Energy Forces

𝐿

𝑓𝑒𝑥𝑡
𝑙

𝒙1 𝒙2ഥ𝒙1 ഥ𝒙2

𝜀 =
𝑙

𝐿
− 1 𝐸 =

1

2
෨𝑘𝜀2𝐿 𝒇𝑖𝑛𝑡 = −

𝜕𝐸 𝒙

𝜕𝒙

𝒇1 = −෨𝑘(
𝑙

𝐿
− 1)

𝒙2−𝒙1

𝒙2−𝒙1

𝒇1 = −𝒇2

𝑙 = 𝒆 2 = 𝒆𝑇𝒆
1

2

with  𝒆 = 𝒙2 − 𝒙1

Working it out…
𝒇1 = −

𝜕𝐸 𝒙1, 𝒙2
𝜕𝒙1

= −
𝜕𝐸 𝒙1, 𝒙2

𝜕𝑙

𝜕𝑙

𝜕𝒙1
𝜕𝐸

𝜕𝑙
= ෨𝑘𝜀

𝜕𝑙

𝜕𝒙1
=

1

2
𝒆𝑇𝒆 −

1

2
𝜕 𝒆𝑇𝒆

𝜕𝒙1
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Modeling complex elastic objects
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Modeling complex elastic objects

Straightforward concept: sample object 
with mass points, connect them with 
springs…



Modeling complex elastic objects

Representation: 2D triangle mesh (or 3D 
tetrahedral mesh, of course)

• Vertices 𝐱𝑖 ∈ 𝐑2

• Edges 𝐸𝑖𝑗 are springs connecting 
vertices 𝐱𝑖 and 𝐱𝑗

Straightforward concept: sample object 
with mass points, connect them with 
springs…
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“Mass-spring” systems in the wild
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Spring Networks

Energy of spring network 

𝐸 = σ𝑘 𝐸𝑘
Total spring force at given node 

𝒇𝑖
𝑖𝑛𝑡 = −

𝜕𝐸

𝜕𝒙𝑖
= −σ𝑘

𝜕𝐸𝑘

𝜕𝒙𝑖

Total force at given node 

𝒇𝑖 = 𝒇𝑖
𝑖𝑛𝑡 + 𝒇𝑖

𝑒𝑥𝑡

𝒙𝑖

𝒙𝑗

𝒙𝑘

𝒙𝑙

𝐿𝒊𝑗 , 𝑘𝑖𝑗𝐿𝒊𝑙 , 𝑘𝑖𝑙

𝐿𝒊𝑘 , 𝑘𝑖𝑘
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Force equilibrium

Given applied forces 𝒇𝑒𝑥𝑡, how to compute resulting configuration 𝒙?

For static equilibrium, the acceleration has to be zero for all nodes,
𝒂𝒊 𝒙 = 𝟎 ∀𝑖

From Newton’s second law, we know that
𝒇𝑖 𝒙 = 𝑚𝑖𝒂𝑖 𝒙 = 𝟎

Static Equilibrium Conditions

𝒇𝑖
𝑖𝑛𝑡 𝒙 + 𝒇𝑖

𝑒𝑥𝑡 = 𝟎 ∀𝑖
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Equilibrium Conditions – Energy

If internal and external forces derive from potential fields,

then, static equilibrium conditions 

𝒇𝑖
𝑖𝑛𝑡 𝒙 + 𝒇𝑖

𝑒𝑥𝑡 = 𝟎 ∀𝑖

are equivalent to 𝒙 being a stationary point for the total energy

𝐸 𝒙 = 𝐸𝑖𝑛𝑡(𝒙) + 𝐸𝑒𝑥𝑡(𝒙), i.e., 
𝜕𝐸 𝒙

𝜕𝒙
= 𝟎

𝒇𝑖
𝑖𝑛𝑡 = −

𝜕𝐸𝑖𝑛𝑡

𝜕𝒙𝑖
𝒇𝑖
𝑒𝑥𝑡 = −

𝜕𝐸𝑒𝑥𝑡

𝜕𝒙𝑖
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Problem Statement

Task: find minimizer 𝒙∗ of function 𝐸(𝒙), 

𝒙∗ = argmin𝑥 𝐸 𝒙 → 𝐸 𝒙∗ ≤ 𝐸 𝒙 ∀ 𝒙

In general:

• 𝐸(𝒙) is a nonlinear function

• 𝐸(𝒙) is multivariate, i.e., 𝒙 ∈ 𝑅𝑛 with 𝑛 ≥ 2

• 𝐸(𝒙) may have local minima and maxima (numerical artifacts or 
expected behavior of physical system)?
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Local vs. Global Minima

Global minimum is absolute best among all possibilities

Local minimum is best “among immediate neighbors”

Somewhat philosophical question: does a local minimum “solve”
the problem?

Depends on the problem!

global minimum

local minima



Solution Strategy

Given a point 𝒙0 how do we get to a minimum?

• “Walk” into a direction that decreases 𝐸(𝒙)

• Which direction would you choose?

𝒙𝑛+1 = 𝒙𝑛 − 𝛼 ∇𝐸 𝒙𝑛
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The derivative

∇𝐸 𝒙0 ∇𝐸 𝒙1

𝒙0

𝒙1



Directional Derivatives and the Gradient

In 1D: derivative == slope == rise over run

In higher dimensions: take a slice through this function along some direction
• Then apply the usual derivative concept
• This is called the directional derivative



Directional Derivatives and the Gradient

Starting from Taylor’s series

easy to see that



Directional Derivatives and the Gradient

Given a multivariate function 𝑓 𝒙 , gradient assigns a vector 𝛻𝑓 𝒙 at each point

Inner product between gradient and any unit vector gives directional derivative “along 
that direction”

• Another way to think about it is that inner product outputs the component of the 
gradient along a unit vector…

Out of all possible unit vectors, what is the one along which the function changes most 
drastically?



Gradient in coordinates

Most familiar definition: list of partial derivatives



Gradient is direction of steepest ascent

Function value 
• gets largest if we move in direction of gradient 
• doesn’t change if we move orthogonally
• decreases fastest if we move exactly in opposite direction



Steepest Descent – Algorithm I

Algorithm: steepest_descent

Input: 𝑥 //initial guess

𝛼 //step length

𝜀 //threshold

while abs(∇𝐸(𝑥)) > 𝜀 do

𝑥 = 𝑥 − 𝛼∇𝐸(𝑥);

end do;
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Gradient Descent (1D)

• Basic idea: follow the gradient “downhill” until it’s zero

• (Zero gradient is the 1st-order optimality condition)



Steepest Descent – Observations

• Progress is initially good, but slows down when approaching minimum

• Number of steps to convergence depends on step length 𝛼

• Too small alpha leads to slow progress

• Too large alpha leads to divergence
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Gradient Descent Algorithm (1D)



Steepest Descent – Observations

• Progress is initially good, but slows down when approaching minimum

• Number of steps to convergence depends on step length 𝛼

• Too small alpha leads to slow progress

• Too large alpha leads to divergence

How can we improve this basic steepest descent algorithm?
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Steepest Descent – Improvements

• Idea: enforce monotonicity, i.e., 𝐸 𝑥𝑛+1 < 𝐸 𝑥𝑛 ∀ 𝑛.
• Goal: in each step, find 𝛼 such that

(I)     𝐸 𝑥𝑛 − 𝛼∇𝐸(𝑥𝑛) < 𝐸 𝑥𝑛
• From Taylor series, we know that ∃ 𝛼 > 0 such that (I) holds

e.g. 𝑓 𝑥 + 𝑑𝑥 = σ𝑖=0
∞ 𝑓 𝑛 𝑥

𝑛!
𝑑𝑥𝑛

= 𝑓 𝑥 + 𝑓’ 𝑥 𝑑𝑥 + 𝑂 𝑑𝑥2

≈ 𝑓 𝑥 + 𝑓’ 𝑥 𝑑𝑥 if 𝑑𝑥 is sufficiently small

• Approach: reduce 𝛼 until condition (I) is satisfied
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Line Search

Algorithm: line_search

Input: 𝑥, 𝑑𝑥, 𝛼, 𝛽

while 𝐸 𝑥 − 𝛼 ∗ 𝑑𝑥 > 𝐸(𝑥) do

𝛼 = 𝛼 ∗ 𝛽;

end do;

𝑥 current state
𝑑𝑥 search direction
𝛼 initial step length
0 < 𝛽 < 1 scaling factor

Algorithm: steepest_descent

Input: 𝑥, 𝑑𝑥, 𝛼, 𝛽, 𝜀

while abs(∇𝐸(𝑥)) > 𝜀 do

𝑑𝑥 = ∇𝐸(𝑥);

𝛼 = line_search(𝑥, 𝑑𝑥, 𝛼, 𝛽);

𝑥 = 𝑥 − 𝛼 𝑑𝑥;

end do;
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Gradient Descent Algorithm (nD)

Basic challenge in nD:
- solution can “oscillate”
- takes many, many small steps
- very slow to converge

How can we improve on this?



Newton’s method

Alternative approach:

• Find 𝑑𝑥 such that ∇𝐸 𝑥𝑛 + 𝑑𝑥 = 0

• Taylor series on gradient, to first order

∇𝐸 𝑥𝑛 + 𝑑𝑥 = ∇𝐸 𝑥𝑛 + ∇2𝐸 𝑥𝑛 𝑑𝑥 = 0

𝑑𝑥 = −∇2𝐸 𝑥𝑛
−1∇𝐸 𝑥𝑛
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The Hessian visualized

Gradient: linear approximation

Hessian: quadratic approximation



Newton’s Method

Algorithm: newton

Input: 𝑥, 𝛼, 𝛽, 𝜀

while abs(∇𝐸(𝑥)) > 𝜀 do

𝑑𝑥 = −∇2𝐸−1 x ∗ ∇𝐸(𝑥);

𝛼 = line_search(𝑥, 𝑑𝑥, 𝛼, 𝛽);

𝑥 = 𝑥 + 𝛼𝑑𝑥;

end do;

Algorithm: steepest_descent

Input: 𝑥, 𝛼, 𝛽, 𝜀

while abs(∇𝐸(𝑥)) > 𝜀 do

𝑑𝑥 = −∇𝐸(𝑥);

𝛼 = line_search(𝑥, 𝑑𝑥, 𝛼, 𝛽);

𝑥 = 𝑥 + 𝛼 𝑑𝑥;

end do;
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Observations & Interpretations

• Newton’s method converges much faster than Steepest Descent

Gradient Descent

Newton’s method: coordinate 
transformation that makes the energy 
landscape look like a “round bowl”40



Spring Networks - Hessian

• Given 𝒙, we can compute 𝐸𝑖𝑛𝑡, 𝐸𝑒𝑥𝑡 and 𝜕𝐸/𝜕𝒙. 

→ Sufficient for gradient descent.

• For NM, we also need second derivatives, i.e., the Hessian 𝐇 =
𝜕2𝐸

𝜕𝒙2

• Hessian for given spring 

𝐇𝑖𝑗
𝑘 =

𝜕2𝐸𝑘

𝜕𝒙𝒊𝜕𝒙𝒊
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Forces & Force Jacobians

• So, what does 𝐇 =
𝜕2𝐸

𝜕𝒙2
= −

𝜕𝐹

𝜕𝒙
represent?

• Much more intuitive to think in terms of blocks of the Jacobian:

𝜕𝐹𝑖
𝜕𝒙𝒋

• “how does the force on particle i change when the position of 
particle j changes”

42



Forces & Force Jacobians

• How do we compute the force Jacobian?
• Analytic formulas

• Numerical approach
• Finite Differences, very useful for prototyping/debugging

• Automatic & Symbolic differentiation
• e.g. Maple
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Gradients of Matrix-Valued Expressions

EXTREMELY useful to be able to differentiate matrix-valued expressions!

At least once in your life, work these out meticulously in coordinates!



Checking Derivatives

How do you know if your derivatives are correct?

• Compare analytical derivatives against numerical derivatives 
computed with finite differences.

• Taylor series for elastic energy: 
𝐸 𝒙 + 𝒅𝒙 = 𝐸 𝒙 + 𝒈 𝒙 𝒅𝒙 + 𝑂 𝒅𝒙2

• FD approximation for elastic gradient
𝒈𝐹𝐷 𝒙 𝒅𝒙 = 𝐸 𝒙 + 𝒅𝒙 − 𝐸 𝒙

• Can assume gradients are correct if 𝒈𝐹𝐷 − 𝒈 < 𝜀

• Even better, verify quadratic decrease in residual

𝑟 𝒅𝒙 = 𝐸 𝒙 + 𝒅𝒙 − 𝐸 𝒙 − 𝒈 𝒙 𝒅𝒙

46



• What does the structure of the force Jacobian look like?

47

Forces & Force Jacobians

0x
1x 2x 3x

4x 5x 6x



• Block i,j is non-zero only if there is a spring between particles i and j.
In general, connectivity structure is very sparse - most entries are 
therefore zero!

48

Forces & Force Jacobians



Spring Networks – Hessian

• What can be said about 𝐇?
• 𝐇 is symmetric: 𝐇𝑖𝑗 = 𝐇𝑗𝑖

𝑇

• 𝐇 is sparse: 𝐇𝑖𝑗 is only nonzero if there is a spring between nodes 𝑖 and 𝑗

• 𝐇 is singular, why?
• remove null-space by specifying constraints/boundary conditions
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Newton’s Method in 𝑛𝐷

Observations & Remarks

• In general 𝒅𝒙 ≠ −𝒈 but we require 𝒅𝒙𝑇𝒈 < 0

• All robustness measures (e.g. line search) remain necessary

• Additionally have to ensure robust solution of linear system
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Indefinite Systems

• Some linear system solvers (e.g. cholesky factorization and CG) only 
work if 𝐀 is positive semi-definite (PSD). 

• What does it mean for the hessian of a physical energy to be indefinite?

𝜆1, 𝜆2 > 0

Positive Definite

𝜆1, 𝜆2 < 0

Negative Definite

𝜆1 > 0, 𝜆2 < 0

Indefinite
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Indefinite systems: compressed springs

compressive 
force 𝑭

compressive 
force −𝑭

𝐯𝟏
𝐭𝐀𝐯𝟏 > 𝟎

𝐯𝟐
𝐭𝐀𝐯𝟐 < 𝟎

𝐯𝟐

𝐯𝟏

is indefinite, we are at a saddle point!𝐀
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Mass Spring Systems
• Can be used to model arbitrary deformable objects, and are easy to 

understand and implement, but…
• Behavior depends on mesh tessellation

• Find good spring layout

• Find good spring constants

• Different types of springs interfere

• Limited accuracy
• No explicit volume or area preservation
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Alternative…

• Start from continuum mechanics principles

• Discretize with Finite Elements

– Decompose model into simple elements

– Setup & solve system of algebraic equations

• Advantages

– Accurate and controllable material behavior

– Largely independent of mesh structure
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General Concept

Deformation measure

Material model

Strain energy

55

Algebraic equations

Continuous setting

+

Proper FEM Discretization

Governing equations (PDE)

Weak form

Discretization

Discrete Energy Approach

Discretization

Per-element energy

Minimum Energy Principle



Mass Spring vs Continuum Mechanics
• Mass spring systems require:

1. Measure of Deformation

2. Material Model

3. Deformation Energy

4. Internal Forces

• Simulation approaches that start from continuum mechanics principles rely 
on conceptually identical pieces of information
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Formalizing Continuous Deformations

• For a deformable body, keep track of the
• undeformed state ഥΩ ⊂ 𝐑3

• deformed state Ω ⊂ 𝐑3

• Displacement field 𝒖 describes Ω in terms of ഥΩ

𝒖(ഥ𝒙): ഥΩ → Ω ,   𝒙 ഥ𝒙 = ഥ𝒙 + 𝒖(ഥ𝒙)

x

y

z

𝑤 is displacement in 𝑧 direction

𝑢 is displacement in 𝑥 direction
𝑣 is displacement in 𝑦 direction

ഥΩ

ഥ𝒙

Ω
𝒙

𝒖(ഥ𝒙)
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A continuous function

x

f(x)



x1x0 x2 x3 x4 x5 x6 x7 x8

A continuous function – computer representation

f(x)



A continuous function – computer representation

x1x0 x2 x3 x4 x5 x6 x7 x8

f(x)



Let’s work it out in 1D

x1x0 x2 x3 x4 x5 x6 x7 x8

f(x)

𝐟approx 𝐱 = σ𝑁𝑖 𝐱 𝐟(𝐱𝑖)



Approximating continuous functions

• Key idea: use basis functions and sampled function values to approximate 
continuous functions we care about (displacement field, deformed state, etc).

• For example: 

𝐱 ҧ𝑥, ത𝑦, ҧ𝑧 = σ𝑁𝑖 ҧ𝑥, ത𝑦, ҧ𝑧 𝐱𝑖



Finite element discretization

Decompose complex models into simple elements

A finite element consists of

• a closed subset Ω𝑒 ⊂ 𝑹𝑑 (in 𝑑 dimensions)

• 𝑛 nodal basis functions defined wrt undeformed domain 𝑁𝑖: ഥΩ𝑒 → 𝑹

• 𝑛 vectors of nodal variables ഥ𝒙𝑖 ∈ 𝑹𝑑 describing the reference geometry

• 𝑛 vectors of degrees of freedom (e.g., deformed positions 𝒙𝑖)

Example: 3-node triangle with linear basis functions

e

𝑁1 𝑁2 𝑁3



Linear Simplicial Elements

1D: line segment 2D: triangle 3D: tetrahedron

• Simplicial elements admit linear basis functions

• Basis functions are uniquely defined through 

- reference geometry ഥ𝒙𝑖 and 

- interpolation requirement 𝑁𝑖 ഥ𝒙𝑗 = 𝛿𝑖𝑗

ഥ𝒙𝑖 = ҧ𝑥𝑖 in 1D
ഥ𝒙𝑖 = ( ҧ𝑥𝑖 , ത𝑦𝑖) in 2D
ഥ𝒙𝑖 = ( ҧ𝑥𝑖 , ത𝑦𝑖 , ҧ𝑧𝑖) in 3D

ഥ𝒙1
ഥ𝒙2

ഥ𝒙3ഥ𝒙1

ഥ𝒙2

ഥ𝒙4

ഥ𝒙3

ഥ𝒙1

ഥ𝒙2
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Computing Basis Functions – 2D example
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• Due to , we haveijjiN )(x

Example: 3-node elements with linear basis functions

e

1N
2N 3N

• Basis functions are linear on element: cybxayxN iii ),(
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Reasoning about deformations

Displacement field 𝒖 describes Ω (deformed configuration) in terms of ഥΩ (undeformed 
configuration): 𝒖 tells us where each point in the material domain ends up in world 
coordinates

𝒖(ഥ𝒙): ഥΩ → Ω ,   𝒙 ഥ𝒙 = ഥ𝒙 + 𝒖(ഥ𝒙)

Through interpolation, we need only keep track of the position of a finite set of points 
𝒙 to know (approximately) the deformed configuration of the entire simulation 
domain.

x

y

z
ഥΩ

ഥ𝒙

Ω
𝒙

𝒖(ഥ𝒙)



Reasoning about deformations

We know what happens to points in material space (𝒙 ഥ𝒙 = ഥ𝒙 + 𝒖(ഥ𝒙))

But what happens to vectors?

Consider material points ഥ𝒙1 and ഥ𝒙2 and ഥ𝒅 = (ഥ𝒙2 − ഥ𝒙1) such that ҧ𝑑 is infinitesimal. What is the 
corresponding deformed vector 𝒅?

x

y

z
ഥΩ

ഥ𝒅
Ω

𝒙𝟏ഥ𝒙𝟐
ഥ𝒙𝟏 𝒙𝟐

𝒅

𝒅 = 𝒙𝟐 − 𝒙𝟏
= ഥ𝒙𝟐 + 𝒖 ഥ𝒙2 − ഥ𝒙𝟏 − 𝒖 ഥ𝒙1
= ഥ𝒅 + 𝒖 ഥ𝒙1 − ഥ𝒅 − 𝒖 ഥ𝒙1
≈ ഥ𝒅 + 𝒖 ഥ𝒙1 − ∇𝒖ഥ𝒅 − 𝒖 ഥ𝒙1

= (𝐼 + ∇𝒖)ഥ𝒅

Deformation 
gradient F



Displacement field and the deformation gradient

• Displacement field maps points in material space to points in world 
coordinates: 𝒙(ഥ𝒙) = ഥ𝒙 + 𝒖 ഥ𝒙

• Deformation gradient 𝑭 = 𝑰 + 𝛻𝒖 maps undeformed vectors to 
deformed vectors as 𝒅 = 𝑭ഥ𝒅

• Since 𝒙(ഥ𝒙) = ഥ𝒙 + 𝒖 ഥ𝒙 we can write

𝑭 = 𝑰 + 𝛻𝒖 =
𝜕

𝜕ഥ𝒙
ഥ𝒙 + 𝒖 ഥ𝒙 =

𝜕𝒙

𝜕ഥ𝒙
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Displacement Field and Deformation Gradient
• In general, displacement field is not explicitly described. 

Nevertheless, toy examples:
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• In general, displacement field is not explicitly described. 
Nevertheless, toy examples:

Displacement Field and Deformation Gradient
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• In general, displacement field is not explicitly described. 
Nevertheless, toy examples:

Displacement Field and Deformation Gradient

72



• In general, displacement field is not explicitly described. 
Nevertheless, toy examples:

Displacement Field and Deformation Gradient
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• In general, displacement field is not explicitly described. 
Nevertheless, toy examples:

Displacement Field and Deformation Gradient
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Deformation Gradient and Finite Elements

• Recall, we use basis functions to define continuous geometry of element as 

ത𝐱 ҧ𝑥, ത𝑦, ҧ𝑧 = σ𝑁𝑖 ҧ𝑥, ത𝑦, ҧ𝑧 ത𝐱𝑖 and    𝐱 ҧ𝑥, ത𝑦, ҧ𝑧 = σ𝑁𝑖 ҧ𝑥, ത𝑦, ҧ𝑧 𝐱𝑖

• And we compute the deformation gradient as

𝐅 =
𝜕𝐱 ത𝐱

𝜕ത𝐱
= σ𝑖 𝐱𝑖

𝜕𝑁𝑖

𝜕ത𝐱

𝑡

• Notes: 

− In 3D, 𝐅 ∈ 𝐑3×3 and 𝐅 is linear in 𝐱𝑖

− If 𝑁𝑖 are linear, 𝐅 is constant on element

− Notation and confusion: 
𝜕𝑁𝑖

𝜕ത𝐱
≠

𝜕𝑁𝑖

𝜕ത𝐱𝑖
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Ω𝑒

ത𝐱1

ത𝐱2

ത𝐱3

ത𝐱4



Notation & Confusion

𝐅 =
𝜕𝐱 ത𝐱

𝜕ത𝐱
=

𝑖

𝐱𝑖
𝜕𝑁𝑖
𝜕ത𝐱

𝑡
𝜕𝑁𝑖
𝜕ത𝐱

≠
𝜕𝑁𝑖
𝜕ത𝐱𝑖

Continuous case:

• Undeformed configuration ഥ𝒙 ҧ𝑥, ത𝑦 = ҧ𝑥, ത𝑦 𝑇

Discretized:

• Undeformed configuration ഥ𝒙 ҧ𝑥, ത𝑦 = σ𝑖𝑁𝑖 ҧ𝑥, ത𝑦 ഥ𝒙𝑖
• Deformed configuration   𝒙 ҧ𝑥, ത𝑦 = σ𝑖𝑁𝑖 ҧ𝑥, ത𝑦 𝒙𝑖
• With, for example, 𝑁𝑖 ഥ𝒙 = 𝑁𝑖 ҧ𝑥, ത𝑦 = 𝑎𝑖 ҧ𝑥 + 𝑏𝑖 ത𝑦 + 𝑐𝑖

• Linear coefficients (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) are a function of ഥ𝒙𝑖, but it’s not what 
𝜕𝑁𝑖

𝜕ത𝐱
represents
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Another way to compute the deformation gradient, if 
constant throughout element (i.e. linear basis functions)

• Deformation gradient maps undeformed vectors to deformed vectors

• Choose d vectors (e.g. element edge vectors) for which the map is 
known, assemble in matrix form and solve for 𝐅: 𝐅 = 𝒆ത𝒆−𝟏
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Interpreting F

• Polar decomposition 𝑭 = 𝑹𝑼, with 𝑹 orthonormal and 𝑼 positive 
definite

• If 𝑭 is non-singular, i.e., det 𝑭 ≠ 0, then its PD exists and is unique.

How to compute the polar decomposition?

• Start from an SVD: 𝑭 = 𝑷𝚺𝑸𝑇with 𝚺 diagonal and 𝑷,𝑸 orthonormal

• Then 𝑭 = 𝑷𝐐T𝐐𝚺𝑸𝑇 = 𝑹𝑼 where 𝑹 = 𝑷𝑸𝑇is orthonormal (pure 
rotation) and 𝑼 = 𝐐𝚺𝑸𝑇 is positive definite (pure deformation)
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Interpreting F

Singular Value Decomposition  𝑭 = 𝑷𝚺𝑸𝑇

• Recall that 𝑭 transforms vectors from undeformed to deformed space as 
𝒅 = 𝑭ഥ𝒅

• Consider sequence of transformations for 𝑭 = 𝑷𝚺𝑸𝑇 = 𝑹𝑸𝚺𝑸𝑇

• 𝒅1 = 𝑸𝑇 ഥ𝒅 :    𝑸𝑇 rotates from undeformed (material) space to intermediate 
space of principal stretches → preserves length.

• 𝒅2 = 𝚺𝒅1: 𝚺 scales components of 𝒅1 → changes length.
• 𝒅3 = 𝑸𝒅2: 𝑸 transforms 𝒅2 back to undeformed space → preserves length.
• 𝒅 = 𝑹𝒅3: 𝑹 rotates from undeformed to deformed space → preserves 

length.
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Interpreting F

• Consider unit tetrahedron with 
• Vertices: ഥ𝒙1 = 0,0,0 𝑇, ഥ𝒙2 = 1,0,0 𝑇,  ഥ𝒙3 = 0,1,0 𝑇,  ഥ𝒙4 = 0,0,1 𝑇

• Edges: 𝒆21 = 1,0,0 𝑇, 𝒆31 = 0,1,0 𝑇, 𝒆41 = 0,0,1 𝑇

• Volume of undeformed tetrahedron is defined through scalar triple product
ത𝑉 =

1

6
𝒆21 × 𝒆31

𝑇𝒆41

• Consider deformed tetrahedron with edges 𝑭𝒆𝑖1. Then

𝑉 =
1

6
𝑭𝒆21 × 𝑭𝒆31

𝑇𝑭𝒆41 =
1

6
𝑭:1 × 𝑭:2

𝑇𝑭:3 =
1

6
det 𝑭

• The determinant of 𝑭 indicates the change in volume, i.e.,
𝑉 = det 𝑭 ത𝑉
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Modeling deformations

Deformation gradient tells us how vectors change, but how can 

we describe deformations (strain) at any given material point?
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• Deformation measure (strain):

• Undeformed spring:

• Undeformed* infinitesimal continuum volume:

Back to spring deformation

Kind of like F

= 1

= I
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Deformation

• Deformation measure (strain): 

• Desirable property: if spring is undeformed, strain is 0

• Can we find a similar measure that would work for an 
arbitrary volume ?
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Deformation

• Deformation gradient 𝑭 = 𝑰 + 𝛻𝒖 maps undeformed vectors to deformed 
vectors as 𝒅 = 𝑭ഥ𝒅

• Deformation measure should capture change in length squared for any and all 
directions:

𝒅𝑇𝒅 − ഥ𝒅𝑇ഥ𝒅 = ഥ𝒅𝑇(𝑭𝑇𝑭 − 𝑰)ഥ𝒅

• Green strain

𝐸 =
1

2
𝑭𝑇𝑭 − 𝑰 =

1

2
𝛻𝒖 + 𝛻𝒖𝑇 + 𝛻𝒖𝑇𝛻𝒖
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Green Strain and Cauchy Strain

• Green strain is quadratic in displacements

𝐸 =
1

2
𝑭𝑇𝑭 − 𝑰 =

1

2
𝛻𝒖 + 𝛻𝒖𝑇 + 𝛻𝒖𝑇𝛻𝒖

• Neglecting quadratic terms leads to the linear Cauchy strain

𝜺 =
1

2
𝛻𝐮 + 𝛻𝐮t =

1

2
𝐅 + 𝐅𝑡 − 𝐈

Note:

• both Cauchy and Green strain are invariant under translation

• Green strain is invariant under rotation, but Cauchy strain is not (what 
happens for a new deformation gradient 𝑭′ = 𝑹𝑭, obtained just by 
rotating an already deformed configuration? What does this mean?)

85



86

3D Linear Strain

• Linear Cauchy strain

• Geometric interpretation

y,v

x,u

i :   normal strains

i :   shear strains

2
1
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𝜕𝑥
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Mass Spring vs Continuum Mechanics
• Mass spring systems:

1. Measure of Deformation

2. Material Model

3. Deformation Energy

4. Internal Forces

• Continuum Mechanics:
1. Measure of Deformation: Green or Cauchy strain

2. Material Model
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Material Model

88

• e.g. linear isotropic material (generalized Hooke’s law) 

– Energy density Ψ =
1

2
𝜆tr(𝜺)2+𝜇tr(𝜺2)

– Lame parameters 𝜆 and 𝜇 are material constants related to fundamental 

physical parameters, the Poisson Ratio and Young’s modulus

• Material model links strain to deformation energy (and also to 

stresses/internal forces)

tr 𝜺 = σ𝜀𝑖𝑖



Material Parameters
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https://en.wikipedia.org/wiki/Lam%C3%A9_parameters



Material Model
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• E.g. linear isotropic material (generalized Hooke’s law) 

– Energy density Ψ =
1

2
𝜆tr(𝜺)2+𝜇tr(𝜺2)

– Lame parameters 𝜆 and 𝜇 are material constants

– Obtain deformation energy by integrating energy density over element: 

𝑊𝑒 = Ω𝑒
Ψ . If we are using linear basis functions (e.g. linear elements), 

then 𝐅 is constant, so Ψ is constant and 𝑊𝑒 = Ψ 𝐅 ⋅ ത𝑉𝑒

• Interpretation

– tr 𝜺2 = tr 𝜺𝑇𝜺 = 𝜺 𝐹
2 penalizes all strain components equally

– 𝜆tr 𝜺 2 penalizes dilatations, i.e., volume changes

• Material model links strain to deformation energy

tr 𝜺 = σ𝜀𝑖𝑖



Volumetric Strain

• Consider a cube with side length 𝑎

• For a given deformation 𝜺, the added volume is

Δ𝑉 = 𝑎 1 + 𝜀11 ⋅ 𝑎 1 + 𝜀22 ⋅ 𝑎 1 + 𝜀33 − 𝑎3

= 𝑎3(𝜀11 + 𝜀22 + 𝜀33) + 𝑂 𝜺2 ≈ 𝑎3tr(𝜺)
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𝑎

http://en.wikipedia.org/wiki/Infinitesimal_strain_theory



Solving Statics Problems

• Necessary condition for static equilibrium   

𝐟𝑖 𝐱 = 𝐟𝑖
𝑒𝑥𝑡 + 𝐟𝑖

𝑒𝑙 𝐱 = 0 ∀𝑖

• Given 𝐱 and 𝐟 𝐱 , find Δ𝐱 such that 𝐟 𝐱 + Δ𝐱 = 𝟎

• First order approximation → 𝐊 𝐱 Δ𝐱 = −𝐟 𝐱

92

Stiffness matrix

𝐊 =
𝜕𝐟𝑒𝑙

𝜕𝐱

𝐟𝑖
𝑒𝑙 = −

𝜕𝑊

𝜕𝒙𝑖

Newton’s method
While not converged

Compute 𝐟 𝐱 , 𝐊(𝐱)
Solve  𝐊 𝐱 Δ𝐱 = −𝐟 𝐱
line search 𝛼 = linesearch(𝐱, Δ𝐱)
Update 𝐱 += 𝛼Δ𝐱

end



Solving The Static Equilibrium Problem

Assemble element contributions into global vector and matrix

𝐟𝑒 ∈ 𝐑3⋅4

…

…

𝐟 ∈ 𝐑3⋅𝑛𝑣

Force vector

+=

Symmetric Symmetric 
and sparse

𝐊𝑒 ∈ 𝐑12×12 𝐊 ∈ 𝐑3𝑛𝑣×3𝑛𝑣

Stiffness Matrix
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Linear Elasticity – Behavior

• For linear elasticity, 𝑊 is quadratic in 𝐱, 𝐟 is linear in 𝐱, and 
𝜕2𝑊

𝜕𝒙𝟐
is 

constant → only solve one linear system for static equilibrium

94

• Problem: Cauchy strain is not invariant under 
rotations → inaccuracies for large rotations 
deformations

• Solution: use nonlinear deformation 
measure (e.g. Green strain instead of Cauchy 
strain)



Nonlinear Elasticity

• Idea: replace Cauchy strain with Green strain  

→  St. Venant-Kirchhoff material (StVK)

• Energy Ψ𝑆𝑡𝑉𝐾 =
1

2
𝜆tr(𝐄)2+𝜇tr(𝐄2)

• Note:

• Energy is quartic in 𝐱, forces are cubic

• Green strain is rotation invariant

• Solve system of nonlinear equations
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StVK Limitations

• Problem: StVK softens under compression

• Once inverted, elements are happy to stay there…

• Work around: add volume term

Ψ𝑆𝑡𝑉𝐾 =
𝜆

2
tr(𝐄)2+𝜇tr 𝐄2 → Ψ𝑀𝑜𝑑 = 𝜂(det 𝐅 − 1)2 + 𝜇tr 𝐄2

Force

Deformation

Energy

Deformation
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Advanced nonlinear materials

• Green Strain 𝐄 =
1

2
𝐅𝑡𝐅 − 𝐈 =

1

2
(𝐂 − 𝐈)

• Split into deviatoric (i.e. volume-preserving shape changing/distortion) and volumetric 
(dilation, volume changing) deformations

Volumetric:  𝐽 = det 𝐅 Deviatoric:  𝐂 = 𝐅𝑡𝐅

• Compressible Neo-Hookean material:

Ψ𝑁𝐻 =
𝜇

2
(tr 𝐂) − 3 − 𝜇 ln 𝐽 +

𝜆

2
ln 𝐽 2

Observations:

• the first term penalizes all deformations equally (since tr 𝑪 = 𝑭 𝐹
2 )

• the third term goes to infinity for increasing compression (faster than the second)

• the stress-strain behavior is initially linear, but goes into plateau for larger deformations

• Rule of thumb: NH is good for deformations of up to 20%

Energy

Stress
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Different Models

St. Venant-Kirchoff

Neo-Hookean

Linear
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• Discretize into elements (triangles/tetraderons, etc)

• For each element
• Compute deformation gradient

• Use material model to define energy density Ψ(𝐅)

• Integrate over elements to compute energy: W

• Compute nodal forces as the negative gradient of deformation energy 

FEM recipe
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Young’s Modulus and Poisson Ratio

Lame parameters 𝜆 and 𝜇 are material constants related to the 
fundamental physical parameters: Poisson’s Ratio and Young’s 
modulus (http://en.wikipedia.org/wiki/Lamé_parameters)

Young’s modulus (E), measure of 
stiffness

Poisson’s ratio (ν), captures transverse 
deformation relative to axial deformation

10 Kg

10 Kg
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What Do These Parameters Mean

• Stiffness is pretty intuitive

OBJECT
E=10000000 GPa

10 Kg

OBJECT
E=60 KPa

10 Kg

Pascals = force/area
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What Do These Parameters Mean

Poisson’s Ratio quantifies the extent to which volume is  preservation

OBJECT

OBJECT

1

1
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What Do These Parameters Mean

Poisson’s Ratio controls volume preservation

OBJECT

OBJECT 1/2

2
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What Do These Parameters Mean

Poisson’s Ratio controls volume preservation

OBJECT

OBJECT 1/2

2

Poisson’s Ratio (    ) = ?
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What Do These Parameters Mean

Poisson’s Ratio controls volume preservation

OBJECT

OBJECT 1/2

2

Poisson’s Ratio (    ) = 0.5
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What Do These Parameters Mean

Poisson’s ratio is between -1 and 0.5

OBJECT

OBJECT 1.5

2

Poisson’s Ratio (    ) = -0.5
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Negative Poisson’s Ratio materials
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Measurement

• Where do material parameters come from?
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Simple Measurement: Stiffness

OBJECT
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Simple Measurement

OBJECT

1kg

What’s the Force (Stress)?

What’s the Deformation (Strain)?
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Simple Measurement

OBJECT

1kg
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Simple Measurement

OBJECT

2kg
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Simple Measurement

OBJECT

3kg
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Simple Measurement

OBJECT

7kg
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Simple Measurement

OBJECT

7kg

How do we get the stiffness ?
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Simple Measurement

OBJECT

7kg

How do we get the stiffness ?
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Simple Measurement

OBJECT

7kg

How do we get the stiffness ?

Stiffness
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Simple Measurement: Poisson’s Ratio

OBJECT
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Simple Measurement: Poisson’s Ratio

OBJECT

119



Simple Measurement: Poisson’s Ratio

OBJECT

Compute changes in width and height
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Simple Measurement: Poisson’s Ratio

OBJECT

Poisson’s Ratio
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Measurement Devices
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Suppose you want to simulate this…
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The Limits of Hyperelasticity

• Real-world materials are not perfectly hyperelastic
• Viscosity (stress relaxation, creep)

• Plasticity (irreversible deformation)

• Mullins effect (stiffness depends on strain history)

• Fatigue, damage, …
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Further Reading

Textbooks

• Bonet and Wood, Nonlinear Continuum Mechanics

• Ogden, Nonlinear Elastic Deformations
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